呼出气监测静脉麻醉药血药浓度
吸入麻醉药的诱导策略ppt课件

(4) 肺活量法诱导速度最快,也很平稳。缺点是需要 患者的合作,不适合效能强精的品课吸件 入麻醉药(如氟烷)。
二、吸入麻醉的诱导策略
4、小儿吸入诱导方法 (1) 小儿诱导期间较成人更容易缺氧,也常出现躁
不变。则
患 MV=6 L/min 者
1 L/min 机 VD8% 器
端
RF=5 L/min
端
FA=0%
1L/min
精品课件
三、吸入麻醉浓度的调控
例1-3:同一病人
假如一开始就将新鲜气流量调为6L/min或 更大,挥发罐开启至F8i=%?,其他参数不变。则
患 MV=6 L/min 者 端
6 L/min 机
例1-1:男,50Kg
Vt=0.5L,RR=12bpm,MV=6L 开始吸入七氟烷,FFi=G?F=1L/min,VD=1.2%
患 MV=6 L/min 者 端
1 L/min 机 VD1.2% 器
RF=5 L/min
端
FA=0%
1L/min
精品课件
三、吸入麻醉浓度的调控
例1-2:同一病人
假如一开始就将挥F发i=罐? 开至8%,其他参数
精品课件
二、吸入麻醉的诱导策略
(二)诱导方法(以七氟醚为
例) 1、浓度递增诱导法
(1) 麻醉机为手动模式,置APL 阀于开放位,调节吸入氧浓度,新鲜 气流量6-8L/min,选择合适的面罩给
精品课件
二、吸入麻醉的诱导策略
(3) 吸入诱导期间可以 联合使用镇静药、静脉麻醉药、 阿片类药或肌松药(需注意这 些药物与吸入麻醉药的药效协 同作用,尤其是接受丙泊酚和
术中呼吸功能的监测

术中呼吸功能的监测广州市第一人民医院麻醉科 (510180) 佘守章麻醉和手术中呼吸功能监测的目的就是评价肺部氧气和二氧化碳的交换功能及观察呼吸机制与通气储备是否充分、有效。
术中呼吸功能的监测项目非常繁多,呼吸监测除一般的观察之外,包括对病人的肺容量、肺通气功能、换气功能、呼吸动力学、血液气体分析等的全面监测。
临床工作者在麻醉和手术过程中实际上主要采用临床观察、无创脉搏血氧饱和度(SpO2)、呼气末二氧化碳分压(P ET CO2)、旁气流通气监测(SSS)等无创手段对术中呼吸功能进行连续动态监测。
一、错误!链接无效。
呼吸功能监测的重要作用众所周知,麻醉严重事故的演变是短暂的,麻醉医生认识到问题的存在,正确诊断,并明确做出处理,以预防意外发生。
有文献报道麻醉中严重事故的发生率大约为1/15,这种事故发生率超过了6%,因而是有意义的,并强调灵敏的监测、麻醉人员在监测过程中的高度警惕性以及对紧急事故处理的培训等是必不可少的。
尽管有许多先进的监测仪器,但偶尔会发生这样的意外,如呼吸回路从气管导管接头处脱落、气管导管误入食道、呼吸管道打折或阻塞以及氧气供应故障等,这些意外都会对麻醉中的病人安全构成威胁。
术中由麻醉所引起不良事件,后果往往较手术因素所引起的更为严重,如心脏停搏、中枢神经系统永久性损害或者死亡,这将会作为麻醉事故记录在册。
从20世纪50年代中期到80年代早期,麻醉界有一个广泛的共识,麻醉死亡率为万分之一至万分之二。
在麻醉事故的早期报道里有许多回顾性文章,但多篇报道都是致力于寻找一个共同焦点,即由诸多原因引起的通气不足是引起手术中麻醉意外伤亡事故最常见的原因。
这反映了与早期危重事故原因的研究是有关联的,这些研究已表明呼吸回路管道脱落是引起麻醉严重事故(指的是已致病人伤害或如果未及时处理也有可能致病人伤害的事件)最常见的原因。
正如上面提到的麻醉中肺通气不足典型的原因包括:气管导管误入食道,呼吸管道打折或阻塞,通气设置不当,自主呼吸或辅助通气不足等。
临床麻醉护理学名词解释及简答

临床麻醉护理学名解及简答名解:1、MAC:最小肺泡药物浓度,指在一个大气压下,使50%受试对象无伤害刺激性体动反应的最小肺泡药物浓度。
2、吸入麻醉:挥发性的麻醉药或麻醉气体经呼吸系统吸收入血,抑制中枢神经系统而产生的全身麻醉的方法。
