专题训练(二)中点四边形
2020年九年级数学中考一轮专题汇编 考点三角形和四边形 压轴题提高训练检测卷 含答案

2020年九年级数学中考一轮专题汇编考点三角形和四边形压轴题提高训练检测卷含答案1、如图,在△ABC中,∠ACB=90︒,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30︒时,求证:四边形ECBF是菱形.2、如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.3、如图,在▱ABCD中,AC为对角线,AC=BC=5,AB=6,AE是△ABC的中线.(1)用无刻度的直尺画出△ABC的高CH(保留画图痕迹);(2)求△ACE的面积.4、如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.5、已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.6、四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.7、如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.(1)求证:△ABP∽△QEA;(2)当运动时间t为何值时,△ABP≌△QEA;(3)设△QEA的面积为y,用运动时刻t表示△QEA的面积y(不要求考t的取值范围).(提示:解答(2)(3)时可不分先后)8、已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,易证OE=OF(不需证明)(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.9、现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)10、如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.11、如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA 至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB 交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;(3)试判断四边形ABNE的形状,并说明理由.12、如图,矩形ABCD 中,AB=4,AD=3,M 是边CD 上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN ,当DM=1时,求△ABN 的面积;(3)当射线BN 交线段CD于点F时,求DF的最大值.13、数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:的值为常数t,则t= .14、我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)15、如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE 相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.16、如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F 处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有①②⑤(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为2;⑤当△ABP≌△ADN时,BP=4﹣4.17、如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x 的取值范围(不用说明理由).答案1、 (1) 证明:∵D,E分别为边AC,AB的中点,∴DE∥BC,即EF∥BC.又∵BF∥CE,∴四边形ECBF是平行四边形.(2)证法一:∵∠ACB=90︒,∠A=30︒,E为AB的中点,∴12CB AB=,12CE AB=.∴CB CE=.又由(1)知,四边形ECBF是平行四边形,[来源:] ∴四边形ECBF是菱形.证法二:∵∠ACB=90︒,∠A=30︒,E为AB的中点,∴12BC AB BE==,∠ABC=60︒.∴△BCE是等边三角形. ∴CB CE=.又由(1)知,四边形ECBF是平行四边形,∴四边形ECBF是菱形. 证法三:∵E为AB的中点,∠ACB=90︒,∠A=30︒,∴12CE AB BE==, ∠ABC=60︒.∴△BCE是等边三角形.∴CB CE.又由(1)知,四边形ECBF是平行四边形,2、【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折线,∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE,∵图形翻折后BC与GE完全重合,∴BE=EC,∴GF=EC,∴四边形CEGF为平行四边形,∴四边形CEGF为菱形;(2)解:如图1,当F与D重合时,CE取最小值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,∵∠ECD=90°,∴∠DEC=45°=∠CDE,∴CE=CD=DG,∵DG∥CE,∴四边形CEGD是矩形,∴CE=CD=AB=3;如图2,当G与A重合时,CE取最大值,由折叠的性质得AE=CE,∵∠B=90°,∴AE2=AB2+BE2,即CE2=32+(9﹣CE)2,∴CE=5,∴线段CE的取值范围3≤CE≤5.3、【解答】解:(1)如图,连接BD,BD与AE交于点F,连接CF并延长到AB,则它与AB的交点即为H.理由如下:∵BD、AC是▱ABCD的对角线,∴点O是AC的中点,∵AE、BO是等腰△ABC两腰上的中线,∴AE=BO,AO=BE,∵AO=BE,∴△ABO≌△BAE(SSS),∴∠ABO=∠BAE,△ABF中,∵∠FAB=∠FBA,∴FA=FB,∵∠BAC=∠ABC,∴∠EAC=∠OBC,由可得△AFC≌BFC(SAS)∴∠ACF=∠BCF,即CH是等腰△ABC顶角平分线,所以CH是△ABC的高;(2)∵AC=BC=5,AB=6,CH⊥AB,∴AH=AB=3,∴CH==4,∴S△ABC=AB•CH=×6×4=12,∵AE是△ABC的中线,∴S△ACE =S△ABC=6.4、【解答】解:(1)相等.理由:连接AC,在△ACD和△ACB中,,∴△ACD≌△ACB,∴∠B=∠D.(2)设AD=x,BC=y,当点C在点D右侧时,,解得,当点C在点D左侧时,解得,此时AC=17,CD=5,AD=8,5+8<17,∴不合题意,∴AD=13cm,BC=10cm.5、【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ6、【解答】证明:(1)∵BE=DF,∴BE﹣EF=DF﹣EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,∴AO=CO.7、【解答】(1)证明:∵四边形ABCD为正方形;∴∠BAP+∠QAE=∠B=90°,∵QE⊥AP;∴∠QAE+∠EQA=∠AEQ=90°∴∠BAP=∠EQA,∠B=∠AEQ;∴△ABP∽△QEA(AA)(2)∵△ABP≌△QEA;∴AP=AQ(全等三角形的对应边相等);在RT△ABP与RT△QEA中根据勾股定理得AP2=32+t2,AQ2=(2t)2即32+t2=(2t)2解得t1=,t2=﹣(不符合题意,舍去)答:当t取时△ABP与△QEA全等.(3)由(1)知△ABP∽△QEA;∴=()2∴=()2整理得:y=.8、【解答】解:(1)∵AE⊥PB,CF⊥BP,∴∠AEO=∠CFO=90°,在△AEO和△CFO中,,∴△AOE≌△COF,∴OE=OF.(2)图2中的结论为:CF=OE+AE.图3中的结论为:CF=OE﹣AE.选图2中的结论证明如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,在△EOA和△GOC中,,∴△EOA≌△GOC,∴EO=GO,AE=CG,在RT△EFG中,∵EO=OG,∴OE=OF=GO,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=GF,∵OE=OF,∴OE=FG,∵CF=FG+CG,∴CF=OE+AE.选图3的结论证明如下:延长EO交FC的延长线于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠AEO=∠G,在△AOE和△COG中,,∴△AOE≌△COG,∴OE=OG,AE=CG,在RT△EFG中,∵OE=OG,∴OE=OF=OG,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=FG,∵OE=OF,∴OE=FG,∵CF=FG﹣CG,∴CF=OE﹣AE.9、(2)仍成立.证明:如图2,连接AC、BD,则由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°∵∠MON=90°∴∠BOM=∠CON在△BOM和△CON中∴△BOM≌△CON(ASA)∴OM=ON(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°又∵∠C=90°∴∠EOF=90°=∠MON∴∠MOE=∠NOF在△MOE和△NOF中∴△MOE≌△NOF(AAS)∴OE=OF又∵OE⊥BC,OF⊥CD∴点O在∠C的平分线上∴O在移动过程中可形成线段AC(4)O在移动过程中可形成直线AC.10、【解答】解:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵∠NPD=∠EAC,∠MPN=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN;(2)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)PM=kPN∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PN=AE.∴PM=kPN.11、【解答】(1)证明:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABF=135°,∵∠BCD=90°,∴∠ABF=∠ACD,∵CB=CD,CB=BF,∴BF=CD,在△ABF和△ACD中,,∴△ABF≌△ACD(SAS),∴AD=AF;(2)证明:由(1)知,AF=AD,△ABF≌△ACD,∴∠FAB=∠DAC,∴∠EAB=∠BAC=90°,∴∠EAF=∠BAD,在△AEF和△ABD中,,∴△AEF≌△ABD(SAS),∴BD=EF;(3)解:四边形ABNE是正方形;理由如下:∵CD=CB,∠BCD=90°,∴∠CBD=45°,由(2)知,∠EAB=90°,△AEF≌△ABD,∴∠AEF=∠ABD=90°,∴四边形ABNE是矩形,又∵AE=AB,∴四边形ABNE是正方形.12、【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:,∴DF的最大值=DC-CF=.13、【解答】解;(1)①∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∵AD=AB,∴△ABC,△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∴△BCE≌△ACF.②∵△BCE≌△ACF,∴BE=AF,∴AE+AF=AE+BE=AB=AC.(2)设DH=x,由由题意,CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,∴AC==2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30°,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴==2,∴AE=2FH.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.∵∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴=,∵AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴==,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHN=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC==a,AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM= a,∴==.故答案为.14、【解答】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD即∠APC=∠BPD,在△APC和△BPD中,,∴△APC≌△BPD,∴AC=BD∵点E,F,G分别为边AB,BC,CD的中点,∴EF=AC,FG=BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.15、【解答】解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tanC=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHA=∠FHC,,∴△EHA≌△FHC,∴∠EAH=∠C,∴tan∠EAH=tanC=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=90°,∴△AGQ∽△CHQ,∴,∴,∵∠AQC=∠GQE,∴△AQC∽△GQH,∴=sin30°=.16、【解答】解:∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,∴∠CPM=∠PAB,∵四边形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BPA.故①正确,设PB=x,则CP=4﹣x,∵△CMP∽△BPA,∴=,∴CM=x(4﹣x),∴S=[4+x(4﹣x)]×4=﹣x2+2x+8=﹣(x﹣2)2+10,四边形A M C B∴x=2时,四边形AMCB面积最大值为10,故②正确,当PB=PC=PE=2时,设ND=NE=y,在RT△PCN中,(y+2)2=(4﹣y)2+22解得y=,∴NE≠EP,故③错误,作MG⊥AB于G,∵AM==,∴AG最小时AM最小,∵AG=AB﹣BG=AB﹣CM=4﹣x(4﹣x)=(x﹣1)2+3,∴x=1时,AG最小值=3,∴AM的最小值==5,故④错误.∵△ABP≌△ADN时,∴∠PAB=∠DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,∴∠KPA=∠KAP=22.5°∵∠PKB=∠KPA+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z,AK=PK=z,∴z+z=4,∴z=4﹣4,∴PB=4﹣4故⑤正确.故答案为①②⑤.:当y=0时,2x+3=0,x=﹣17、【解答】解:(1)直线l1与x轴坐标为(﹣,0)则直线l1:当y=3时,2x﹣3=3,x=3直线l2与AB的交点坐标为(3,3);则直线l2(2)①若点A为直角顶点时,点M在第一象限,连结AC,如图1,∠APB>∠ACB>45°,∴△APM不可能是等腰直角三角形,∴点M不存在;②若点P为直角顶点时,点M在第一象限,如图2,过点M作MN⊥CB,交CB的延长线于点N,则Rt△ABP≌Rt△PNM,∴AB=PN=4,MN=BP,设M(x,2x﹣3),则MN=x﹣4,∴2x﹣3=4+3﹣(x﹣4),x=,∴M(,);③若点M为直角顶点时,点M在第一象限,如图3,设M(x,2x﹣3),1过点M1作M1G1⊥OA,交BC于点H1,则Rt△AM1G1≌Rt△PM1H1,∴AG1=M1H1=3﹣(2x﹣3),∴x+3﹣(2x﹣3)=4,x=2∴M1(2,1);设M2(x,2x﹣3),同理可得x+2x﹣3﹣3=4,∴x=,∴M2(,);综上所述,点M的坐标为(,),(2,1),(,);(3)x的取值范围为﹣≤x<0或0<x≤或≤x≤或≤x ≤2.。
