七年级上册数学 第一章有理数 微专题:数轴上点的移动与两点间距离问题

合集下载

郑州中学七年级数学上册第一章《有理数》知识点(专题培优)

郑州中学七年级数学上册第一章《有理数》知识点(专题培优)

1.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.2.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--= C解析:C【分析】根据有理数的运算法则逐一判断即可.【详解】 (2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C .【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.3.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有( )A .4个B .3个C .2个D .1个B 解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确;综上所述,正确的有①②④共3个.故选B.【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键.4.下列计算正确的是()A.|﹣3|=﹣3 B.﹣2﹣2=0C.﹣14=1 D.0.1252×(﹣8)2=1D解析:D【分析】根据绝对值的性质,有理数的减法法则,有理数的乘方法则即可求出答案.【详解】A、原式=3,故A错误;B、原式=﹣4,故B错误;C、原式=﹣1,故C错误;D、原式=[0.125×(﹣8)]2=1,故D正确.故选:D.【点睛】本题考查了绝对值的化简,有理数的运算法则,熟练掌握有理数运算的运算法则是本题的关键,要注意符号变号问题.5.若1<a<2,则化简|a-2|+|1-a|的结果是()A.a-1 B.1 C.a+1 D.a-3B解析:B【解析】【分析】绝对值的化简求值主要需要判断绝对值里面的正负,从而去掉绝对值,再对式子进行计算进而得到答案.【详解】∵1<a<2∴a-2<0,1-a<0∴|a-2|+|1-a|= -(a-2)-(1-a)=-a+2-1+a=1,因此答案选择B.【点睛】本题考查的是绝对值的化简求值,注意一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值还是0.6.下列说法正确的是( )A .近似数5千和5000的精确度是相同的B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C .2.46万精确到百分位D .近似数8.4和0.7的精确度不一样B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A .近似数5千精确度到千位,近似数5000精确到个位,所以A 选项错误;B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯,所以B 选项正确;C .2.46万精确到百位,所以C 选项错误;D .近似数8.4和0.7的精确度是一样的,所以D 选项错误.故选B .【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.7.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确;∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.8.-1+2-3+4-5+6+…-2011+2012的值等于A .1B .-1C .2012D .1006D 解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D .点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键. 9.下列正确的是( )A .5465-<- B .()()2121--<+- C .1210823-->D .227733⎛⎫--=-- ⎪⎝⎭A 解析:A【分析】根据不等式的性质对各选项进行判断即可.【详解】解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A .【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 10.若|a |=1,|b |=4,且ab <0,则a +b 的值为( )A .3±B .3-C .3D .5± A 解析:A【分析】通过ab <0可得a 、b 异号,再由|a |=1,|b |=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.11.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.12.2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是()A.3504×103B.3.504×106C.3.5×106D.3.504×107B解析:B【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.【详解】3504000=3.504×106,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm 用科学记数法可表示为:2.8×10﹣8m ,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.按键顺序是的算式是( ) A .(0.8+3.2)÷45= B .0.8+3.2÷45= C .(0.8+3.2)÷45= D .0.8+3.2÷45=B 解析:B【分析】根据计算器的使用方法,结合各项进行判断即可.【详解】 解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=, 故选:B .【点睛】 此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键. 15.有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( ) A .0ab >B .b a >C .a b ->D .b a < C 解析:C【分析】根据数轴可得0a b <<且a b >,再逐一分析即可.【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误.故选:C .【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.1.绝对值小于2的整数有_______个,它们是______________.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1解析:3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点睛】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.2.3-的平方的相反数的倒数是___________.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:1 9 -【分析】根据倒数,相反数,平方的概念可知.【详解】−3的平方是9,9的相反数是-9,-9的倒数是1 9 -故答案为1 9 -.【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.3.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是___.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.4.某电视塔高468 m,某段地铁高-15 m,则电视塔比此段地铁高_____m.483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m.故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.5.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可.【详解】解:原式=-9+5+16=12.故答案为:乘方,乘法,加法,12【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.6.某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】++-⨯=(元).根据题意,得他九月份工资为4000300(1320010000)5%4460故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.7.定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316第7次:160.50.50.50.51⨯⨯⨯⨯=,等于第5次.所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H 运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.8.等边三角形ABC (三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A ,B 对应的数分别为0和1-,若ABC 绕着顶点顺时针方向在数轴上翻转1次后,点C 所对应的数为1,则再翻转3次后,点C 所对应的数是________.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C 在数轴上∴点C 对应的数是故答案为:4【点睛】本题考查了数轴及数的解析:4【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C 在数轴上,∴点C 对应的数是1134+⨯=.故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.9.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米,--=+=(米),则20(70)207090即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.10.点A,B表示数轴上互为相反数的两个数,且点A向左平移8个单位长度到达点B,则这两点所表示的数分别是____________和___________.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A、B距离原点的距离是4,∵点A,B互为相反数,A在B的右侧,∴A、B表示的数是4,-4.11.某班同学用一张长为1.8×103mm,宽为1.65×103mm的大彩色纸板制作一些边长为3×102mm的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.1.计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10解析:(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】 (1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+=23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.【点睛】 此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键.3.计算:()2213113244812⎛⎫-+--⨯-- ⎪⎝⎭. 解析:13【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.4.计算:(1)()()30122021π--+---;(2)()41151123618⎛⎫---+÷ ⎪⎝⎭. 解析:(1)18-;(2)-17.【分析】(1)原式第一项利用绝对值代数意义进行化简,第二项利用负整数指数幂的运算法则进行计算,第三项利用零指数幂的运算法则进行化简,最后进行加减运算即可得到答案;(2)原式先计算有理数的乘方,再把除法转化为乘法去括号进行乘法运算,最后进行加减运算即可得到答案.【详解】解:(1)()()30122021π--+--- =1118-- =18-;(2)()41151123618⎛⎫---+÷⎪⎝⎭ =115118236⎛⎫--+⨯⎪⎝⎭ =115118+1818236-⨯⨯-⨯ =1-9+6-15=-17.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.。