3、全身麻醉:是药物能够可逆性抑制中枢神经系统,引起不同程度意识、感觉和反射丧失,从而实施外科手术的方法。
4、恶性高热:是一种亚临床肌肉疾病,患者平时无异常情况,但在全麻过程中接触挥发性吸入麻醉药和去极化肌松药后出现骨骼肌强直收缩,产生大量能量,导致体温持续快速升高,伴循环系统功能障碍的症状。
5、静脉麻醉:将麻醉药物注入静脉,产生中枢神经系统抑制的全身麻醉的方法。
6、局部麻醉:是指药物阻断神经冲动和传导,在意识清醒的条件下,使有关神经支配部位出现暂时性、可逆性感觉丧失的麻醉方法。
7、表面麻醉:将渗透性能强的局麻药与局部黏膜接触,药物穿透黏膜运用于神经末梢而产生的局部麻醉作用。
8、药物相互作用:是指同时或者先后使用两种或两种以上的药物,由于药物间的相互影响或干扰,改变了其中一种或者多种药物原有的理化性质、体内过程和组织对药物的敏感性,从而改变了该药物的药理和毒理效应。
9、潮气量(Vt):平静呼吸时,每次吸入或呼出的气体量。
10、肺活量(VC):最大吸气后所能呼出的最大气体量,为深吸气量和补呼气量之和。
11、肺总量(TLC):深吸气后肺内所含气量。
男性约5020ml,女性约3460ml。
12、残气量(RV):最大呼气后肺内残留的气体量。
正常值为20%-30%。
13、功能残气量(FRC):平静呼气后肺内所含的气体量。
包括补呼气量和残气量。
14、用力肺活量(FVC):深吸气后,以最大力气所呼出的气体量。
正常人呼出98%以上的FVC值不应超过3s。
15、生理死腔:包括解剖死腔和肺泡死腔,解剖死腔指存在于终末细支气管以上气道内的气体容积,正常人约120-150ml。
肺泡死腔量指由于没有血流灌注,某些肺泡虽然有通气,但是不能进行正常气体交换。
呼末二氧化碳分压(PETCO2)监测在临床麻醉中的应用及意义

呼末二氧化碳分压(PETCO2)监测在临床麻醉中的应用及意义呼气末二氧化碳(PETCO2)作为一种较新的无创伤监测技术,已越来越多地应用于手术麻醉的监护中,它具有高度的灵敏性,不仅可以监测通气也能反映循环功能和肺血流情况,目前已成为麻醉监测不可缺少的常规监测手段。
一、PETCO2监测的原理组织细胞代谢产生二氧化碳,经毛细血管和静脉运输到肺,在呼气时排出体外,体内二氧化碳产量(VCO2)和肺通气量(VA)决定肺泡内二氧化碳分压(PETCO2)即PETCO2=VCO2×0.863/V A,0.863是气体容量转换成压力的常数。
CO2弥散能力很强,极易从肺毛细血管进入肺泡内。
肺泡和动脉CO2完全平衡,最后呼出的气体应为肺泡气,正常人PETCO2≈PACO2≈paCO2,但在病理状态下,肺泡通气/肺血流(V/Q)及交流(Qs/Qt)的变化,PETCO2就不能代表paCO2。
呼气末二氧化碳的测定有红外线法,质谱仪法和比色法三种,临床常用的红外线法又根据气体采样的方式分为旁流型和主流型两类。
二、PETCO2波形及意义正常的CO 2波形一般可分四相四段:(1)Ⅰ相:吸气基线,应处于零位,是呼气的开始部分为呼吸道内死腔气,基本上不含二氧化碳。
(2)Ⅱ相:呼气上升支,较陡直,为肺泡和无效腔的混合气。
(3)Ⅲ相:二氧化碳曲线是水平或微向上倾斜,称呼气平台,为混合肺泡气,平台终点为呼气末气流,为PETCO2值。
(4)Ⅵ相:吸气下降支,二氧化碳曲线迅速而陡直下降至基线新鲜气体进入气道。
2、呼气末CO2的波形应观察以下5个方面:(1)基线:吸入气的CO2浓度,一般应等于零。
(2)高度:代表PETCO2浓度。
(3)形态:正常CO2的波形与异常波形。
(4)频率:呼吸频率即二氧化碳波形出现的频率(5)节律:反映呼吸中枢或呼吸机的功能3、正常二氧化碳波形的定性指标和定量指标:(1)呼气中出现二氧化碳:表示代谢产生的二氧化碳经循环后从肺排出。
吸入麻醉

.