2020-2021学年八年级数学人教版下册第18章《平行四边形》章末专题复习: 《中位线》相关训练

人教版八年级下册第18章《平行四边形》章末专题复习《中位线》相关训练一.选择题1.如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE 等于()A.AB B.AC C.AB D.AC2.如图所示,在△ABC中,AB=AC,D,E分别是AB,AC的中点,F,G为BC上的点,连接DG、EF,若AB=5cm,BC=8cm,FG=4cm,则△HFG的面积为()A.1cm2B.1.5cm2C.2cm2D.3cm23.如图,在四边形ABCD中,点P是边CD上的动点,点Q是边BC上的定点,连接AP,PQ,E,F分别是AP,PQ的中点,连接EF.点P在由C到D运动过程中,线段EF的长度()A.保持不变B.逐渐变小C.先变大,再变小D.逐渐变大4.如图,在三边互不相等的△ABC中,D、E、F分别是AB、AC、BC边的中点,连接DE,过点C作CM∥AB交DE的延长线于点M,连接CD、EF交于点N,则图中全等三角形共有()A.3对B.4对C.5对D.6对5.如图,在△ABC中,动点P在AB边上由点A向点B以3cm/s的速度匀速运动,则线段CP的中点Q运动的速度为()A.3cm/s B.2cm/s C.1.5cm/s D.1cm/s6.如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长为()A.1B.C.D.7.如图,在△ABC中,点M为BC的中点,AD为△ABC的外角平分线,且AD⊥BD,若AB=6,AC=9,则MD的长为()A.3B.C.5D.8.如图,点B是直线l外一点,在l的另一侧任取一点K,以B为圆心,BK为半径作弧,交直线l于点M、N;再分别以M、N为圆心,以大于MN为半径作弧,两弧相交于点P;连接BP交直线l于点A;点C是直线l上一点,点D、E分别是线段AB、BC的中点;F在CA的延长线上,∠FDA=∠B,AC=8,AB=6,则四边形AEDF的周长为()A.8B.10C.16D.189.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=8,BC=14,则线段EF的长为()A.2B.3C.5D.610.如图,在△ABC中,∠C=90°,E,F分别是AC,BC上两点,AE=16,BF=12,点P,Q,D分别是AF,BE,AB的中点,则PQ的长为()A.10B.8C.2D.2011.如图,BD、CE是△ABC的两条角平分线,AN⊥BD于点N,AM⊥CE于点M,连接MN,若△ABC的周长为17,BC=7,则MN的长度为()12.如图,四边形ABCD中,AB∥CD,AB=5,DC=11,AD与BC的和是12,点E、F、G分别是BD、AC、DC的中点,则△EFG的周长是()A.8B.9C.10D.1213.如图,△ABC的周长为32,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.3B.4C.5D.614.如图,在△ABC中,AD是角平分线,AE是中线,CF⊥AD于点F,AC=5,AB=13,则EF的长为()A.B.C.3D.415.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6.M是BD的中点,则CM的长为()二.填空题(共10小题)16.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD =6,则EF=.17.△ABC中,∠ACB=90°,BD=AC,M、N分别为CD、AB的中点,CD=2,MN=2,则CN=.18.如图,在四边形ABCD中,∠ADC+∠BCD=220°,E、F分别是AC、BD的中点,P 是AB边上的中点,则∠EPF=°.19.如图,已知在Rt△ABC中,∠ACB=90°,点D是AC延长线上的一点,AD=24,点E是BC上一点,BE=10,连接DE,M、N分别是AB、DE的中点,则MN=.20.如图,四边形ABCD中,∠BMF+∠CNF=90°,E、F分别是AD、BC的中点,AB=5,CD=12,则EF=.21.如图,∠MAN=90°,点C在边AM上,AC=2,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在的直线对称,点D,E分别为AB,BC的中点,连接DE 并延长交A′C所在直线于点F,连接A′E,当△A′EF为直角三角形时,AB的长为.22.如图,在△ABC中,D为BC边中点,P为AC边中点,E为BC上一点且BE=CE,连接AE,取AE中点Q并连接QD,取QD中点G,延长PG与BC边交于点H,若BC =6,则HE=.23.在四边形ABCD中,对角线AC⊥BD且AC=4,BD=8,E、F分别是边AB、CD的中点,则EF=.24.如图,△ABC的顶点落在两条平行线上,点D、E、F分别是△ABC三边中点,平行线间的距离是8,BC=6,移动点A,当CD=BD时,EF的长度是.25.如图,△ABC中,∠ACB=90°,AB边上的高线CD与△ABC的两条角平分线AE,BF分别交于H,G两点,点P,Q分别为HE,GF的中点,连接PQ,若AC=4,BC=6,则PQ的长为.三.解答题(共7小题)26.如图,在四边形ABCD中,AB=CD,点E、F分别是BC、AD的中点,连接EF并延长分别与BA、CD的延长线交于点M、N,∠BME与∠CNE的大小关系如何?试说明理由.27.已知:如图,四边形ABCD中,对角线AC=BD,E,F为AB、CD中点,连EF交BD、AC于P、Q求证:OP=OQ.28.(1)如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.求证:FG=(AB+BC+AC).[提示:分别延长AF、AG与直线BC相交](2)如图2,若BD、CE分别是△ABC的内角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.29.如图,在四边形ABCD中,AB=CD,E.F分别是BC.AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不必证明)(温馨提示:在图(1)中,连接BD,取BD的中点H,连接HE.HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线的性质,可证明∠BME=∠CNE)(1)如图(2),在四边形ADBC中,AB与CD相交于点O,AB=CD,E.F分别是BC.AD 的中点,连接EF,分别交CD.BA于点M.N,判断△OMN的形状,请直接写出结论.(2)如图(3)中,在△ABC中,AC>AB,D点在AC上,AB=CD,E.F分别是BC.AD 的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD形状并证明.30.如图,在△ABC中,D为AC上一点,AB=CD,F是AD的中点,M为BC的中点,连接MF并延长交BA延长线于点E,G为EF的中点,求证:AG⊥ME.31.(1)如图1,在四边形ABCD中,AB=CD,E,F分别是AD,BC的中点,连接FE并延长,分别与BA,CD的延长线交于点M,N.求证:∠BME=∠CNE;(提示:取BD的中点H,连接FH,HE作辅助线)(2)如图2,在△ABC中,F是BC边的中点,D是AC边上一点,E是AD的中点,直线FE交BA的延长线于点G,若AB=DC=2,∠FEC=45°,求FE的长度.32.如图,在四边形ABCD中,BC、AD不平行,且∠BAD+∠ADC=270°,E、F分别是AD、BC的中点,已知EF=4,求AB2+CD2的值.参考答案一.选择题1.解:如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.又∵点D是AB的中点,∴EF=AE.∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°+∠C)=90°﹣∠C,∴∠FBC=∠BFC,∴BC=FC,∴BC+2AE=AC.故选:B.2.解:连接,作AK⊥BC于K.∵AB=AC,∴BK=CK=BC=×8=4,在Rt△ABK中,AK===3,∵D、E分别是AB,AC的中点,∴DE是中位线,即平分三角形的高且DE=8÷2=4,∴DE=BC=FG,∴△DEH≌△GFH,H也是DG,EF的中点,∴△HFG的高是AK÷2=1.5÷2=0.75,∴S△HFG=4×0.75÷2=1.5.故选:B.3.解:连接AQ,∵点Q是边BC上的定点,∴AQ的大小不变,∵E,F分别是AP,PQ的中点,∴EF=AQ,∴线段EF的长度保持不变,故选:A.4.解:∵D、E分别是AB、AC边的中点,∴DE∥BC,DE=BC,∴∠EDC=∠FCD,∵F是BC边的中点,∴CF=BC,∴DE=CF,在△DNE和△CNF中,∴△DNE≌△CNF(AAS),同理△AED≌△CEM,∵E、F分别是AC、BC边的中点,∴EF∥AB,又CM∥AB,∴CM∥EF,∵DE∥BC,CM∥EF,∴四边形EFCM是平行四边形,∴△EFC≌△CME,△BCD≌△MDC,∴△EFC≌△ADE,∴图中全等三角形共有5对故选:C.5.解:取AC的中点H,连接QH,当点P与点A重合时,点Q与点H重合,∵点Q是线段CP的中点,点H为AC的中点,∴QH=AP,∵动点P在AB边上由点A向点B以3cm/s的速度匀速运动,∴点Q运动的速度为1.5cm/s,故选:C.6.解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∵BD=DA,BE=EM,∴DE=,故选:B.7.解:延长BD交CA的延长线于E,∵AD为∠BAE的平分线,BD⊥AD,∴∠EAD=∠BAD,∠ADE=∠ADB=90°,∵AD=AD,∴△ADE≌△ADB(ASA),∴BD=DE,AB=AE=6,∴CE=AC+AE=9+6=15,又∵M为△ABC的边BC的中点,∴DM是△BCE的中位线,∴MD=CE=×15=7.5.故选:D.8.解:由题意得,BA⊥MN,∴BC==10,∵∠BAC=90°,点E是线段BC的中点,∴AE=BE=BC=5,∴∠EAB=∠B,∵∠FDA=∠B,∴∠FDA=∠EAB,∴DF∥AE,∵点D、E分别是线段AB、BC的中点,∴DE∥AC,DE=AC=4,∴四边形AEDF是平行四边形,∴四边形AEDF的周长=2×(4+5)=18,故选:D.9.解:延长AF交BC于G,在△BF A和△BFG中,,∴△BF A≌△BFG(ASA)∴BG=AB=8,AF=FG,∴GC=BC﹣BG=6,∵AD=DB,AF=FG,∴DF∥BC,由AD=DB,∴AE=EC,∵AF=FG,AE=EC,∴EF=GC=3,故选:B.10.解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵点P,D分别是AF,AB的中点,∴PD=BF=6,PD∥BC,∴∠PDA=∠CBA,同理,QD=AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ==10,故选:A.11.解:∵△ABC的周长为17,BC=7.∴AB+AC=17﹣BC=10.如图,分别延长AM、AN交BC于点G,F.∵∠BNA=∠BNF=90°,BN=BN,∠NBA=∠NBF ∴△BNA≌△BNF(ASA)∴AN=FN,AB=FB同理,AM=MG,AC=GC,即MN为△AGF的中位线,∴MN=GF,而FB+GC=AB+AC,即BC+GF=AB+AC,∵BC=7,AB+AC=10,∴GF=3,∴MN=GF=,故选:A.12.解:连接AE,并延长交CD于K,∵AB∥CD,∴∠BAE=∠DKE,∠ABD=∠EDK,∵点E、F、G分别是BD、AC、DC的中点.∴BE=DE,在△AEB和△KED中,,∴△AEB≌△KED(AAS),∴DK=AB,AE=EK,EF为△ACK的中位线,∴EF=CK=(DC﹣DK)=(DC﹣AB),∵EG为△BCD的中位线,∴EG=BC,又FG为△ACD的中位线,∴FG=AD,∴EG+GF=(AD+BC),∵AD+BC=12,AB=5,DC=11,即DC﹣AB=6,∴EG+GF=6,FE=3,∴△EFG的周长是6+3=9.故选:B.13.解:∵BQ平分∠ABC,BQ⊥AE,∴∠ABQ=∠EBQ,∵∠ABQ+∠BAQ=90°,∠EBQ+∠BEQ=90°,∴∠BAQ=∠BEQ,∴AB=BE,同理:CA=CD,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=32﹣BC=32﹣12=20,∴DE=BE+CD﹣BC=8,∴PQ=DE=4.故选:B.14.解:延长CF交AB于G,如图所示:∵AD是△ABC的角平分线,∴∠GAF=∠CAF,在△AGF和△ACF中,,∴△AGF≌△ACF(ASA),∴AG=AC=5,GF=CF,则BG=AB﹣AG=13﹣5=8.又∵AE是△ABC的中线,∴BE=CE,∴EF是△BCG的中位线,∴EF=BG=4.故选:D.15.解:延长BC到E使BE=AD,则四边形ABED是平行四边形,∵BC=3,AD=6,∴C是BE的中点,∵M是BD的中点,∴CM=DE=AB,∵AC⊥BC,∴AB===5,∴CM=,故选:C.二.填空题(共10小题)16.解:连接CF并延长交AB于G,∵AB∥CD,∴∠FDC=∠FBG,在△FDC和△FBG中,,∴△FDC≌△FBG(ASA)∴BG=DC=6,CF=FG,∴AG=AB﹣BG=12﹣6=6,∵CE=EA,CF=FG,∴EF=AG=3,故答案为:3.17.解:过点N作NE⊥BC于点E,则NE∥AC,又N是AB的中点,∴NE=AC,BE=(2+BD)=(2+AC)=1+AC,∴EM=MD+DE=1+BD﹣BE=AC,∴NE=ME,由勾股定理得,MN2=ME2+NE2,即(2)2=ME2+NE2,解得,NE=ME=2,∴CN===.故答案为:.18.解:∵四边形ABCD中,∠ADC+∠BCD=220°,∴∠BAD+∠ABC=360°﹣220°=140°,∵E、F分别是AC、BD的中点,P是AB边上的中点,∴PE是△ABC的中位线,PF是△ABD的中位线,∴PE∥BC,PF∥AD,∴∠BPF=∠BAD,∠APE=∠ABC,∴∠APE+∠BPF=∠BAD+∠ABC=140°,∴∠EPF=180°﹣140°=40°,故答案为:40.19.解:连接BD,取BD的中点F,连接MF、NF,如图所示:∵M、N、F分别是AB、DE、BD的中点,∴NF、MF分别是△BDE、△ABD的中位线,∴NF∥BE,MF∥AD,NF=BE=5,MF=AD=12,∵∠ACB=90°,∴AD⊥BC,∵MF∥AD,∴MF⊥BC,∵NF∥BE,∴NF⊥MF,在Rt△MNF中,由勾股定理得:MN===13;故答案为:13.20.解:连接BD,取BD的中点H,连接EH,HF,∵E、F分别是AD、BC的中点,∴EH∥AB,EH=AB=,HF∥CD,HF=CD=6,∴∠HEF=∠BMF,∠HFE=∠CNF,∵∠BMF+∠CNF=90°,∴∠HEF+∠HFE=90°,∴∠EHF=90°,∴EF===,故答案为:.21.