初二七年级数学上册专题2 数轴上的动点与两点之间的距离ppt课件

初二七年级数学上册专题2 数轴上的动点与两点之间的距离ppt课件

(2)七年级研究性学习小组在数学老师指导下,对式子|x+2|+|x-3|进行探究: ①|x-3|+|x+2|的值总是一个固 定的值为:__5__. ②请你在草稿纸上画出数轴,要使|x-3|+|x+2|=7,数轴上表示点的数x=_-__3_或.4
第1章 有理数
专题2 数轴上的动点与两点之间 的距离
武汉专版·七年级上册
1.(1)数轴上表示2和5的两点之间的距离是__3__;数轴上表示1和-3的两点之间的距离是__4__; (2)若数轴上表示x和-1的两点之间的距离是2,则x的值为-__3_或_.1
2.阅读下面材料: 在数轴上5与-2所对应的两点之间的距离:|5-(-2)|=7; 在数轴上-2与3所对应的两点之间的距离:|-2-3|=5; 在数轴上-8与-5所对应的两点之间的距离:|(-8)-(-5)|=3; 在数轴上点A,B分别表示数a,b,则A,B两点之间的距离AB=|a-b|=|b-a|. 回答下列问题: (1)数轴上表示-2和-5的两点之间的距离是__3__; 数轴上表示数x和3的两点之间的距离表示为_|_x-__3;| 数轴上表示数___x_和_-__2_的两点之间的距离表示为|x+2|;
③P 点对应的数时-16或 0. 3
(1)若点C在A,B两点之间,满足AC=BC,则C对应的数是___2_; (2)若点C在A,B两点之间,满足AC∶BC=1∶3,则点C对应的数是_-__5_; (3)若点C在数轴上,满足AC∶BC=1∶3,则点C对应的数是-__2_6_或;-5 (4)若点C在数轴上,满足AC+BC=32,则点C对应的数为-__1_4_或;18 (5)若点C在数轴上,满足AC-BC=12,则点C对应的数为_8___. (6)若点P,Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位/秒,4个单位/秒, 它们运动的时间为t秒.

七年级数学上册数轴上的动点问题专题复习

七年级数学上册数轴上的动点问题专题复习

七年级数学上册数轴上的动点问题专题复习本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March七年级数学上册数轴上的动点问题专题复习动点问题处理策略1、数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。

即数轴上两点间的距离=右边点表示的数-左边点表示的数。

2、如何表示运动过程中的数:点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即一个点表示的数为a ,向左运动b 个单位后表示的数为a -b ;向右运动b 个单位后所表示的数为a+b 。