。 6、对运动终板的影响 • 吸入麻醉药均有肌肉松弛作用,可减少
肌松药用量。氟烷对子宫平滑肌松弛作 用强,对剖宫产、刮宫病人可引起产后 出血。
.
5、对神经系统的影响
所有的吸入麻醉药都使颅内压增加
安氟醚使脑血流量增加,颅内压升高, 脑耗氧量下降, 3%安氟醚吸入可进 展到爆发性抑制,脑电出现惊厥性棘 波。 异氟醚在低CO2条件下可防止颅内压 升高,适合神经外科手术
.
理想的肌松药应具备以下条件:
1. 不燃、不爆。 2. 室温下易挥发。 3. 麻醉强度大。 4. 血溶解度低,可控性好,诱导快,苏醒快。 5. 体内代谢少;代谢产物无毒性,安全范围大。 6. 不增加心肌应激性,能与肾上腺素合用。 7. 使肌肉松弛。 8. 能抑制过强的交感神经活动。 9. 对呼吸道无刺激作用,有支气管扩张作用。 10. 对心肌无明显抑制。 11. 不致脑血管扩张。 12. 无肝肾毒性。
顺应性降低。 4.安氟醚有松弛子宫平滑肌作用,可引起宫缩无
力和产后出血。孕妇安氟醚吸入浓度宜<1% 。 5.抑制乙酰胆碱引起的运动终板去极化而有神经
肌肉阻滞作用,新斯的明不能完全逆转其阻滞 作用。 6. 降低眼压,适用于眼科手术。
.
安氟醚应用禁忌症
1.严重心、肝、肾疾病 2.癫痫 3.颅内压过高
.
.
5.增强非去极化肌松药的作用,能增强琥 珀胆碱的作用(安氟醚无此作用)。
• 各种吸入麻醉药加强维库溴胺作用的顺 序是: 七氟醚>安氟醚>异氟醚>氟烷
异氟醚适应症:优于安氟醚,适用于老年 人、冠心病人、癫痫。
异氟醚禁忌症:因增加子宫出血,不适于 产科手术。
医学课件吸入麻醉 (3)

甲氧氟烷
13
825
61
0.16
1.可控性 ● 与血/气分配系数有关 2. 麻醉强度 ● 与油/气分配系数有关 3. 对心血管的影响
●
心肌抑制
●增加心肌对儿茶酚胺的敏感性:氟烷
分配系数 分配系数是麻醉药分压在两相中达到平衡时的 麻醉药浓度比。血/气、脑/血、肌肉/血和油/血 分配系数是其在体内不同组织的溶解度,是决
气道干燥,污染空气 ●呼呼吸不易管理:舌后坠、呼吸道梗阻, 通气困难 ●麻醉深度不易掌握
㈡ 半开放式:
特点:
呼出气部分被重复吸入,无CO2吸收装置 及 无重复吸入活瓣,重复吸收CO2<1%
●
缺点:
吸入气流量大(分钟通气量的2-3倍) ●吸入气流量小时→CO2蓄积
●
临床常用“T”管装置: ●优点:呼吸阻力及无效腔小 ●适用于20Kg以下儿童,尤其是新生儿、婴幼儿 ●可保留自主呼吸,亦可辅助或控制呼吸
附、MAC
最小肺泡气浓度(minimal alveolar concentration,MAC)在一个大气压下有 50%病人在切皮刺激时无体动,此时肺 泡内麻醉药物的浓度即为1个MAC。 评价吸入麻醉药的效能,类似于药理药 中反映量-效曲线的ED50
吸入麻醉药效能
MAC awake50:50%病人对简单的指令能睁眼 时的肺泡气麻醉药浓度。 MAC awake95:指95%病人对简单的指令能睁 眼时的肺泡气麻醉药浓度,可视为病人苏醒时 脑内麻醉药分压。 MACawake =0.4 MAC,不同麻醉药的 MACawake 与MAC的比值均为0.4 ED95: 95%病人对手术刺激无反应时的MAC, 约1.3 MAC,与ED95相当 0.65MAC:是较常用的亚麻醉浓度,与氧化亚 氮或静吸复合麻醉时常用浓度
吸入麻醉方法的应用和说课讲解

适当深度麻醉下拔管
深麻醉下拔管的主要标准:自主呼吸的 恢复。当病人自主呼吸恢复,节律规则, 呼吸次数小于20次/min,呼吸空气条 件下,SpO2始终大于95%,PETCO2 小于6.0kPa(45mmHg)且曲线正常, 且循环功能稳定,即可拔管。
适当深度麻醉下拔管
优点:拔管过程中循环功能稳定,不诱 发恶心呕吐,不会引起心、脑血管并发 症。 可能的危险是:拔管后出现舌下坠,造 成上呼吸道梗阻。拔管后如有舌下坠, 可置入喉罩、口咽通气道。如仍不能维 持上呼吸道通畅,必要时应再次插管。
防治并发症
高血压 寒战 苏醒延迟 恶心呕吐
解剖死腔约为 1ml/kg/次 解剖死腔=体重×1ml/kg =70ml/次
维持正常二氧化碳需多少通气量?