解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=2,∠ACB=∠A'CB,∵点D,E分别为AB,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠BDE=∠MAN=90°,∴∠BDE=∠A'EF,∴AB∥A'E,∴∠ABC=∠A'EB,∴∠A'BC=∠A'EB,∴A'B=A'E,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E,由勾股定理得:AB2=BC2﹣AC2,∴AE′=,∴AB=;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFC=90°,∴∠ACF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=2;综上所述,AB的长为或2;故答案为:或2.22.解:连接PQ.∵BD=DC=3,BE=BC=,EC=,∵AQ=QE,AP=PC,∴PQ∥EC,PQ=EC=,∵∠QPG=∠GHD,∠QGP=∠DGH,QG=GD,∴△PQG≌△HDG(AAS),∴PQ=HD=,BH=BD﹣DH=3﹣=,∴HE=BE﹣BH=﹣=,故答案为.23.解:如图,取BC的中点G,连接EG、FG,∵E、F分别是边AB、CD的中点,∴EG∥AC且EG=AC=×4=2,FG∥BD且FG=BD=×8=4,∵AC⊥BD,∴EG⊥FG,∴EF=.故答案为:224.解:如图,过点D作DH⊥BC于点H,∵过点D作DH⊥BC于点H,BC=6,∴BH=CH=3.又平行线间的距离是8,点D是AB的中点,∴DH=4,∴在直角△BDH中,由勾股定理知,BD===5.∵点D是AB的中点,∴AB=2BD=10.又点E、F分别是AC、BC的中点,∴EF是△ABC的中位线,∴EF=AB=5.故答案是:5.25.解:延长CP交AB于K,延长CQ交AB于L,△ABC中,∠ACB=90°,由勾股定理得:AB===2,∵BF是∠ABC的平分线,∴∠ABF=∠CBF,又∵CD⊥AB,∴∠CGF=∠BGD=90°﹣∠ABF=90°﹣∠CBF=∠CFB,∴CG=CF.又∵Q是GF的中点,∴CQ⊥GF,∴∠CQB=∠LQB=90°,∴∠BCQ=∠BLQ,∴BL=BC=6,∴CQ=LQ,同理得:CE=CH,∵P是EH的中点,∴CP⊥EH,∴AP⊥CK,同理得AK=AC=4,CP=PK,∵CP=PK,CQ=LQ,∴PQ=LK=(BL+AK﹣AB)=(6+4﹣2)=5﹣;故答案为:5﹣.三.解答题(共7小题)26.解:∠BME=∠CNE,理由如下:连接BD,取BD的中点H,连接HE、HF,∵点E、F分别是BC、AD的中点,∴HF∥BM.HF=AB,HE∥CD,HE=CD,∴∠1=∠BME,∠2=∠ENC,∵AB=CD,∴HF=HE,∴∠1=∠2,∴∠BME=∠CNE.27.证明:取BC中点G,连EG、FG,∵E,G为AB、BC中点,∴EG=AC,EG∥AC,∴∠FEG=∠OQP,同理,FG=BD,FG∥BD,∴∠EFG=∠OPQ,∵AC=BD,∴EG=FG,∴∠FEG=∠EFG,∴∠OPQ=∠OQP,∴OP=OQ.28.解:(1)如图1,∵AF⊥BD,∠ABF=∠MBF,∴∠BAF=∠BMF,在△ABF和△MBF中,,∴△ABF≌△MBF(ASA),∴MB=AB,∴AF=MF,同理:CN=AC,AG=NG,∴FG是△AMN的中位线,∴FG=MN,=(MB+BC+CN),=(AB+BC+AC).(2)猜想:FG=(AB+AC﹣BC),证明:如图2,延长AG、AF,与直线BC相交于M、N,∵由(1)中证明过程类似证△ABF≌△NBF,∴NB=AB,AF=NF,同理CM=AC,AG=MG,∴FG=MN,∴MN=2FG,∴BC=BN+CM﹣MN=AB+AC﹣2FG,∴FG=(AB+AC﹣BC).29.解:(1)取AC中点P,连接PF,PE,可知PE=,PE∥AB,∴∠PEF=∠ANF,同理PF=,PF∥CD,∴∠PFE=∠CME,又PE=PF,∴∠PFE=∠PEF,∴∠OMN=∠ONM,∴△OMN为等腰三角形.(2)判断出△AGD是直角三角形.证明:如图连接BD,取BD的中点H,连接HF、HE,∵F是AD的中点,∴HF∥AB,HF=AB,同理,HE∥CD,HE=CD,∵AB=CD∴HF=HE,∴∠HEF=∠HFE,∵∠EFC=60°,∴∠HEF=60°,∴∠HEF=∠HFE=60°,∴△EHF是等边三角形,∴∠3=∠EFC=∠AFG=60°,∴△AGF是等边三角形.∵AF=FD,∴GF=FD,∴∠FGD=∠FDG=30°∴∠AGD=90°即△AGD是直角三角形.30.证明:连接BD,取BD的中点为O,连接FO,MO,∵F是AD的中点,M为BC的中点,∴MO是△BCD的中位线,FO是△ABD的中位线,∴MO=CD,FO=AB,MO∥AC,OF∥AB,∵AB=CD,∴MO=FO,∴∠OFM=∠OMF,∵OF∥AB,∴∠OFM=∠AEF,∵OM∥AC,∴∠OMF=∠CFM=∠AFE,∴∠AEF=∠AFE,∴AE=AF,∵G为EF的中点,∴AG⊥ME.31.(1)证明:连接BD,取DB的中点H,连接EH,FH,∵E,H分别是AD,BD的中点,∴EH∥AB,EH=AB,∴∠BME=∠HEF,∵F,H分别是BC,BD的中点,∴FH∥CD,FH=CD,∴∠CNE=∠HFE,∵AB=CD∴HE=FH,∴∠HEF=∠HFE∴∠BME=∠CNE;(2)连接BD,取DB的中点H,连接EH,FH,∵E,F分别是AD,BC的中点,∴EH=AB,FH=CD,FH∥AC,∴∠HFE=∠FEC=45°,∵AB=CD=2,∴HF=HE=1,∴∠HEF=∠HFE=45°,∴∠EHF=180°﹣∠HFE﹣HEF=90°,∴.32.解:连接BD,取BD的中点M,连接EM并延长交BC于N,连接FM,∵∠BAD+∠ADC=270°,∴∠ABC+∠C=90°,∵E、F、M分别是AD、BC、BD的中点,∴EM∥AB,FM∥CD,EM=AB,FM=CD,∴∠MNF=∠ABC,∠MFN=∠C,∴∠MNF+∠MFN=90°,即∠NMF=90°,由勾股定理得,ME2+MF2=EF2=16,∴AB2+CD2=(2ME)2+(2MF)2=64.。
专题训练(二) 平行四边形的性质与判定的灵活运用

专题训练(二) 平行四边形的性质与判定的灵活运用►类型之一平行四边形与全等三角形1.用两个全等三角形最多能拼成________个不同的平行四边形.[答案] 32.平行四边形中的一条对角线把平行四边形分成________个全等三角形,两条对角线把平行四边形分成________对全等三角形.[答案] 2 43.如图2-ZT-1所示,E,F是▱ABCD的对角线AC上的两点,且BE∥DF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又∵BE∥DF,∴∠BEF=∠DFE,∴∠AEB=∠CFD,∴△ABE≌△CDF.(2)由(1)知△ABE≌△CDF,∴BE=DF.又∵BE∥DF,∴四边形BFDE是平行四边形.4.如图2-ZT-2,E,F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1)求证:△AFD≌△CEB;(2)四边形ABCD是平行四边形吗?请说明理由.图2-ZT-2解:(1)证明:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB.(2)四边形ABCD是平行四边形.理由如下:∵△AFD≌△CEB,∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.[点评] 在平行四边形中,本身就包含着全等三角形,平行四边形中的对角线可以将平行四边形分成全等三角形,反之,用两个全等三角形也可以拼成平行四边形.在解决有关问题时,需要灵活运用平行四边形的性质找出判定三角形全等的条件,反之,利用全等三角形也可以找出判定四边形是平行四边形的条件.►类型之二平行四边形与等腰三角形5.如图2-ZT-3所示,在▱ABCD中,AC的垂直平分线交AD于点E,且△CDE的周长为8,则▱ABCD的周长是( )图2--3A.10B.12C.14D.16 [答案] D6.如图2-ZT-4所示,在△ABC中,AB=AC=7 cm,D是BC上一点,且DE∥AC,DF∥AB,则DE+DF=________.[答案] 7 cm图2--57.如图2-ZT-5所示,在▱ABCD中,AB=5 cm,AD=8 cm,∠BAD,∠ADC的平分线分别交BC于点E,F,则EF的长为________. [答案] 2 cm8.在▱ABCD中,∠A的平分线分对边BC为3和4两部分,求▱ABCD的周长.图2--6解:如图2-ZT-6,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BEA. 又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE.当AB=BE=3时,▱ABCD的周长2(AB+BC)=2×(3+7)=20.当AB=BE=4时,▱ABCD的周长2(AB+BC)=2×(4+7)=22.即▱ABCD的周长为20或22.9.如图2-ZT-7所示,如果▱ABCD的一内角∠BAD的平分线交BC于点E,且AE=BE,求▱ABCD 各内角的度数.解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∠DAE=∠BEA. 又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE.又∵AE=BE,∴AB=BE=AE,∴∠B=60°,∴∠D=60°,∠BAD=∠C=120°.[点评] 当平行四边形中有角平分线、线段垂直平分线或特殊角(30°,60°角等)时,通常可以转化出等腰三角形,反之亦然.►类型之三平行四边形中的中点问题图2--810.如图2-ZT-8所示,在平行四边形ABCD中,AB=3 cm,BC=5 cm,对角线AC,BD相交于点O,则OA的取值范围是( )A.2 cm<OA<5 cmB.2 cm<OA<8 cmC.1 cm<OA<4 cmD.3 cm<OA<8cm[答案] C11.已知:如图2-ZT-9,四边形ABCD中,AC=7,BD=8,E,F,G,H分别是边AB,BC,CD,DA的中点,则四边形EFGH的周长=________.[答案] 15[解析] ∵EF是△ABC的中位线,∴EF=12AC,同理,HG=12AC,∴EF∥HG,∴四边形EFGH是平行四边形.∴四边形EFGH的周长=2(EF+FG)=2×(12×7+12×8)=15.图2--9 图2--1012.如图2-ZT-10所示,▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=1,BC=5,则对角线BD=__________. [答案] 2 213.如图2-ZT-11,AC,BD是四边形ABCD的对角线,E,F分别是AD,BC的中点,M,N 分别是BD,CA的中点,求证:EF,MN互相平分.图2--11证明:如图2-ZT-12,连接EM,MF,FN,NE.∵FN是△ABC的中位线,∴FN=12AB,同理,EM=12AB,∴FN∥EM,∴四边形EMFN是平行四边形,∴EF ,MN 互相平分.图2--1214.如图2-ZT -12所示,在▱ABCD 中,M 是BC 的中点,且AM =9,BD =12,AD =10,求▱ABCD 的面积.解:如图2-ZT -13,延长BC 至点E ,使CE =CM ,连接DE.∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC ,∴AD ∥ME. 又∵M 是BC 的中点,∴BC =2CM =2CE =2BM , ∴AD =ME =10,BE =15,∴四边形AMED 是平行四边形, ∴DE =AM =9.又∵BD 2+DE 2=122+92=225=152=BE 2, ∴BD ⊥DE ,∴▱ABCD 的面积=2(△BDE 的面积-△DCE 的面积)=2(12×9×12-12×9×12×13)=72. [点评] 在平行四边形的对角线互相平分这一性质中,体现出了线段中点的特点,有中点时就有可能有三角形的中线、中位线、线段垂直平分线等,需灵活处理,积累经验.类型之四 平行四边形中的开放性问题15.如图2-ZT -14,在▱ABCD 中,延长AB 到点E ,使BE =AB ,连接DE 交BC 于点F ,则下列结论不一定成立的是( )图2--14A .∠E =∠CDFB .EF =DFC .AD =2BF D .BE =2CF[答案] D 16.四边形ABCD 中,对角线AC ,BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ; ②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC ;⑤∠A =∠C ,∠B =∠D ; ⑥∠A +∠B =180°,∠A +∠D =180°.其中一定能判定这个四边形是平行四边形的条件共有( )A .3组B .4组C .5组D .6组[答案] C。
人教版八年级下册数学平行四边形证明题专题训(带答案)

人教版八年级下册数学平行四边形证明题专题训练1.ABCD 中,点E 、F 是AC 上的两点,并且AE CF =.求证:四边形BFDE 是平行四边形.2.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且//,//DE AC CE BD .求证:四边形OCED 是菱形.3.如图,在ABC 中,90CAB ∠=︒,DE ,DF 是ABC 的中位线,连接EF ,AD .求证:EF AD =.4.如图,将▱AECF 的对角线EF 向两端延长,分别至点B 和点D ,且使EB =FD .求证:四边形ABCD 为平行四边形.5.如图,在四边形ABCD 中,AB CD =,BE DF =;AE BD ⊥,CF BD ⊥,垂足分别为E ,F .(1)求证:ABE △≌CDF ;(2)若AC 与BD 交于点O ,求证:AO CO =.6.如图,在ABCD中,点E,F分别在AD、BC上,且AE CF=,连接EF,AC交于点O.求证:OE OF=.7.已知:如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别相交于点E、F.(1)求证:△BOE≌△DOF;(2)当EF与AC满足什么关系时,以A、E、C、F为顶点的四边形是菱形?并给出证明.8.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF =BD,连接BF.(1)求证:D是BC的中点(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.AC,连接CE、OE,连接AE交9.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=12OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.10.如图,在矩形ABCD中,AB=6,BC=10,点E在边CD上,连接AE,将四边形ABCE沿直线AE折叠,得'',且B C''恰好经过点D.到多边形AB C E(1)线段DC′的长度;(2)求ADE的面积.11.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.12.如图将矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,且CE与AD相交于点F,求证:EF=DF.13.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.14.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF,(1)证明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,试证明四边形ABCD是菱形.15.