(简单说成左减右加)3、分类讨论的思想:数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,注意多种情况种的分类讨论4、绝对值策略:对于两个动点P,Q ,若点P,Q 的左右位置关系不明确或有多种情况,可用p,q 两数差的绝对值表示P,Q 两点距离,从而避免分复杂分类讨论5、中点公式:若数轴上点A,B 表示的数分别为a,b ,M 为线段AB 中点,则M 点表示的数为2a b类型一、数轴上两点距离的应用例1、已知数轴上A,B 两点表示的数分别为-2和5,点P 为数轴上一点 (1)若点P 到A,B 两点的距离相等,求P 点表示的数BA O(2)若PA=2PB,求P点表示的数(3)若点P到点A和点B的距离之和为13,求点P所表示的数。

练、已知数轴上A、B两点对应数分别为-2和4,P为数轴上一动点,对应数为x.(1)若P为线段AB的三等分点,则x的值为_________(2)若线段PA=3PB,则P点表示的数为__________(3)若点P到A点、B点距离之和为10,则P点表示的数为_________类型二、绝对值的处理策略例2、已知数轴上A,B两点表示的数分别为-8和20,点P,Q分别从A,B两点同时出发,P点运动速度为每秒3个单位,Q点运动速度为每秒1个单位,设运动时间为t秒(1)点P向右运动,Q点向左运动,当t为何值时,P,Q两点之间距离为8(2)若P点和Q点都向右运动,多少秒后,P,Q两点之间距离为8(3)在(2)的条件下,另一动点M同时从O点出发,以每秒2个单位的速度向右运动,多少秒后,点M到点P和点Q的距离相等?练、已知在数轴上有A,B两点,点A表示的数为-8,点B表示的数为4.动点P从数轴上点A出发,以每秒2个单位长度的速度运动,同时动点Q从点B出发,以每秒1个单位长度的速度,设运动时间为t秒。