机器死腔由正压通气时呼吸机回路中丢 失的通气量组成。如果回路的顺应性和 气道峰压已知,则此死腔可由计算得知
机器死腔=顺应性×压力 =10ml/cmH2O×20cmH2O =200 ml/次
分钟通气量是肺泡通气量和解剖 死腔及机器死腔通气量的总和
正常二氧化碳约为肺泡二氧化碳 浓度的5.6%
40mmHg/(760mmHg47mmHg) =5.6%
维持正常二氧化碳需多少通气量?
肺泡通气量必须达到: 194mlCO2/5.6%
VA=VCO2/5.6% =194ml/min/5.6% =3393ml/min
吸烟病人,长时间紧闭麻醉,可使 COHb上升过高,应予注意。
低流量和最低流量麻醉的禁忌证
CO生理值=0.4~0.8%,抽烟者可达10%(正常时 ,内源性CO生成很少,0.42~0.07cc/h)
紧闭麻醉2h,呼吸系统CO=20~210ppm(平均 80ppm),紧闭麻醉6h,CoHb=0.5~1.5%,吸烟者 3~3.5%
全静脉麻醉-靶控输注

0
10
20
30
40
50
60
0
2
4
6
丙泊酚浓度
唤醒患者
时间(分钟)
(mcg/ml)
缝皮
稳态
调整剂量
切皮
等待
术前
诱导
TCI临床应用和发展方向:
TCI的应用可以为病人快速建立所需要的稳定血药浓度,而麻醉医生也可因此估计药物对病人产生的效果。在临床麻醉中,TCI技术可用于巴比妥类、阿片类、异丙酚、咪唑安定等药物诱导和麻醉维持。复合双泵给予异丙酚与短效镇痛药,可满意地进行全凭静脉麻醉。TCI迅速实现稳定血药浓度特点,将有利于进行药效学、药物互相作用的实验研究。
静脉麻醉仍需学习,普及,和研究
谢 谢 !
单次+ ቤተ መጻሕፍቲ ባይዱ续静脉给药
目标控制输注技术(TCI )
是根据不同静脉麻醉药的药代动力学和药效学,以及不同性别、不同年龄和不同体重病人的自身状况,通过调节相应的目标血药浓度以控制麻醉浓度的计算机给药静脉给药方法。
恒速输注丙泊酚
mg/kg/hr
mg/kg/hr
mg/kg/hr
随意调节 保持血浆浓度和效应室浓度的平衡 快速达到并维持恒定的血浆浓度
既往丙泊酚用于3岁以下的婴幼儿的药理学知识有限,许多国家不允许在这个年龄范围应用丙泊酚,欧洲于2002年6月18日增加了静安新适应证,可用于4周-3岁婴幼儿的全麻,新西兰的报告:甚至在早产儿中应用丙泊酚
小 结
我们已经进入了全静脉麻醉的时代
静脉麻醉可控性能与吸入麻醉媲美
TCI 便于调节麻醉深度、个体化、防止知晓和预测苏醒
TCI能自动达到并维持稳定的靶浓度,但是临床麻醉深度及手术刺激的改变都需要不断调整所设定的浓度,目前的TCI系统却不能完成这项工作。对于药物浓度,目前的浓度监测还不能对静脉麻醉药的血药浓度进行即刻测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
呼出气监测静脉麻醉药血药浓度董浩;张冯江;林丽泉;陈璟;王福园;王莹莹;陈星【摘要】丙泊酚静脉麻醉药约占70%的临床手术麻醉用药量。
且随着全凭静脉麻醉临床应用的深入研究,精确闭环麻醉的需求日益凸显。
精确闭环静脉麻醉需要对麻醉药用量,手术麻醉效果以及麻醉预后进行快速监测和综合评价。
由于静脉麻醉药经由静脉注射给药,实时血药浓度难以精确监测,这成为了精确闭环麻醉的瓶颈。
基于呼出气实时监测丙泊酚血药浓度的研究在近十年内快速发展,新的技术和方法不断涌现,有望在短期内突破上述瓶颈。
本文结合实验室的新近研究,介绍了快速气相色谱(GC)联用声表面波(SAW)传感器的在线检测呼出气体中丙泊酚浓度的系统和方法。
通过固相微萃取气质联用对GC-SAW系统进行标定和校正,从而验证本系统的可行性、可靠性、检测极限和线性。
通过初步临床实验比较了靶控输注(TCI)被试者呼出气中与血液中的丙泊酚浓度,以及比较了呼出气中丙泊酚浓度与TCI计算的血药浓度,结果均显示了高度的一致性。
因此,GC-SAW系统是一种临床在线监测呼出气中丙泊酚含量的较为可靠的途径,它提供了一种便捷、快速的方法来精确地监测丙泊酚的剂量,这种监测方法可以减少患者在静脉麻醉时的丙泊酚的副作用。