如图,在ABCD中,过点D作DE AB=,连接AF,BF.⊥于点E,点F在边CD上,CF AE(1)求证:四边形BFDE是矩形;AD=,求DC的长度.(2)已知60∠=︒,AF是DABDAB∠的平分线,若316.如图,在▱ABCD中,对角线AC、BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形.(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.17.如图,DE是△ABC的中位线,延长DE至F,使EF=DE,连接BF.(1)求证:四边形ABFD是平行四边形;(2)求证:BF=DC.18.如图,在□ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF 是平行四边形.19.如图,在△ABC中,点D为边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE点F在AB上,且BF=DE(1)求证:四边形BDEF 是平行四边形(2)线段AB ,BF ,AC 之间具有怎样的数量关系?证明你所得到的结论20.如图,在矩形ABCD 中,8AB cm =,16BC cm =,点P 从点D 出发向点A 运动,运动到点A 停止,同时,点Q 从点B 出发向点C 运动,运动到点C 即停止,点P 、Q 的速度都是1/cm s .连接PQ 、AQ 、CP .设点P 、Q 运动的时间为ts .(1)当t 为何值时,四边形ABQP 是矩形;(2)当t 为何值时,四边形AQCP 是菱形;(3)分别求出(2)中菱形AQCP 的周长和面积.参考答案:1.证明:如图,连接,BD 交AC 于,OABCD ,,,OA OC OB OD ∴==,AE CF =,OA AE OC CF ∴-=-,OE OF ∴=∴四边形BFDE 是平行四边形.2.∵////DE AC CE BD ,,∴四边形OCED 是平行四边形.∵矩形ABCD 的对角线AC ,BD 相交于点O ,∴OC=OD ,∴四边形OCED 是菱形.3.证明:∵DE 、DF 是△ABC 的中位线,∴DE ∥AB ,DF ∥AC ,∴四边形DEAF 是平行四边形,∵∠CAB =90°,∴四边形DEAF 是矩形,∴EF =AD .4.解:连接AC 交EF 于点O∵四边形AECF 为平行四边形∴OF OE =,OA OC =∵EB FD =∴OF FD OE EB +=+∴OD OB =∴四边形ABCD 为平行四边形5.【详解】(1)证明:∵AE BD ⊥,CF BD ⊥,∴90AEB CFD ∠=∠=︒,∵AB CD =,BE DF =,∴ABE △≌CDF .(2)由(1)ABE △≌CDF ,∴AE CF =,∵AE BD ⊥,CF BD ⊥,∴90AEO CFO ∠=∠=︒,∵AOE COF ∠=∠,∴()AEO CFO AAS ≌∴AO CO =.6. 证明:四边形ABCD 是平行四边形,//AD BC ∴,AEO CFO在AOE △和COF 中AOE COF AEO CFO AE CF ∠=∠⎧⎪∴∠=∠⎨⎪=⎩AOE COF ∴≅OE OF ∴=.7.(1)证明:∵四边形ABCD 是矩形,∴OB =OD ,∵AE //CF ,∴∠E =∠F ,∠OBE =∠ODF ,在△BOE 与△DOF 中,E F OBE ODF OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (AAS );(2)当EF ⊥AC 时,四边形AECF 是菱形.证明:∵△BOE ≌△DOF ,∴OE =OF ,∵四边形ABCD 是矩形,∴OA =OC ,∴四边形AECF 是平行四边形,∵EF ⊥AC ,∴四边形AECF 是菱形.8.证明: (1)∵AF ∥BC ,∴∠AFE =∠DCE ,∵E 是AD 的中点,∴AE =DE ,∵∠AFE =∠DCE , ∠AEF =∠DEC ,AE =DE ,∴△AEF≌△DEC(AAS),∴AF=DC,∵AF=BD,∴BD=CD,∴D是BC的中点;(2)四边形AFBD是矩形.理由:∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°,∵AF=BD,过A点作BC的平行线交CE的延长线于点F,即AF∥BC,∴四边形AFBD是平行四边形,又∵∠ADB=90°,∴四边形AFBD是矩形.9.(1)∵四边形ABCD是菱形,∴OC=1AC,AC⊥BD,2AC,∵DE=12∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)∵在菱形ABCD中,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2,AC=1,AC⊥BD,AD=2,∵OA=12∴OD=∴在矩形OCED 中,CE =OD∴在Rt △ACE 中,AE10.解:(1)∵四边形ABCD 是矩形∴AD=BC=10,AB=CD=6,∠B=∠C=90°∵将四边形ABCE 沿直线AE 折叠,得到多边形AB′C′E , ∴AB=AB'=6,CE=C'E ,B'C'=BC=10,∠B'=∠B=90°,∠C=∠C'=90°∵8∴C'D=B'C'-B'D=2,(2)设DE=x ,则EC′=6-x ,由(1)可知∠C'=90°,C'D=2∴在Rt △C′DE 中,222(6)2x x -+=,解得:103x =∴ADE 的面积为111050102233AD DE ⋅=⨯⨯= 11.证明:(1)∵BF=DE ,∴BF EF DE EF -=-,即BE=DF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AEB=∠CFD=90°,在Rt △ABE 与Rt △CDF 中,AB CD BE DF=⎧⎨=⎩, ∴Rt ABE Rt CDF ∆∆≌(HL );(2)如图,连接AC 交BD 于O ,∵Rt ABE Rt CDF ∆∆≌,∴ABE CDF ∠=∠,∴//D AB C ,∵=D AB C ,∴四边形ABCD 是平行四边形,∴AO CO =.12.∵四边形ABCD 是矩形,∴∠D =∠E ,AE =CD ,又∵∠AFE =∠CFD ,在△AEF 和△CDF 中,E D AFE CFD AE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△CDF (AAS ),∴EF =DF .13.(1)证明:在△ABC 和△ADC 中,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC(SSS),∴∠BAC=∠DAC ,在△ABF 和△ADF 中,AB AD BAF DAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△ADF(SAS),∴∠AFB=∠AFD ,∵∠CFE=∠AFB ,∴∠AFD=∠CFE ,∴∠BAC=∠DAC,∠AFD=∠CFE;(2)证明:∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)BE⊥CD时,∠BCD=∠EFD;理由如下:∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD=∠EFD.14.(1)在△ABC和△ADC中,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∵AB=AD,∠BAC=∠DAC,AF=AF,∴△ABF≌△ADF,∴∠AFB=∠AFD.(2)证明:∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC ,∴∠ACD=∠CAD ,∴AD=CD ,∵AB=AD ,CB=CD ,∴AB=CB=CD=AD ,∴四边形ABCD 是菱形.15.解:(1)证明:四边形ABCD 是平行四边形, //DC AB ∴,DC AB =,CF AE =,DF BE ∴=且//DC AB ,∴四边形DFBE 是平行四边形,又DE AB ⊥,∴四边形DFBE 是矩形;(2)60DAB ∠=︒,3AD =,DE AB ⊥,32AE ∴=,DE =四边形DFBE 是矩形,BF DE ∴==AF 平分DAB ∠,1302FAB DAB ∴∠=∠=︒,且BF AB ⊥, 92AB ∴==, 92CD ∴=. 16.证明:(1)∵▱ABCD ,∴AO =OC ,∵△ACE 是等边三角形,∴EO ⊥AC (三线合一)即 BD ⊥AC ,∴▱ABCD是菱形;(2)∵△ACE是等边三角形,∠EAC=60°由(1)知,EO⊥AC,AO=OC∴∠AEO=∠OEC=30°,△AOE是直角三角形∴∠EAO=60°,∵∠AED=2∠EAD,∴∠EAD=15°,∴∠DAO=∠EAO﹣∠EAD=45°,∵▱ABCD是菱形,∴∠BAD=2∠DAO=90°,∴菱形ABCD是正方形.17.(1)∵DE是△ABC的中位线,∴DE∥AB,AB=2DE,AD=CD,∵EF=DE,∴DF=2DE,∴AB=DF,且AB∥DF,∴四边形ABFD是平行四边形;(2)∵四边形ABFD是平行四边形,∴AD=BF,且AD=CD,∴BF=DC.18.证明:∵四边形ABCD是平行四边形,∴CD=AB,AD=CB,∠DAB=∠BCD,又∵△ADE和△CBF都是等边三角形,∴DE=BF,AE=CF,∠DAE=∠BCF=60°,∴∠BCD-∠BCF=∠DAB-∠DAE,即∠DCF=∠BAE,∴△DCF≌△BAE(SAS),∴DF=BE,∴四边形BEDF是平行四边形.19.(1)证明:延长CE 交AB 于点G∵AE ⊥CE∴90AEG AEC ︒∠=∠=在AEG ∆和AEC ∆GAE CAE AE AEAEG AEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEG ∆≅AEC ∆∴GE=EC∵BD=CD∴DE 为CGB ∆的中位线∴DE //AB∵DE=BF∴四边形BDEF 是平行四边形(2)1()2BF AB AC =- 理由如下:∵四边形BDEF 是平行四边形∴BF=DE∵D ,E 分别是BC ,GC 的中点∴BF=DE=12BG∵AEG ∆≅AEC ∆∴AG=AC BF=12(AB-AG )=12(AB-AC ).20.解:(1)在矩形ABCD 中,8AB cm =,16BC cm =, 16BC AD cm ∴==,8AB CD cm ==,由已知可得,BQ DP tcm ==,(16)AP CQ t cm ==-, 在矩形ABCD 中,90B ∠=︒,//AD BC ,当BQ AP =时,四边形ABQP 为矩形,16t t ∴=-,得8t =,故当8t s =时,四边形ABQP 为矩形;(2)AP CQ =,//AP CQ ,∴四边形AQCP 为平行四边形,∴当AQ CQ =时,四边形AQCP 为菱形16t -时,四边形AQCP 为菱形,解得6t =, 故当6t s =时,四边形AQCP 为菱形;(3)当6t s =时,16610AQ CQ CP AP cm ====-=, 则周长为41040cm cm ⨯=;面积为210880cm cm cm ⨯=.。
安徽省2023年中考数学一轮复习专题训练:四边形综合问题 试卷

安徽省2023年中考数学一轮复习专题训练:四边形综合问题一、选择题(本大题共12小题,每小题5分,满分60分)1. (2021·无锡中考)如图,D,E,F分别是△ABC各边中点,则以下说法错误的是( )A.△BDE和△DCF的面积相等B.四边形AEDF是平行四边形C.若AB=BC,则四边形AEDF是菱形D.若∠A=90°,则四边形AEDF是矩形2. (2020•菏泽)如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是( )A.互相平分B.相等C.互相垂直D.互相垂直平分3. (2020•宁波模拟)如图,在矩形ABCD中,E,F分别是AB,BC的中点,BD=12,则EF的长为( )A.6B.5C.4D.34. (2020•滨海新区一模)如图,矩形ABCD的对角线AC,BD相交于点O,∠AOB=60o,AB=4,则矩形对角线的长等于( )A.6B.8C.D.5. (2020秋•海曙区月考)如图,已知Rt△ABC中,∠BAC=90°,∠C=30°,AB=6,M为边BC上的一个动点,ME ⊥AB,MF⊥AC,则EF的最小值为( )A.6B.6C.3D.36. (2020•周村区一模)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角ɑ最小时,sinɑ等于( )A. B. C. D.7. (2021绍兴)如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC-CD方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是( )A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形8. (2020秋•岐山县)如图,任意四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,连接AC,BD,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )A.若AC=BD,则四边形EFGH为菱形B.若AC⊥BD,则四边形EFGH为矩形C.若AC=BD,且AC⊥BD,则四边形EFGH为正方形D.若AC与BD互相平分,且AC=BD,则四边形EFGH是正方形9. (2020•盐田区二模)如图,在正方形ABCD中,点M是AB上一动点,点E是CM的中点,AE绕点E顺时针旋转90o得到EF,连接DE,DF.给出结论:①DE=EF;②∠CDF=45o;③=;④若正方形的边长为2,则点M在射线AB 上运动时,CF有最小值2.其中结论正确的是( )A.①②③B.①②④C.①③④D.②③④10. (2020•庆云县一模)如图,Rt△ABE中,∠B=90o,AB=BE,将△ABE绕点A逆时针旋转45o,得到△AHD,过D作DC⊥BE交BE的延长线于点C,连接BH并延长交DC于点F,连接DE交BF于点O.下列结论:①DE平分∠HDC;②DO=OE;③H是BF的中点;④BC-CF=2CE;⑤CD=HF,其中正确的有( )A.5个B.4个C.3个D.2个11. (2020·四川眉山中考)如图,正方形ABCD中,点F是BC边上一点,连接AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连接DG.以下四个结论:①∠EAB=∠GAD;②△AFC∽△AGD;③2AE2=AH•AC;④DG⊥AC其中正确的个数为( )A.1个B.2个C.3个D.4个12. (2020春•东坡区校级期中)在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发,沿射线AG以1cm/s的速度运动,同时点F从点B出发,沿射线BC以2cm/s的速度运动,设运动时间为t,当t为( )s时,以A,F,C,E为顶点的四边形是平行四边形?A.2B.3C.6D.2或6二、填空题(本大共8小题,每小题5分,满分40分)13. (2021·云南中考)已知△ABC的三个顶点都是同一个正方形的顶点,∠ABC的平分线与线段AC交于点D.若△ABC的一条边长为6,则点D到直线AB的距离为____.14. (2020·辽宁铁岭·中考)如图,以AB为边,在AB的同侧分别作正五边形ABCDE和等边△ABF,连接FE,FC,则∠EFA的度数是____________.15. (2020•新北区一模)已知在菱形ABCD中,∠A=60o,DE//BF,sinE=,DE=6,EF=BF=5则菱形ABCD的边长_____.16. (2020•娄星区一模)如图,正方形ABCD的对角线相交于点O,过点O任意作一条直线,分别交AD、BC于点E、F,则图中阴影部分的面积是__________.17. (2020·黑龙江哈尔滨·中考真题)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为_____.18. (2020·湖南郴州中考)如图,在矩形ABCD中,AD=4,AB=8.