七年级数学上册第一章有理数考点总结

七年级数学上册第一章有理数考点总结

(名师选题)七年级数学上册第一章有理数考点总结单选题1、如图,已知数轴上A,B两点表示的数分别是a,b,则计算|b|−|a|正确的是()A.b−a B.a−b C.a+b D.−a−b答案:C分析:根据数轴上两点的位置,判断a,b的正负性,进而即可求解.解:∵数轴上A,B两点表示的数分别是a,b,∴a<0,b>0,∴|b|−|a|=b−(−a)=a+b,故选:C.小提示:本题考查了数轴,绝对值,掌握求绝对值的法则是解题的关键.2、实数a在数轴上的对应点的位置如图所示.若实数b满足−a<b<a,则b的值可以是()A.2B.-1C.-2D.-3答案:B分析:先根据数轴的定义得出a的取值范围,从而可得出b的取值范围,由此即可得.解:由数轴的定义得:1<a<2∴−2<−a<−1∴|a|<2又∵−a<b<a∴b到原点的距离一定小于2观察四个选项,只有选项B符合故选:B .小提示:本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.3、下列各式,计算正确的是( )A .−|−3|+|−2|=1B .−13−2÷(−12)=5 C .−43÷(−34)×43=43D .−22−(−2)3+(−12)÷(−2)=414答案:D分析:根据绝对值,有理数的乘方和有理数的四则混合运算计算法则求解即可.解:A .原式=−3+2=−1,故本选项错误;B .原式=−1−2×(−2)=−1+4=3,故本选项错误;C .原式=43×43×43=6427,故本选项错误;D .原式=−4−(−8)+(−12)×(−12)=−4+8+14=414,故本选项正确. 故选D .小提示:本题主要考查了有理数的乘除法,含乘方的有理数计算,绝对值,解题的关键在于能够熟练掌握相关知识进行求解.4、−2020的相反数为( )A .−12020B .2020C .−2020D .12020答案:B−2020的相反数为-(-2020)=2020.故选B .小提示:此题考查了相反数,解题关键是正确理解相反数的定义.5、2022的绝对值是( )A .−12022B .12022C .2022D .−2022答案:C分析:根据绝对值的意义可直接得出答案.解:2022的绝对值是2022,故选:C.小提示:本题考查了绝对值,掌握绝对值的意义是解题的关键.6、下列说法正确的是()A.有理数包括正有理数和负有理数B.a2是正数C.正数又可称为非负数D.有理数中有绝对值最小的数答案:D分析:根据有理数的性质判断求解.解:A选项:有理数包括正有理数、负有理数和0,故A错误,不符合题意;B选项:a2是非负数,故B错误,不符合题意;C选项:正数和0可称为非负数,故C错误,不符合题意;D选项:有理数中有绝对值最小的数,故D正确,符合题意;故选D.小提示:本题考查了有理数的性质,熟练掌握有理数的性质是解题的关键.7、数轴上表示−5和3的两点之间的距离是()A.3B.6C.7D.8答案:D分析:根据数轴的性质计算,即可得到答案.解:如图表示−5和3的两点之间的距离是:3−(−5)=8故选:D.小提示:本题考查了数轴的知识,解题的关键是熟练掌握数轴的性质,从而完成求解.8、如图,在数轴上,点A、B分别表示数a、b,且a+b=0,若AB=8,则点A表示的数为()A.﹣4B.0C.4D.8答案:A分析:根据a+b=0,则A、B表示的数互为相反数,根据数轴上两点间的距离公式即靠近右边的数减去其左边的数,列式即可.解:∵a+b=0,∴b=﹣a,又∵AB=8,∴b﹣a=8.∴﹣a﹣a=8.∴a=﹣4,即点A表示的数为﹣4.故选:A.小提示:本题考查了相反数的性质,数轴上两点间的距离,正确理解性质,熟练运用公式是解题的关键.)的结果是()9、计算(−6)÷(−13A.−18B.2C.18D.−2答案:C分析:根据有理数的除法法则计算即可,除以应该数,等于乘以这个数的倒数.)=(-6)×(-3)=18.解:(-6)÷(-13故选:C.小提示:本题考查了有理数的除法,熟练掌握运算法则是解题的关键.10、如图数线上的A、B、C、D四点所表示的数分别为a、b、c、d,且O为原点.根据图中各点的位置判断,下列何者的值最小?()A.|a|B.|b|C.|c|D.|d|答案:A分析:根据绝对值意义直接求解即可.解:∵a表示的点A到原点的距离最近,∴|a|最小,故选:A.小提示:本题考查了绝对值,数轴,掌握绝对值的定义:数轴上一个数表示的点到原点的距离是这个数的绝对值是解题的关键.填空题11、据央视网报道,2022年1~4月份我国社会物流总额为98.9万亿元人民币,“98.9万亿”用科学记数法表示为________.答案:9.89×1013分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:98.9万亿=98900000000000=9.89×1013.所以答案是:9.89×1013.小提示:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、已知|a|=9,|b|=3,则|a−b|=b−a,则a+b的值_______.答案:-6或-12分析:根据绝对值的性质可得a=±8,b=±3,a-b≤0,然后再确定a、b的值,进而可得答案.解:∵|a|=9,|b|=3,∴a=±9,b=±3,∵|a-b|=b-a,∴a-b≤0,∴a≤b,∴①a=-9,b=3,a+b=-6,②a=-9,b=-3,a+b=-12,所以答案是:-6或-12.小提示:此题主要考查了绝对值和有理数的加法,关键是正确确定a、b的值.13、建水县是国家历史文化名城,位于云南省南部红河北岸部,截止2021年7月有常住人口约53万人,53万这个数字用科学记数法表示为______.答案:5.3×105分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:53万=530000=5.3×105,所以答案是:5.3×105.小提示:本题主要考查科学记数法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.