%Propofol accounts for about 70% market share of intravenous anesthetics in clinical surgery. With further research and application of total intravenous anesthesia, precision closed-loop anesthesia is proved to be important in clinical practice. It is necessary to monitor anesthetic dose, assess anesthesia effect, and evaluate anesthesia prognosis in a rapid and comprehensive way during the closed-loop anesthesia. Due to intravenous injection of anaesthetic, the dififculty to precisely monitor anaesthetic dose in blood has become the main limit fordevelopment of precision closed-loop anesthesia. In recent ten years, propofol detection using real-time breath monitoring developed rapidly with novel techniques and methods, which might break through the barrier of the closed-loop anesthesia. This study presents systems and methods using synchronized applications of gas chromatograph (GC) and surface acoustic wave (SAW) sensor for on-line monitoring of propofol in exhaled gas. SPME-GC-MS was used to calibrate to GC-SAW sensor system for verifying feasibility, reliability, detection limit, and linearity. The propofol concentrations in exhaled gas was compared with concentrations in blood calculated by target-controlled infusion (TCI). The results showed a high degree of consistency. In conclusion, GC-SAW system was proved to be a reliable way for clinical monitoring of propofol concentration through patients’exhaled gas. This detection system would reduce the side effects of propofol intravenous anesthesia during surgery.【期刊名称】《中国医疗设备》【年(卷),期】2016(031)002【总页数】4页(P18-20,30)【关键词】呼吸检测;气相色谱联用声表面波;丙泊酚;靶控输注【作者】董浩;张冯江;林丽泉;陈璟;王福园;王莹莹;陈星【作者单位】浙江大学生物医学工程与仪器科学学院,浙江杭州 310027;浙江大学医学院附属第二医院,浙江杭州310005;浙江大学生物医学工程与仪器科学学院,浙江杭州 310027;浙江大学生物医学工程与仪器科学学院,浙江杭州310027;浙江大学生物医学工程与仪器科学学院,浙江杭州 310027;浙江大学生物医学工程与仪器科学学院,浙江杭州 310027;浙江大学生物医学工程与仪器科学学院,浙江杭州 310027【正文语种】中文【中图分类】R318.6丙泊酚是目前临床广泛使用的一种静脉麻醉药物,具有起效快、恢复时间短、术后不良反应少等优点[1]。
然而,由于缺乏丙泊酚血药浓度的实时监测手段,当前在麻醉过程中,仍然存在由于患者血流不稳定以及麻醉不完全所导致的患者术中知晓或苏醒缓慢等情况。