分别以点B,D为圆心,以大于12BD的长为半径画弧,两弧相交于点E和F.作直线EF分别与DC,DB,AB交于点M,O,N,则MN=__________.19. (2020·江苏连云港·中考真题)如图,正六边形A1A2A3A4A5A6内部有一个正五形B1B2B3B4B5,且A3A4//B3B4,直线l经过B2、B3,则直线l与A1A2的夹角a=________ .20. (2022·北京·中国人民大学附属中学朝阳学校一模)如图1,将矩形ABCD和正方形EFGH分别沿对角线AC和EG剪开,拼成如图2所示的平行四边形PQMN,中间空白部分的四边形KRST是正方形.如果正方形EFGH 和正方形KRST的面积分别是16和1,则矩形ABCD的面积为_______.三、解答题(本大题共6道小题,每小题6-12分)21. (6分)(2021·江苏连云港)如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;(2)如果AB=AE,求证:四边形ACED是矩形.22. (6分)(2020年广东省初中学业水平考试数学模拟试题)如图,△ABC为等边三角形,E为AC上一点,连接BE,将△BEC旋转,使点C落在BC上的点D处,点B落在BC上方的点F处,点E落在点C处,连接AF.求证:四边形ABDF为平行四边形.23. (6分)(2021泰安)四边形ABCD为矩形,E是AB延长线上的一点.(1)若AC=EC,如图①,求证:四边形BECD为平行四边形;(2)若AB=AD,点F是AB上的点,AF=BE,EG⊥AC于点G,如图②,求证:△DGF是等腰直角三角形.24. (8分)(2020·黑龙江齐齐哈尔·中考真题)综合与实践在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动﹣﹣折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.(1)折痕BM (填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN是什么特殊三角形?答: ;进一步计算出∠MNE=;(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=;拓展延伸:(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST于点O,连接AT.求证:四边形SATA'是菱形.解决问题:(4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.请写出以上4个数值中你认为正确的数值.25. (12分)(2021甘肃省卷改编)如图①,在矩形ABCD中,点E,F分别在AB,BC边上,DE=AF,DE⊥AF于点G.(1)求证:四边形ABCD是正方形;(2)延长CB到点H,使得BH=AE,判断△AHF的形状,并说明理由;(3)如图②,将矩形ABCD变为菱形,点E,F分别在AB,BC边上,DE与AF相交于点G,DE=AF,∠AED=60°,AE =6,BF=2,求DE的长.26. (12分)(2021·汕头市澄海区模拟)如图,已知在矩形ABCD中,AD=10 cm,AB=4 cm,动点P从点A出发,以2 cm/s的速度沿AD向终点D移动,设移动时间为t(s).连接PC,以PC为一边作正方形PCEF,连接DE,DF.(1)求正方形PCEF的面积(用含t的代数式来表示,不要求化简),并求当正方形PCEF的面积为25 cm2时t的值;(2)设△DEF的面积为S(cm2),求S与t之间的函数关系式,并求当t为何值时,△DEF的面积取得最小值,这个最小值是多少?(3)求当t为何值时?△DEF为等腰三角形.。
中考数学专题训练 专题一 几何题型(中点M型)

专题一中点M型基本条件:①∠PMQ=∠B=∠C;②M是BC的中点基本结论:①△EMF∽△EBM∽△MCF.②EM平分∠BEF,FM平分∠EFC.③EM2=EB·EF,FM2=FC·EF.常见特例:特例一:条件:①等边△ABC;②∠MPN=60°,③P是BC的中点。
特例二:条件:①等腰直角△ABC,AC=BC,∠C=90°;②∠EDF=45°;③点D是AB的中点。
特例三:条件:①AB=AC;②∠BAC=120°,∠EDF=30°,③D是BC的中点。
特例四:条件:①矩形ABCD;②∠GEF=90°,③E是AB的中点。
特例五:条件:①直角梯形ABCD中,AB∥CD,∠A=90°;②E是AD的中点;③∠BEC=90°。
巩固练习:1.已知:梯形ABCD中,AD∥BC,∠A=90°,E为AB的中点,若AD=2,BC=4,∠CED=90°,则CD长为。
2.如图,在正方形ABCD中,点E、F在边BC、CD上,若AE=2,EF=1,AF=5,则正方形的边长为。
3.已知:等边△ABC中,AB=8,点D为AB的中点,点M为BC上一动点,以DM为一边,在点B异侧作等边△DMN。
DN交AC于点F,当∠DAN=90°时,则FN的长为。
4.如图,以矩形OABC的邻边OA、OC分别为x轴、y轴的正方向建立平面直角坐标系,F为线段OA上的一点,将△COF沿直线CF翻折,点O落在AB的中点E处,且OC=6.(1)求直线EF的解析式;(2)将直线EF绕点F逆时针旋转90°,得到直线m,直线m交y轴于点D,求点D的坐标。
特例一特例二特例三特例四特例五巩固1巩固21.如图,在△ABC中,AB=AC,∠BAC=α,点D为BC边的中点,BE⊥AC于E,DF⊥AB于F.(1)当00<α<900,(如图1),求证:AE+2BF=AB;(2)当900<α<1800,(如图2),则AE、BF、AB之间的数量关系;(3)在(1)的条件下,过点D作DG∥AB,交AC于G,且DF=GE=3时(如图3),求BF的值。
【精编版】数学中考专题训练——平行四边形的判定和性质

中考专题训练——平行四边形的判定和性质1.如图,在▱ABCD中,点E、F分别在边BC和AD上,且BE=DF.(1)求证:△ABE≌△CDF.(2)求证:四边形AECF是平行四边形.2.如图,在▱ABCD中,E是AD的中点,F是BC延长线上一点,且CF=BC,连接CE、DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DF的长.3.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求EF的长.4.如图,E、F是▱ABCD对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形.(2)如果把条件AE=CF改为BE⊥AC,DF⊥AC,试问四边形BFDE是平行四边形吗?为什么?(3)如果把条件AE=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?5.如图,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE ∥BD,EF⊥BC,CF=.(1)求证:四边形ABDE是平行四边形;(2)求AB的长.6.在△ABC中,AD为BC边上的中线,E为AD的中点,过点A作AF∥BC,交BE的延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是平行四边形;(2)如图2,连接DF交AC于点G,连接EG,当∠BAC=90°,在不添加任何辅助线和字母的情况下,直接写出图中所有长度为2EG的线段.7.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=70°,∠DCE=20°,求∠CBE的度数.8.如图,过△ABC的顶点C作CD∥AB,E是AC的中点,连接DE并延长,交线段AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若AB=4,∠BAC=60°,∠DCB=135°,求AC的长.9.如图,△ABC是等边三角形,AD是BC边上的高.点E在AB的延长线上,连接ED,∠AED=30°,过A作AF⊥AB与ED的延长线交于点F,连接BF,CF,CE.(1)求证:四边形BECF为平行四边形;(2)若AB=6,请直接写出四边形BECF的周长.10.如图,四边形ABCD中,点E在AD上,且EA=EB,∠ADB=∠CBD=90°,∠AEB+∠C=180°.(1)求证:四边形BCDE是平行四边形.(2)若AB=,DB=4.求四边形ABCD的面积.11.如图所示,在△ABC中,点D为边AB的中点,点E为AC边上一点,延长ED交AE 的平行线于点F,连接AF、BE.(1)猜想四边形AEBF的形状,并证明你的结论.(2)若BE⊥CE,CE=2AE=4,BC=9,求DE的长.12.已知:在△ABC中,∠ACB=90°,点D,E分别为BC,AB的中点,连接DE,CE,点F在DE的延长线上,连接AF,且AF=AE.(1)如图1,求证:四边形ACEF是平行四边形;(2)如图2,当∠B=30°时,连接CF交AB于点G,在不添加任何辅助线的情况下,请直接写出图2中的四条线段,使每条线段的长度都等于线段DE的长度的倍.13.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长到点F,使BF =BE,连接EC并延长到点H,使CH=CE,连接FH,点G在FH上,∠ADG=∠AFG,连接DG.(1)求证:四边形AFGD为平行四边形;(2)在不添加任何辅助线的情况下,直接写出图中长度为FH的一半的所有线段.14.已知,如图1,D是△ABC的边上一点,CN∥AB,DN交AC于点M,MA=MC.(1)求证:四边形ADCN是平行四边形.(2)如图2,若∠AMD=2∠MCD,∠ACB=90°,AC=BC.请写出图中所有与线段AN相等的线段(线段AN除外).15.如图,在▱ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件“∠DAB=∠60°”,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.16.如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.17.如图1,在△ABC中,D是BC边上一点,且CD=BD,E是AD的中点,过点A作BC 的平行线交CE的延长线于F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)如图2,若AB=AC=13,BD=5,求四边形AFBD的面积.18.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从D点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C作匀速移动,两个点同时出发,当有一个点到达终点时,另一点也随之停止运动.点G为BD上的一点,假设移动时间为t秒,BG的长度为y.(1)证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和BG的长度y.19.在△ABC中,AB=AC,点P为△ABC为所在平面内一点,过点P分别作PF∥AC交AB于点F,PE∥AB交BC于点D,交AC于点E.(1)当点P在BC边上(如图1)时,请探索线段PE,PF,AB之间的数量关系式为.(2)当点P在△ABC内(如图2)时,线段PD,PE,PF,AB之间有怎样的数量关系,请说明理由.(3)当点P在△ABC外(如图3)时,线段PD,PE,PF,AB之间有怎样的数量关系,直接写出结论.20.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上的一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)在(1)的条件下,若BC的延长线交DF于点Q,连接QA与QE.试说明QA=QE.参考答案与试题解析1.如图,在▱ABCD中,点E、F分别在边BC和AD上,且BE=DF.(1)求证:△ABE≌△CDF.(2)求证:四边形AECF是平行四边形.【分析】(1)根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE≌△CDF;(2)根据全等三角形的对应边相等即可证得.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,在△ABE和△CDF中,∴△ABE≌△CDF(SAS);(2)∵BE=DF,∴AF=CE,∵AF∥CE,∴四边形AECF是平行四边形.2.如图,在▱ABCD中,E是AD的中点,F是BC延长线上一点,且CF=BC,连接CE、DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DF的长.【分析】(1)只要证明DE=CF,DE∥CF即可解决问题;(2)过D作DH⊥BE于H,想办法求出DH、HF即可解决问题;【解答】解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵E是AD的中点,∴DE=AD,∵CF=BC∴DE=CF,又∵AD∥BC,∴四边形CEDF是平行四边形.(2)过D作DH⊥BE于H,在▱ABCD中,∵∠B=60°,AB∥CD,∴∠DCF=60°,∵AB=4,∴CD=4,∴CH=2,DH=2,∴FH=1,在Rt△DHF中,DF==.3.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求EF的长.(1)直接利用三角形中位线定理得出DE∥BC,DE=BC,进而得出DE=FC;【分析】(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC∵延长BC至点F,使CF=BC,∴DE=FC,∵DE∥FC,∴四边形DCFE是平行四边形.(2)解:∵DE∥FC,DE=FC∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF==.4.如图,E、F是▱ABCD对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形.(2)如果把条件AE=CF改为BE⊥AC,DF⊥AC,试问四边形BFDE是平行四边形吗?为什么?(3)如果把条件AE=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?【分析】(1)方法一:证明△BAE≌△DCF,推出BE=DF,BE∥DF即可.方法二:连接BD,交AC于点O.只要证明OE=OF,OB=OD即可;(2)是平行四边形.只要证明△BAE≌△DCF即可解决问题;(3)四边形BFDE不是平行四边形.因为把条件AE=CF改为BE=DF后,不能证明△BAE与△DCF全等;【解答】(1)证法一:∵ABCD是平行四边形∴AB=CD且AB∥CD(平行四边形的对边平行且相等)∴∠BAE=∠DCF又∵AE=CF∴△BAE≌△DCF(SAS)∴BE=DF,∠AEB=∠CFD∴∠BEF=180°﹣∠AEB∠DFE=180°﹣∠CFD即:∠BEF=∠DFE∴BE∥DF,而BE=DF∴四边形BFDE是平行四边形(一组对边平行且相等的四边形是平行四边形)证法二:连接BD,交AC于点O.