在临床中,对丙泊酚用量的控制主要通过基于正常人群的药代动力学和药效学模型的靶控输注(Target-Controlled Infusion,TCI)结合临床麻醉医生的经验而实现的[2]。
设定TCI血药浓度控制的目标值,TCI实时控制的血药浓度也可以通过TCI计算读出。
但其并不是患者血药浓度的实测值,故与真实值存在一定的偏差。
尤其对于特殊人群来说,TCI的偏差往往使所得的血药浓度值不具有临床指导意义而被麻醉医生忽视。
故而,寻找一种有效的方法能够对丙泊酚的血药浓度进行精确的实时监测,显得尤为重要。
有报道显示,通过呼出气中丙泊酚浓度可以用来监测临床患者的血药浓度。
最初这一想法被通过质子转移反应-质谱(PTR-MS)技术进行了验证[3]。
其后,如气相色谱-质谱连用(GC-MS)[4]、离子-分子反应质谱(IMR-MS)[5]和集束毛细管柱-离子迁移谱(MCC-IMS)[6],均验证了可用于呼出气中丙泊酚浓度的监测。
但是,GC-MS、IMRMS、MCC-IMS等技术由于设备昂贵、体积庞大、噪声等原因均不适用于临床手术环境;PTR-MS虽然体积小便于携带,但缺乏在复杂气体背景下监测丙泊酚的能力,故而均不是合适的选择。
本文提出了一种基于气相色谱-声表面波传感器技术联用的平台用于临床监测呼出气中丙泊酚浓度。
由于使用了直热式毛细管柱升温方式[7-8],该平台的检测周期可压缩至约90 s,可以对呼出气中的丙泊酚浓度进行在线监测。
同时,通过呼出气中丙泊酚浓度与把控灌输的比对实验,验证了本系统可用于临床丙泊酚麻醉药的实时血药浓度监测。
1.1 系统设计本系统通过气相色谱技术与声表面波传感器联用的方式,实现对呼出气中麻醉药物丙泊酚的实时监测,系统的整理气路结构见图1。
系统通过六通阀的转向实现进样与分析两种模式。
如图1(a)所示,为进样状态,在该状态下,气泵抽气,样品在气体进样口被吸入Tenax TA[9]吸附管,吸附管中覆有10 mg的Tenax TA吸附剂,可实现对气体的预富集,提高系统的监测下限。
在进样状态完成后,程序控制六通阀转向,切换状态如图1(b)所示。
在该状态下,以氦气为载气,对Tenax TA吸附管进行瞬时加热,将管中此前吸附的气体吹出,进入金属毛细管柱进行成分分离后,依次进入传感器气室进行检测。
至此,可对气体样品的成分进行分离与定量分析。
在传感器室中,使用声表面波传感器(Surface Acoustic Wave,SAW)作为检测器。
本平台使用的SAW传感器为36°Y-X切型石英,中心频率约为500 MHz。
在传感器计频的过程中,加入一个参比传感器,其中心频率略高于工作传感器。
通过混频器对两个传感器的频率值进行差频,以得到由质量沉积引起的工作传感器的频率变化,同时,将原本500 MHz的信号降低到1 MHz左右,降低硬件电路计频的难度。
1.2 GC-SAW标定实验1.2.1 丙泊酚标准浓度气体的配制使用丙泊酚原液,分别配制0.4,0.5,1.0,2.0,4.0 nmol/L浓度的丙泊酚气体,并保存在容积为2 L的泰德拉(Tedlar)样品袋中。
配气实验使用由中国国家计量技术开发有限公司的MF-3B型配气仪。
1.2.2 使用GC-MS与GC-SAW系统进行气体分析对标准气体使用气相色谱-质谱仪(GC-MS)进行标定,本实验使用岛津公司GCMS-QP2010型号GC-MS,配备瑞思泰康RTX®-5系列毛细管,长度30 m,内径0.25 mm。
样品通过SPME针萃取后进入GC-MS进行分析。
进样口温度设置为260 ℃,进样时间1 min;毛细管从120 ℃以15 ℃/min程序升温至300 ℃,并保持2 min;离子源温度设置为250 ℃。
GC-MS分析完毕后,打开GC-SAW系统开关与气阀,并进行仪器预热。
SAW传感器,毛细管,六通阀与进样口的温度分别设置为30 ℃、40 ℃、165 ℃、200 ℃。
毛细管的升温速率为10 ℃/s,升温时间为3 s。
设置完毕,等待仪器预热完成后,进样口保持空抽直至GC-SAW检测结果的基线消失。
将泰德拉(Tedlar)样品袋中的气体,置于进样口,进行气体分析。
单个浓度的丙泊酚样品,使用GC-MS分析3次,使用GC-SAW分析5次。
1.3 临床监测丙泊酚1.3.1 实验准备本临床实验是在浙江大学第二附属医院的协助下完成,在实验准备室内,打开GC-SAW系统电源与气阀,并进行预热。
确认系统软硬件连接完毕,按照丙泊酚标准气体标定实验中的参数对系统进行设置。
预热完毕后,系统空抽3次,观察检测结果基线是否平稳。