∵ABCD是平行四边形∴OA=OC OB=OD(平行四边形的对角线互相平分)又∵AE=CF∴OA﹣AE=OC﹣CF,即OE=OF∴四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)(2)四边形BFDE是平行四边形∵ABCD是平行四边形∴AB=CD且AB∥CD(平行四边形的对边平行且相等)∴∠BAE=∠DCF∵BE⊥AC,DF⊥AC∴∠BEA=∠DFC=90°,BE∥DF∴△BAE≌△DCF(AAS)∴BE=DF∴四边形BFDE是平行四边形(一组对边平行且相等的四边形是平行四边形)(3)四边形BFDE不是平行四边形因为把条件AE=CF改为BE=DF后,不能证明△BAE与△DCF全等.5.如图,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE ∥BD,EF⊥BC,CF=.(1)求证:四边形ABDE是平行四边形;(2)求AB的长.【分析】(1)根据平行四边形的判定定理即可得到结论;(2)由(1)知,AB=DE=CD,即D是CE的中点,在直角△CEF中利用三角函数即可求得到CE的长,则求得CD,进而根据AB=CD求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,即AB∥DE,∵AE∥BD,∴四边形ABDE是平行四边形;(2)解:∵EF⊥BC,∴∠EFC=90°.∵AB∥EC,∴∠ECF=∠ABC=60°,∴∠CEF=30°∵CF=,∴CE=2CF=2,∵四边形ABCD和四边形ABDE都是平行四边形,∴AB=CD=DE,∴CE=2AB,∴AB=.6.在△ABC中,AD为BC边上的中线,E为AD的中点,过点A作AF∥BC,交BE的延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是平行四边形;(2)如图2,连接DF交AC于点G,连接EG,当∠BAC=90°,在不添加任何辅助线和字母的情况下,直接写出图中所有长度为2EG的线段.【答案】(1)证明见解析;(2)CD,AF,BD,AD,CF.【分析】(1)由E是AD的中点,过点A作AF∥BC,易证得△AFE≌△DBE,然后证得AF=BD=CD,即可证得四边形ADCF是平行四边形;(2)根据平行四边形的性质和直角三角形的性质解答即可.【解答】(1)证明:∵E是AD的中点,∴AE=ED,∵AF∥BC,∴∠AFE=∠DBE,∠F AE=∠BDE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴AF=BD,∵AD是BC边中线,∴CD=BD,∴AF=CD,∴四边形CDAF是平行四边形;(2)解:∵四边形CDAF是平行四边形,∴AG=GC,AD=CF,∵E为AD的中点,∴EG是△ADC的中位线,∴2EG=DC,∵∠BAC=90°,AD为BC边上的中线,∴BD=DC=AD,由(1)可知,CD=AF=BD=2EG,即所有长度为2EG的线段是CD,AF,BD,AD,CF.7.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=70°,∠DCE=20°,求∠CBE的度数.(1)由平行四边形的性质得出AD=BC,AD∥BC;证明BC是△EFG的中位线,【分析】得出BC∥FG,BC=FG,证出AD∥FH,AD=FH,由平行四边形的判定方法即可得出结论;(2)由平行四边形的性质得出∠BCE=50°,再由等腰三角形的性质得出∠CBE=∠CEB,根据三角形内角和定理即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAE=∠BCD,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=FG,∵H为FG的中点,∴FH=FG,∴BC∥FH,BC=FH,∴AD∥FH,AD=FH,∴四边形AFHD是平行四边形;(2)解:∵∠BAE=70°,∴∠BCD=70°,∵∠DCE=20°,∴∠BCE=70°﹣20°=50°,∵CB=CE,∴∠CBE=∠CEB=(180°﹣50°)=65°.8.如图,过△ABC的顶点C作CD∥AB,E是AC的中点,连接DE并延长,交线段AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若AB=4,∠BAC=60°,∠DCB=135°,求AC的长.【分析】(1)先证△AEF≌△CED(AAS),得AF=CD,再由CD∥AB,即AF∥CD,即可得出结论;(2)过C作CM⊥AB于M,先证△BCM是等腰直角三角形,得BM=CM,再由含30°角的直角三角形的性质得AC=2AM,BM=CM=AM,由AM+BM=AB求出AM=2﹣2,即可求解.【解答】(1)证明:∵E是AC的中点,∴AE=CE,∵CD∥AB,∴∠AFE=∠CDE,在△AEF和△CED中,,∴△AEF≌△CED(AAS),∴AF=CD,又∵CD∥AB,即AF∥CD,∴四边形AFCD是平行四边形;(2)解:过C作CM⊥AB于M,如图所示:则∠CMB=∠CMA=90°,∵CD∥AB,∴∠B+∠DCB=180°,∴∠B=180°﹣135°=45°,∴△BCM是等腰直角三角形,∴BM=CM,∵∠BAC=60°,∴∠ACM=30°,∴AC=2AM,BM=CM=AM,∵AM+BM=AB,∴AM+AM=4,解得:AM=2﹣2,∴AC=2AM=4﹣4.9.如图,△ABC是等边三角形,AD是BC边上的高.点E在AB的延长线上,连接ED,∠AED=30°,过A作AF⊥AB与ED的延长线交于点F,连接BF,CF,CE.(1)求证:四边形BECF为平行四边形;(2)若AB=6,请直接写出四边形BECF的周长.【分析】(1)根据等边三角形的性质可得BD=DC,∠BAD=∠CAD=30°,然后证明△ADF为等边三角形,可得ED=DF,进而可以证明四边形BECF为平行四边形;(2)根据AB=6和勾股定理可得BF的长,然后证明BE=BD,进而可得四边形BECF 的周长.【解答】(1)证明:∵AD是等边△ABC的BC边上的高,∴BD=DC,∠BAD=∠CAD=30°,∵∠AED=30°,∴ED=AD,∠ADF=∠AED+∠EAD=60°,∵AF⊥AB,∴∠DAF=90°﹣∠EAD=90°﹣30°=60°,∴△ADF为等边三角形,∴AD=DF,∵ED=AD,∴ED=DF,∵BD=DC,∴四边形BECF为平行四边形;(2)∵AB=6,∴BD=3,AD=3,∵△ADF为等边三角形,∴AF=AD=3,∴BF===3,∵∠ABC=60°,∠AED=30°,∴∠BDE=30°,∴BE=BD=3,∴四边形BECF的周长为:2(BF+BE)=2(3+3)=6+6.10.如图,四边形ABCD中,点E在AD上,且EA=EB,∠ADB=∠CBD=90°,∠AEB+∠C=180°.(1)求证:四边形BCDE是平行四边形.(2)若AB=,DB=4.求四边形ABCD的面积.【分析】(1)根据∠ADB=∠CBD=90°,可得DE∥CB,由∠AEB+∠C=180°.证明BE∥CD,进而可得四边形BEDC是平行四边形;(2)根据勾股定理先求出AD的长,再设DE=x,则EA=AD﹣DE=8﹣x,EB=EA=8﹣x.根据勾股定理列式计算得x的值,进而可以求出四边形ABCD的面积.【解答】解:(1)∵∠ADB=∠CBD=90°,∴DE∥CB,∵∠AEB+∠C=180°,∵∠AEB+∠BED=180°,∴∠C=∠BED,∴∠CDB=∠EBD,∴BE∥CD,∴四边形BEDC是平行四边形;(2)∵四边形BEDC是平行四边形.∴BC=DE,在Rt△ABD中,由勾股定理得,AD===8.设DE=x,则EA=AD﹣DE=8﹣x,∴EB=EA=8﹣x.在Rt△BDE中,由勾股定理得,DE2+DB2=EB2,∴x2+42=(8﹣x)2.解得x=3.∴BC=DE=3,∴S四边形ABCD=S△ABD+S△BDC=AD•DB+DB•BC=16+6=22.11.如图所示,在△ABC中,点D为边AB的中点,点E为AC边上一点,延长ED交AE 的平行线于点F,连接AF、BE.(1)猜想四边形AEBF的形状,并证明你的结论.(2)若BE⊥CE,CE=2AE=4,BC=9,求DE的长.【分析】(1)根据已知条件证明△AED≌△BFD,可得ED=FD,可得四边形AEBF是平行四边形;(2)根据BE⊥CE,可得四边形AEBF是矩形,根据CE=2AE=4,BC=9,再利用勾股定理即可求DE的长.【解答】解:(1)四边形AEBF是平行四边形,证明:∵点D为边AB的中点,∴AD=BD,∵AE∥BF,∴∠AED=∠BFD,在△AED和△BFD中,,∴△AED≌△BFD(AAS),∴ED=FD,∵AD=BD,∴四边形AEBF是平行四边形;(2)∵BE⊥CE,∴∠AEB=90°,∴平行四边形AEBF是矩形,∴EF=AB,DE=AB,在Rt△BEC中,CE=4,BC=9,根据勾股定理,得BE2=BC2﹣CE2=92﹣42=65,在Rt△ABE中,AE=2,BE2=65,根据勾股定理,得AB===,∴DE=AB=.12.已知:在△ABC中,∠ACB=90°,点D,E分别为BC,AB的中点,连接DE,CE,点F在DE的延长线上,连接AF,且AF=AE.(1)如图1,求证:四边形ACEF是平行四边形;(2)如图2,当∠B=30°时,连接CF交AB于点G,在不添加任何辅助线的情况下,请直接写出图2中的四条线段,使每条线段的长度都等于线段DE的长度的倍.【分析】(1)由三角形的中位线定理可证得DE∥AC,由直角三角形斜边中线定理得到CE=AB,根据平行线的性质定理和等腰三角形的性质证得∠F=∠CED,进而得到AF∥CE,根据平行四边形的判定即可证得四边形ACEF是平行四边形;(2)根据直角三角形的性质得到AC=AB,由(1)知CE=AB,求得AC=CE,推出四边形ACEF为菱形,得到AE⊥CF,根据直角三角形的性质即可得到结论.【解答】(1)证明:∵BD=CD,BE=AE,∴DE∥AC,∴∠AEF=∠EAC,∠CED=∠ECA,∵∠ACB=90°,BE=AE,∴CE=AE,∴∠EAC=∠ECA,∵AF=AE,∴∠F=∠AEF,∴∠F=∠CED,∴AF∥CE,∴四边形ACEF是平行四边形;(2)解:∵∠ACB=90°,∠B=30°,∴AC=AB,由(1)知CE=AB,∴AC=CE=BE,又∵四边形ACEF为平行四边形∴四边形ACEF为菱形,∴AE⊥CF,∵CE=BE,∴∠B=∠DCE=30°,∴∠BED=∠BAC=60°,∵DF∥AC,∠BDE=∠ACB=∠CDE=90°,∴BD=CD=DE,∵∠DEB=∠FEG=∠CEG=60°,∴∠CED=60°,∴∠FEG=∠CED,∵EF=CE,∠EGF=∠CDE=90°,∴△EFG≌△CED(AAS),∴EG=DE,FG=CD,∴FG=DE,∵CG=FG,∴CG=DE,∴等于线段DE的长度的倍的线段是FG,CG,CD,DB.13.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长到点F,使BF =BE,连接EC并延长到点H,使CH=CE,连接FH,点G在FH上,∠ADG=∠AFG,连接DG.(1)求证:四边形AFGD为平行四边形;(2)在不添加任何辅助线的情况下,直接写出图中长度为FH的一半的所有线段.【分析】(1)只要证明AD∥FG,AF∥DG即可;(2)根据三角形的中位线的性质和平行四边形的性质即可得到结论.【解答】(1)证明:如图,∵EB=BF,EC=CH,∴BC∥FH,BC=FH,∵四边形ABCD是平行四边形,∴AD∥BC,∴AD∥FH,∴∠DAF+∠AFG=180°,∵∠ADG=∠AFG,∴∠DAF+∠ADG=180°,∴AF∥CD,∴四边形AFHD是平行四边形;(2)∵四边形ABCD为平行四边形,∴AD=BC,∵BF=BE,CH=CE,∴BC=FH,∴AD=FH,∵四边形AFHD是平行四边形,∴FG=AD=FH,∴HG=FH,∴长度为FH的一半的所有线段为:AD,BC,FG,HG.14.已知,如图1,D是△ABC的边上一点,CN∥AB,DN交AC于点M,MA=MC.(1)求证:四边形ADCN是平行四边形.(2)如图2,若∠AMD=2∠MCD,∠ACB=90°,AC=BC.请写出图中所有与线段AN相等的线段(线段AN除外).【分析】(1)由CN∥AB,MA=MC,易证得△AMD≌△CMN,则可得MD=MN,即可证得:四边形ADCN是平行四边形.(2)由∠AMD=2∠MCD,可证得四边形ADCN是矩形,又由∠ACB=90°,AC=BC,可得四边形ADCN是正方形,继而求得答案.【解答】(1)证明:∵CN∥AB,∴∠DAM=∠NCM,在△ADM和△CNM中,,∴△AMD≌△CMN(ASA),∴MD=MN,∴四边形ADCN是平行四边形.(2)解:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MC=MD,∴AC=DN,∴▱ADCN是矩形,∵AC=BC,∴AD=BD,∵∠ACB=90°,∴CD=AD=BD=AB,∴▱ADCN是正方形,∴AN=AD=BD=CD=CN.15.如图,在▱ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件“∠DAB=∠60°”,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.【分析】(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立.证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CFB.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FCB.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形.16.如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.【分析】(1)求出AP=BQ和AP∥BQ,根据平行四边形的判定得出即可;(2)求出高AM和ON的长度,求出△DOC和△OQC的面积,再求出答案即可.【解答】解:(1)当t=2.5s时,四边形ABQP是平行四边形,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=3cm,AD=BC=5cm,AO=CO,BO=OD,∴∠P AO=∠QCO,在△APO和△CQO中∴△APO≌△CQO(ASA),∴AP=CQ=2.5cm,∵BC=5cm,∴BQ=5cm﹣2.5cm=2.5cm=AP,即AP=BQ,AP∥BQ,∴四边形ABQP是平行四边形,即当t=2.5s时,四边形ABQP是平行四边形;(2)过A作AM⊥BC于M,过O作ON⊥BC于N,∵AB⊥AC,AB=3cm,BC=5cm,∴在Rt△ABC中,由勾股定理得:AC=4cm,∵由三角形的面积公式得:S△BAC==,∴3×4=5×AM,∴AM=2.4(cm),∵ON⊥BC,AM⊥BC,∴AM∥ON,∵AO=OC,∴MN=CN,∴ON=AM=1.2cm,∵在△BAC和△DCA中∴△BAC≌△DCA(SSS),∴S△DCA=S△BAC==6cm2,∵AO=OC,∴△DOC的面积=S△DCA=3cm2,当t=4s时,AP=CQ=4cm,∴△OQC的面积为 1.2cm×4cm=2.4cm2,∴y=3cm2+2.4cm2=5.4cm2.17.如图1,在△ABC中,D是BC边上一点,且CD=BD,E是AD的中点,过点A作BC 的平行线交CE的延长线于F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)如图2,若AB=AC=13,BD=5,求四边形AFBD的面积.【分析】(1)根据全等三角形的性质和判定求出AF=CD,求出AF=BD,根据平行四边形的判定推出即可;(2)求出四边形AFBD的矩形,根据勾股定理求出AD,根据矩形的面积公式求出即可.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AFE和△DCE中∴△AFE≌△DCE(AAS),∴AF=CD,∵BD=CD,∴BD=AF,∵AF∥BC,∴四边形AFBD是平行四边形;(2)解:∵AB=AC,CD=BD,∴AD⊥BC,∴∠ADB=90°,∵四边形AFBD是平行四边形,∴四边形AFBD是矩形,∵AB=AC=13,BD=5,∴由勾股定理得:AD==12,∴四边形AFBD的面积是12×5=60.18.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从D点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C作匀速移动,两个点同时出发,当有一个点到达终点时,另一点也随之停止运动.点G为BD上的一点,假设移动时间为t秒,BG的长度为y.(1)证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和BG的长度y.【分析】(1)利用平行四边形得判定和性质证明;(2)利用全等三角形的判定求解.【解答】解:(1)∵AD=BC,AB=CD,∴四边形ABCD是平行四边形,∴AD∥BC;(2)BG=y,DE=t,当0≤t≤时,CF=3t,则BF=8﹣3t,∵AD∥BC,∴∠DBC=∠ADB,若△DEG与△BFG全等,则BF=DE且BG=DG,或者BF=DG且BG=DE,即:或,解得:或(不合题意,舍去),当<t≤时,则BF=3t﹣8,若△DEG与△BFG全等,则BF=DE且BG=DG,或者BF=DG且BG=DE,即:或,解得:或,所以△DEG与△BFG全等的情况出现了三次,第一次是2秒时,y=6,第二次是4秒时,y=6,第三次是5秒时,y=5.19.在△ABC中,AB=AC,点P为△ABC为所在平面内一点,过点P分别作PF∥AC交AB于点F,PE∥AB交BC于点D,交AC于点E.(1)当点P在BC边上(如图1)时,请探索线段PE,PF,AB之间的数量关系式为PE+PF=AB.(2)当点P在△ABC内(如图2)时,线段PD,PE,PF,AB之间有怎样的数量关系,请说明理由.(3)当点P在△ABC外(如图3)时,线段PD,PE,PF,AB之间有怎样的数量关系,直接写出结论.【分析】(1)先求出四边形PF AE是平行四边形,根据平行四边形对边相等可得PF=AE,再根据两直线平行,同位角相等可得∠BPE=∠C,然后求出∠B=∠BPE,利用等角对等边求出PE=BE,然后求解即可;(2)根据等边对等角可得∠B=∠C,再根据两直线平行,同位角相等可得∠B=∠CDE,然后求出∠C=∠CDE,再根据等角对等边可得CE=PD+PE,然后求出四边形PF AE是平行四边形,根据平行四边形对边相等可得PE=AF,然后求出PD+PE+PF=AC,等量代换即可得证;(3)证明思路同(2).【解答】解:(1)答:PE+PF=AB.证明如下:∵点P在BC上,∴PD=0,∵PE∥AC,PF∥AB,∴四边形PF AE是平行四边形,∴PF=AE,∵PE∥AC,∴∠BPE=∠C,∴∠B=∠BPE,∴PE=BE,∴PE+PF=BE+AE=AB,∵PD=0,∴PE+PF=AB;故答案为:PE+PF=AB(2)证明:∵AB=AC,∴∠B=∠C,∵PE∥AB,∴∠B=∠CDE,∴∠C=∠CDE,∴CE=PD+PE,∵PF∥AC,PE∥AB,∴四边形PF AE是平行四边形,∴PE=AF,∴PD+PE+PF=AC,∴PD+PE+PF=AB;(3)证明:同(2)可证DE=CE,PE=AF,∵AE+CE=AC,∴PF+PE﹣PD=AC,∴PE+PF﹣PD=AB.20.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上的一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)在(1)的条件下,若BC的延长线交DF于点Q,连接QA与QE.试说明QA=QE.【分析】(1)根据平行四边形的想知道的AD=AC,AD⊥AC,连接CE,根据全等三角形的判定和性质即可得到结论;(2)根据全等三角形的性质得到CF=AD,等量代换得到AC=CF,于是得到CP=AB =AE,根据平行四边形的判定定理即可得到四边形ACPE为平行四边形;(3)由(1)知AC=CF,根据三角形的中位线的性质得到DQ=FQ,根据直角三角形的性质即可得到结论.【解答】(1)证明:在▱ABCD中,∵AD=AC,AD⊥AC,∴AC=BC,AC⊥BC,连接CE,∵E是AB的中点,∴AE=EC,CE⊥AB,∴∠ACE=∠BCE=45°,∴∠ECF=∠EAD=135°,∵ED⊥EF,∴∠CEF=∠AED=90°﹣∠CED,在△CEF和△AED中,,∴△CEF≌△AED,∴ED=EF;(2)解:由(1)知△CEF≌△AED,CF=AD,∵AD=AC,∴AC=CF,∵DP∥AB,∴FP=PB,∴CP=AB=AE,∴四边形ACPE为平行四边形;(3)由(1)知AC=CF,∵CQ∥AD,∴DQ=FQ,∵在Rt△DAF与Rt△DEF中,∴AQ=EQ=DF.。
2021年中考数学 二轮专题训练:正方形及四边形综合问题(含答案)

2021中考数学二轮专题训练:正方形及四边形综合问题一、选择题1. 小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次2. 如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为()A. 2B. 2 2C. 2+1D. 22+13. 如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.-1 D.4. (2020·威海)如图,在▱ABCD中,对角线BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB上一点,直线EO交CD于点F,连结DE,BF.下列结论不成立的是()A.四边形DEBF为平行四边形B.若AE=3.6,则四边形DEBF为矩形C.若AE=5,则四边形DEBF为菱形D.若AE=4.8,则四边形DEBF为正方形5. 如图正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于点O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°6. (2020·温州)如图,在R t△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为A.14 B.15 C.83D.657. (2020·湖北孝感)如图,点E在正方形ABCD的边CD上,将△ADE绕点A 顺时针旋转90°,到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G,若BG=3,CG=2,则CE的长为( )A. B. C.4 D.8. 如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A. 2B. 3C. 2D. 1二、填空题9. 以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是.10. 如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.11. 如图,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE 的对角线,若∠D=60°,BC=2,则点D的坐标是________.12. 如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则S正方形MNPQ S正方形AEFG的值等于________.13. 如图,正方形ABCD的边长为22,对角线AC,BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为________.14. 如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是________.15. 七巧板是一种古老的中国传统智力游戏,被誉为“东方魔板”.由边长为4的正方形ABCD可以制作一副如图①所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图②所示的“拼搏兔”造型(其中点Q,R分别与图②中的点E,G 重合,点P在边EH上),则“拼搏兔”所在正方形EFGH的边长是.16. 如图,正方形ABCD的面积为3 cm2,E为BC边上一点,∠BAE=30°,F 为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于________cm.三、解答题17. 如图,正方形ABCD的对角线AC,BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.18. 如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE 相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.19. 如图,AB是☉O的直径,DO⊥AB于点O,连接DA交☉O于点C,过点C 作☉O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF.(2)连接AF并延长,交☉O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20. 如图,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.21. 如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DC上,点A,D,G在同一条直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.(1)求sin∠EAC的值;(2)求线段AH的长.22. 如图①,已知Rt△ABC中,∠C=90°,AC=8 cm,BC=6 cm,点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2 cm/s.以AQ、PQ为边作四边形AQPD,连接DQ,交AB于点E.设运动的时间为t(单位:s)(0<t≤4),解答下列问题:(1)用含有t的代数式表示AE=____;(2)如图②,当t为何值时,四边形AQPD为菱形;(3)求运动过程中,四边形AQPD的面积的最大值.2021中考数学二轮专题训练:正方形及四边形综合问题-答案一、选择题1. 【答案】B2. 【答案】B【解析】∵正方形ABCD的面积为1,∴BC=CD=1,∵E、F是边的中点,∴CE=CF=12,∴EF=(12)2+(12)2=22,则正方形EFGH的周长为4×22=2 2.3. 【答案】C[解析]连接EF.∵AE=AF,∠EAF=60°,∴△AEF为等边三角形,∴AE=EF.∵四边形ABCD为正方形,∴∠B=∠D=∠C=90°,AB=AD,∴Rt△ABE ≌Rt△ADF(HL),∴BE=DF,∴EC=CF.设CF=x,则EC=x,AE=EF==x,BE=1-x.在Rt△ABE中,AB2+BE2=AE2,∴1+(1-x)2=(x)2,解得x=-1(舍负).故选C.4. 【答案】:∵O为BD的中点,∴OB=OD,∵四边形ABCD为平行四边形,∴DC∥AB,∴∠CDO=∠EBO,∠DFO=∠OEB,∴△FDO≌△EBO(AAS),∴OE=OF,∴四边形DEBF为平行四边形,故A选顶结论正确,若AE=3.6,AD=6,∴,又∵,∴,∵∠DAE=∠BAD,∴△DAE∽△BAD,∴AED=∠ADB=90°.故B选项结论正确,∵AB=10,AE=5,∴BE=5,又∵∠ADB=90°,∴DE AB=5,∴DE=BE,∴四边形DEBF为菱形.故C选项结论正确,∵AE=3.6时,四边形DEBF为矩形,AE=5时,四边形DEBF为菱形,∴AE=4.8时,四边形DEBF不可能是正方形.故D不正确.故选:D.5. 【答案】A[解析]连接BF,∵E为AB中点,FE⊥AB,∴EF垂直平分AB,∴AF=BF.∵AF=2AE,∴AF=AB,∴AF=BF=AB,∴△ABF为等边三角形,∴∠FBA=60°,BF=BC,∴∠FCB=∠BFC=15°,∵四边形ABCD为正方形,∴∠DBC=45°,根据三角形的外角等于与它不相邻的两个内角的和得∠DOC=15°+45°=60°.6. 【答案】A【解析】本题主要考查了相似三角形和正方形的性质,由题意知△CDP∽△CBQ,所以CD DPCB BQ=,即2CD CD PECB CB PE-=-,解得:BC=2CD,所以CQ=2CP,则CP=5,CQ=10,由于PQ∥AB,所以∠CBA=∠BCQ=∠DCP,则tan∠BCQ=tan∠DCP=tan∠CBA=12,不妨设DP=x,则DC=2x,在R t△DCP中,22(2)25x x+=,解得x=5.∴DC=25,BC=45,所以AB=10,△ABC的斜边上的高=2545410AC BCAB⋅⨯==,所以CR=14,所以因此本题选A.7. 【答案】B【解析】由旋转的性质得△ABF≌△ADE,∴BF=DE,AF=AE,又∵AH⊥EF,∴FH=EH,∵四边形ABCD是正方形,∴∠C=90°,∠EFC=∠EFC,∴△FHG∽△FCE,∴FG FHFE FC=,∵BG=3,CG=2,∴BC=5,设EC=x,则BF=DE=5-x,FG=BG+BF=3+5-x=8-x,CF=BC+BF=5+5-x=10-x,EF=22EC CF+=,FH=22(10)x x+-, ∴2222(10)210(10)x xxx x+-=-+-,解得:x=154.故选B.8. 【答案】B【解析】∵AB=2,∴BF=2,又∵BM=12BC=1,由勾股定理得FM=FB2-BM2= 3.二、填空题9. 【答案】30°或150°[解析]如图①,∵△ADE是等边三角形,∴DE=DA,∠DEA=∠1=60°.∵四边形ABCD是正方形,∴DC=DA,∠2=90°.∴∠CDE=150°,DE=DC,∴∠3=(180°-150°)=15°.同理可求得∠4=15°.∴∠BEC=30°.如图②,∵△ADE是等边三角形,∴DE=DA,∠1=∠2=60°,∵四边形ABCD是正方形,∴DC=DA,∠CDA=90°.∴DE=DC,∠3=30°,∴∠4=(180°-30°)=75°.同理可求得∠5=75°.∴∠BEC=360°―∠2―∠4―∠5=150°.故答案为30°或150°.10. 【答案】8[解析]如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA-AE=OC-CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,∴由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×2=8,故答案为:8.11. 【答案】(3+2,1)【解析】如解图,过点D作DG⊥BC于G,DF⊥x轴于F,∵在菱形BDCE中,BD=CD,∠BDC=60°,∴△BCD是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).解图12. 【答案】89 【解析】设BD =3a ,∠CDB =∠CBD =45°,且四边形PQMN 为正方形,∴DQ =PQ =QM =NM =MB ,∴正方形MNPQ 的边长为a ,正方形AEFG的对角线AF =12BD =32a ,∵正方形对角线互相垂直,∴S 正方形AEFG =12×32a×32a =98a 2,∴S 正方形MNPQ S 正方形AEFG =a 298a2=89.13. 【答案】55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE=90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO中,⎩⎨⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM 1=15,∴FM =55.14. 【答案】62≤a ≤3-3 【解析】∵ABCD 是正方形,∴AB =a =22AC ,∴a的取值范围与AC 的长度直接相关.如解图①,当A ,C 两点恰好是正六边形一组对边中点时,a 的值最小,∵正六边形的边长为1,∴AC =3,∴AB =a =22AC =62;如解图②,连接MN ,延长AE ,BF 交于点G ,∵正六边形和正方形ABCD ,∴△MNG 、△ABG 、△EFG 为正三角形,设AE =BF =x ,则AM =BN =1-x ,AG =BG =AB =1+x =a ,∵GM =MN =2,∠BNM =60°,∴sin ∠BNM =sin 60°=BC 2BN =a 21-x,∴3()1-x =a ,∴3()2-a =a ,解得,a=233+1=3- 3.∴正方形边长a 的取值范围是62≤a ≤3- 3.15. 【答案】4[解析]如图,连接EG ,作GM ⊥EN 交EN 的延长线于M.在Rt △EMG 中,∵GM=4,EM=2+2+4+4=12,∴EG===4,∴EH==4.16. 【答案】233或33 【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎨⎧AB =NGAE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm .解图三、解答题17. 【答案】证明:在正方形ABCD中,AC⊥BD,∴∠AOF=∠BOE=90°.∵AM⊥BE,∴∠AME=90°,∴∠F AO+∠AEB=∠EBO+∠AEB=90°,∴∠F AO=∠EBO.在正方形ABCD中,AC=BD,OA=AC,OB=BD,∴OA=OB,∴△AOF≌△BOE(ASA),∴OE=OF.18. 【答案】(1)∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD,∵DE=CF,∴AE=DF,在△BAE和△ADF中,AB ADBAE ADF AE DF=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△ADF(SAS),∴BE=AF;(2)解:由(1)得:△BAE≌△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,∴BE=22AB AE +=2243+=5,在Rt △ABE 中,12AB ×AE=12BE ×AG ,∴AG=435⨯=125.19. 【答案】解:(1)证明:连接OC.∵CE 是☉O 的切线,∴OC ⊥CE. ∴∠FCO +∠ECF=90°.∵DO ⊥AB ,∴∠B +∠BFO=90°. ∵∠CFE=∠BFO , ∴∠B +∠CFE=90°. ∵OC=OB ,∴∠FCO=∠B. ∴∠ECF=∠CFE. ∴CE=EF .(2)∵AB 是☉O 的直径,∴∠ACB=90°. ∴∠DCF=90°.∴∠DCE +∠ECF=90°,∠D +∠EFC=90°. 由(1)得∠ECF=∠CFE , ∴∠D=∠DCE. ∴ED=EC. ∴ED=EC=EF .即点E 为线段DF 的中点.①四边形ECFG 为菱形时,CF=CE. ∵CE=EF ,∴CE=CF=EF .∴△CEF为等边三角形.∴∠CFE=60°.∴∠D=30°.故填30°.②四边形ECOG为正方形时,△ECO为等腰直角三角形.∴∠CEF=45°.∵∠CEF=∠D+∠DCE,∴∠D=∠DCE=22.5°.故填22.5°.20. 【答案】解:(1)证明:正方形ABCD中,AC=BD,OA=AC,OB=OD=BD,∴OA=OB=OD,∵AC⊥BD,∴∠AOB=∠AOD=90°,∴∠OAD=∠OBA=45°,∴∠OAM=∠OBN,又∵∠EOF=90°,∴∠AOM=∠BON,∴△AOM≌△BON,∴OM=ON.(2)如图,过点O作OP⊥AB于P,∴∠OP A=90°,∠OP A=∠MAE,∵E为OM中点,∴OE=ME,又∵∠AEM=∠PEO,∴△AEM≌△PEO,∴AE=EP,∵OA=OB,OP⊥AB,∴AP=BP=AB=2,∴EP=1.Rt△OPB中,∠OBP=45°,∴OP=PB=2,Rt△OEP中,OE==,∴OM=2OE=2,Rt△OMN中,OM=ON,∴MN=OM=2.21. 【答案】解图解:(1)由题意知EC =2,AE =10, 如解图,过点E 作EM ⊥AC 于点M , ∴∠EMC =90°,易知∠ACD =45°, ∴△EMC 是等腰直角三角形, ∴EM =2,∴sin ∠EAC =EM AE =55.(4分) (2)在△GDC 与△EDA 中,⎩⎨⎧DG =DE∠GDC =∠EDA DC =DA, ∴△GDC ≌△EDA(SAS ), ∴∠GCD =∠EAD , 又∵∠HEC =∠DEA , ∴∠EHC =∠EDA =90°, ∴AH ⊥GC ,(7分)∵S △AGC =12×AG×DC =12×GC×AH , ∴12×4×3=12×10×AH ,(9分)∴AH =6510.(10分)22. 【答案】(1)5-t ;【解法提示】∵在Rt △ABC 中,∠C =90°,AC =8 cm ,BC =6 cm ,∴由勾股定理得:AB =10 cm ,∵点P 由B 出发沿BA 方向向点A 匀速运动,速度为2 cm/s ,∴BP =2t cm ,∴AP =AB -BP =10-2t ,∵四边形AQPD 为平行四边形,∴AE=12AP =5-t .(2)如解图①,当四边形AQPD 是菱形时,DQ ⊥AP ,则cos ∠BAC =AE AQ =ACAB , 即5-t 2t =810,解得t =2513,∴当t =2513时,四边形AQPD 是菱形;(3)如解图②,作PM ⊥AC 于M ,设平行四边形AQPD 的面积为S . ∵PM ∥BC ,∴△APM ∽△ABC ,∴AP AB =PMBC ,即10-2t 10=PM 6, ∴PM =65(5-t ),∴S =AQ ·PM =2t ·65(5-t )=-125t 2+12t=15255122+⎪⎭⎫⎝⎛--t (0<t ≤4), ∵-125<0,∴当t =52时,S 有最大值,最大值为15 cm 2.解图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题训练(二) 中点四边形 ► 类型一 中点四边形的判定 1.顺次连接对角线相等的四边形的各边中点,所得四边形是( ) A.矩形 B.平行四边形 C.菱形 D.任意四边形 2.[2018·湘潭]如图2-ZT-1,已知点E,F,G,H分别是菱形ABCD各边的中点,则四边形EFGH是( ) A.正方形 B.矩形 C.菱形 D.平行四边形 3.若四边形的对角线互相垂直,则顺次连接这个四边形各边中点所得的四边形是( ) A.平行四边形 B.矩形 C.菱形 D.正方形
图2-ZT-1 图2-ZT-2 4.如图2-ZT-2,顺次连接任意四边形ABCD各边中点,所得的四边形EFGH是中点四边形.下列四个叙述:①中点四边形EFGH一定是平行四边形;②当四边形ABCD是矩形时,中点四边形EFGH也是矩形;③当中点四边形EFGH是菱形时,四边形ABCD是矩形;④当四边形ABCD是正方形时,中点四边形EFGH也是正方形.其中正确的是________.(填序号) 5.[2018·丰台区期中]如图2-ZT-3,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.
图2-ZT-3 ► 类型二 由中点四边形的形状判定原四边形的形状 6.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( ) A.矩形 B.菱形 C.对角线相等的四边形 D.对角线互相垂直的四边形 7.[2018·临沂]如图2-ZT-4,E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点.则下列说法中正确的个数是( ) ①若AC=BD,则四边形EFGH为矩形; ②若AC⊥BD,则四边形EFGH为菱形; ③若四边形EFGH是平行四边形,则AC与BD互相平分. ④若四边形EFGH是正方形,则AC与BD互相垂直且相等.
图2-ZT-4 A.1 B.2 C.3 D.4 8.如图2-ZT-5,在四边形ABCD中,E,F,G,H分别是BC,AC,AD,BD的中点,要使四边形EFGH是菱形,则四边形ABCD的边AB,CD应满足的条件是________.
图2-ZT-5 图2-ZT-6 ► 类型三 中点四边形的有关计算 9.如图2-ZT-6所示,E,F,G,H分别为四边形ABCD各边的中点,若对角线AC,BD的长都为20,则四边形EFGH的周长是( ) A.80 B.40 C.20 D.10 10.[2018·陕西]如图2-ZT-7,在菱形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点,连接EF,FG,GH,HE.若EH=2EF,则下列结论正确的是( ) A.AB=2EF B.AB=2EF C.AB=3EF D.AB=5EF
图2-ZT-7 图2-ZT-8 11.如图2-ZT-8,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________. 12.如图2-ZT-9,在四边形ABCD中,AC=8,BD=6,且AC⊥BD,E,F,G,H分别是AB,BC,CD,DA的中点,则EG2+FH2=________.
图2-ZT-9 13.如图2-ZT-10,在四边形ABCD中,AC=BD=6,E,F,G,H分别是AB,BC,CD,DA的中点,求EG2+FH2的值.
图2-ZT-10 ► 类型四 探究题 14.四边形ABCD为边长等于1的菱形,顺次连接它的各边中点组成四边形EFGH(四边形EFGH称为原四边形的中点四边形),再顺次连接四边形EFGH的各边中点组成第二个中点四边形……则按上述规律组成的第八个中点四边形的边长等于________. 15.如图2-ZT-11所示,E,F,G,H分别是四边形ABCD的边AB,BC,CD,AD的中点. (1)当四边形ABCD是矩形时,四边形EFGH是________形,并说明理由; (2)当四边形ABCD满足什么条件时,四边形EFGH是正方形?并说明理由.
图2-ZT-11 16.如图2-ZT-12,在四边形ABCD中,E,F,G,H分别是BC,AD,BD,AC的中点. (1)求证:EF与GH互相平分; (2)当四边形ABCD的边满足条件________时,EF⊥GH.
图2-ZT-12 教师详解详析 1.C [解析] 顺次连接对角线相等的四边形的各边中点,所得四边形是菱形.如图,∵E,F,G,H分别为四边形ABCD各边的中点,∴EH为△ABD的中位线,FG为△CBD的
中位线,∴EH∥BD,EH=12BD,FG∥BD,FG=12BD,∴EH∥FG,EH=FG=12BD,∴四
边形EFGH为平行四边形.∵EF为△ABC的中位线,∴EF=12AC.又∵EH=12BD,且AC=BD,∴EF=EH,∴平行四边形EFGH为菱形.故选C.
2.B [解析] 连接AC和BD, ∵E,F,G,H分别是菱形ABCD各边的中点,
∴EH∥BD∥FG,EF∥AC∥HG,EH=FG=12BD,EF=HG=12AC, ∴四边形EFGH为平行四边形. ∵四边形ABCD是菱形,∴AC⊥BD, ∴EF⊥FG,∴▱EFGH是矩形.
3.B [解析] 如图,在四边形ABCD中,AC⊥BD,连接各边的中点E,F,G,H,则EH∥AC,FG∥AC,EF∥BD,GH∥BD.又因为对角线AC⊥BD,所以GH⊥EH,EH⊥EF,EF⊥FG,FG⊥HG, 故可判定该四边形是矩形.故选B.
4.①④ [解析] 如图,连接AC,BD. ∵E,F,G,H分别是四边形各边的中点, ∴EF∥AC,GH∥AC,EH∥BD,FG∥BD, ∴EF∥GH,EH∥FG, ∴四边形EFGH是平行四边形,故①正确. 若四边形ABCD是矩形, 则AC=BD.
∵EF=12AC,EH=12BD, ∴EF=EH, ∴平行四边形EFGH是菱形,故②错误. 若四边形EFGH是菱形,则AC=BD, 但四边形ABCD不一定是矩形,故③错误. 若四边形ABCD是正方形, 则AC=BD,AC⊥BD, ∴四边形EFGH是正方形,故④正确. ∴正确的叙述是①④. 5.证明:连接AC,如图所示.
∵E是AB的中点,F是BC的中点, ∴EF∥AC,EF=12AC.
同理,可得出HG∥AC,HG=12AC, ∴EF∥HG,EF=HG, ∴四边形EFGH是平行四边形. 6.D 7.A [解析] ∵E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,∴
EH=12BD=FG,EH∥BD∥FG,∴四边形EFGH是平行四边形.由AC=BD可得EH=EF,∴四边形EFGH为菱形,①错误;由AC⊥BD,可得EH⊥EF,∴四边形EFGH为矩形,②错误;由四边形EFGH是平行四边形,无法得到AC与BD互相平分,③错误;由四边形EFGH是正方形,可得到AC与BD互相垂直且相等,④正确.故选A. 8.AB=CD
9.B [解析] ∵E,F,G,H分别是四边形ABCD各边的中点,∴HG=EF=12AC,GF
=HE=12BD,∴四边形EFGH的周长=HG+EF+GF+HE=12(AC+AC+BD+BD)=12×(20+20+20+20)=40. 10.D [解析] 连接AC,BD交于点O. ∵E,F分别为AB,BC的中点, ∴EF=12AC. ∵四边形ABCD为菱形, ∴AO=12AC,AC⊥BD,∴EF=AO.
同理:EH=BO. ∵EH=2EF,∴BO=2AO. 在Rt△ABO中,设AO=x,则BO=2x,
∴AB=x2+(2x)2=5x=5AO, ∴AB=5EF.故选择D. 11.12 [解析] ∵E,F,G,H分别为边AD,AB,BC,CD的中点,∴HE=12AC=4,
HE∥AC,GF∥AC,∴HE∥GF.同理,HG∥EF,HG=12BD=3,∴四边形EFGH是平行四边形.∵AC⊥BD,∴∠EHG=90°,∴四边形EFGH是矩形,∴四边形EFGH的面积为3×4=12. 12.50 [解析] 连接HG,EH,EF,FG,∵E,F,G,H分别是AB,BC,CD,DA的
中点,∴HG=EF=12AC=4,HG∥EF∥AC,EH=FG=12BD=3,EH∥FG∥BD, ∴四边形HEFG是平行四边形. ∵AC⊥BD,∴HG⊥EH,∴四边形HEFG为矩形,∴EG2+FH2=EF2+FG2+EF2+EH2
=52+52=50.
13.解:如图,连接EF,FG,GH,EH,∵E,H分别是AB,DA的中点,∴EH是△ABD的中位线,∴EH=12BD=3. 同理可得EF,FG,GH分别是△ABC,△BCD,△ACD的中位线, ∴EF=GH=12AC=3,FG=12BD=3,∴EH=EF=GH=FG=3, ∴四边形EFGH为菱形,∴EG⊥HF,且垂足为O,∴EG=2OE,FH=2OH. 在Rt△OEH中,根据勾股定理得OE2+OH2=EH2=9, 等式两边同时乘4得4OE2+4OH2=9×4=36, ∴(2OE)2+(2OH)2=36,即EG2+FH2=36. 14.116 15.解:(1)当四边形ABCD是矩形时,四边形EFGH是菱形. 理由:∵四边形ABCD是矩形, ∴AC=BD. ∵E,F,H分别是AB,BC,AD的中点,
∴EF=12AC,EH=12BD, ∴EF=EH. 同理可得EF=GH=GF, ∴四边形EFGH是菱形. (2)当四边形ABCD满足AC=BD且AC⊥BD时,四边形EFGH是正方形.
理由:∵E,F分别是四边形ABCD的边AB,BC的中点,∴EF∥AC,EF=12AC,
同理,EH∥BD,EH=12BD,GF=12BD,GH=12AC. ∵AC=BD,∴EF=EH=GH=GF, ∴四边形EFGH是菱形. ∵AC⊥BD,∴EF⊥EH, ∴菱形EFGH是正方形. 16.解:(1)证明:连接GE,GF,HF,EH.
∵E,G分别是BC,BD的中点, ∴EG=12CD.
同理FH=12CD,GF=12AB,EH=12AB,∴EG=FH,GF=EH, ∴四边形EHFG是平行四边形, ∴EF与GH互相平分.
(2)AB=CD