解题关键是正确确定a的值以及n的值.14、在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲、乙、丙、丁、戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:15;丁:8;戊:17,则丙同学手里拿的卡片的数字是_________.答案:5和10分析:根据两数之和结果确定,对两个加数的不同情况进行分类讨论,列举出所有可能的结果后,再逐一根据条件进行推理判断,最后确定出正确结果即可.解:由题意可知,一共十张卡片十个数,五个人每人两张卡片,∴每人手里的数字不重复.由甲:11,可知甲手中的数字可能是1和10,2和9,3和8,4和7,5和6;由乙:4,可知乙手中的数字只有1和3;由丙:15,可知丙手中的数字可能是5和10,7和8,6和9;由丁:8,可知丁手中的数字可能是1和7,2和6,3和5;由戊:17,可知戊手中的数字可能是7和10,8和9;∴丁只能是2和6,甲只能是4和7,丙只能是5和10,戊只能是8和9.所以答案是:5和10.小提示:本题考查的是有理数加法的应用,关键是把所有可能的结果列举出来,再进行推理.15、如图,已知点A、点B是直线上的两点,AB=14厘米,点C在线段AB上,且BC=5厘米.点P、点Q 是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过______秒时线段PQ的长为8厘米.答案:3或13或1 或133分析:分四种情况讨论:(1)点P、Q都向右运动时,(2)点P、Q都向左运动时,(3)点P向左运动,点Q向右运动时,(4)点P向右运动,点Q向左运动时,再列式计算即可.解:∵AB=14厘米,点C在线段AB上,且BC=5厘米.∴AC=AB−BC=9(厘米)(1)点P、Q都向右运动时,(8-5)÷(2-1) =3÷1 =3(秒)(2)点P、Q都向左运动时,(8+5)÷(2-1) =13÷1 =13(秒)(3)点P向左运动,点Q向右运动时,(8-5)÷(2+1) =3÷3 = 1 (秒)(4)点P向右运动,点Q向左运动时,(8+5)÷(2+1) =13÷3 =13(秒)3∴经过3、13、 1 或13秒时线段PQ的长为8厘米.3所以答案是:3或13或1 或133小提示:本题考查的是数轴上两点之间的距离,有理数的加减乘除混合运算的实际应用,理解题意,列出正确的运算式,清晰的分类讨论,都是解本题的关键.解答题16、我们知道“在数轴上表示的两个数,右边的数总比左边的数大”,利用此规律,我们可以求数轴上两个点之间的距离,具体方法是:用右边的数减去左边的数的差就是表示这两个数的两点之间的距离.若点M 表示的数m ,点N 表示的数是n ,点M 在点N 的右边(即m >n ),则点M ,N 之间的距离为m −n ,即MN =m −n .(1)数轴上表示2和7的两点之间的距离是_______;数轴上表示−2和7的两点之间的距离是_______.(2)若数轴上分别表示m 和−2的两点A 和B 之间的距离AB =24,求m 的值.答案:(1)5;9(2)−26或22分析:(1)根据数轴上两点间的距离求法求解即可得到答案;(2)分点A 在点B 的左侧和右侧两种情况解答即可.(1)解:数轴上表示2和7的两点之间的距离是:7−2=5;数轴上表示−2和7的两点之间的距离是:7−(−2)=7+2=9;所以答案是:5;9.(2)解:当点A 在点B 的左侧时,m =−2−24=−26;当点A 在点B 右侧时,m =−2+24=22;故m 的值为−26或22.小提示:本题主要考查了数轴上两点间的距离,熟练掌握数a 和数b 的两点之间的距离等于|a −b |是解题的关键.17、计算(1)-6+3.89-10+2.11(2)(−3)×6÷(−2)×12(3)−12×(−5)+|−4|÷(−12)3(4)(−65)×(−911)+(−65)÷112−65×(−411)答案:(1)-10(2)92 (3)-27(4)65分析:(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(4)根据乘法分配律简便计算.(1)解:-6+3.89-10+2.11=-6-10+3.89+2.11=-16+6=-10;(2)解:(−3)×6÷(−2)×12 =3×6×12×12=92;(3)解:−12×(−5)+|−4|÷(−12)3=-1×(-5)+4÷(-18)=5-4×8=5-32=-27;(4)解:(−65)×(−911)+(−65)÷112−65×(−411) =(−65)×(−911)+(−65)×211+(−65)×(−411) =(−65)×(−911+211−411) =(−65)×(−1111)=65. 小提示:本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18、如图,一个点从数轴上的原点开始,先向左移动3cm 到达A 点,再向右移动4cm 到达B 点,然后再向右移动72cm 到达C 点,数轴上一个单位长度表示1cm .(1)请你在数轴上表示出A ,B ,C 三点的位置;(2)把点C 到点A 的距离记为CA ,则CA =______cm .(3)若点A 沿数轴以每秒3cm 匀速向右运动,经过多少秒后点A 到点C 的距离为3cm ?(4)若点A 以每秒1cm 的速度匀速向左移动,同时点B 、点C 分别以每秒4cm 、9cm 的速度匀速向右移动.设移动时间为t 秒,试探索:BA −CB 的值是否会随着t 的变化而改变?若变化,请说明理由,若无变化,请直接写出BA −CB 的值.答案:(1)见解析(2)152 (3)经过32或72秒后点A 到点C 的距离为3cm (4)BA −CB 的值不会随着t 的变化而变化,BA −CB =12 分析:(1)根据题意,在数轴上表示点A 、B 、C 的位置即可;(2)利用数轴上两点间的距离公式解题;(3)分两种情况讨论:点A 在点C 的左侧或点A 在点C 的右侧;(4)表示出BA 、CB ,再相减即可解题.(1)解:由题意得:A 点对应的数为−3,B 点对应的数为1,点C 对应的数为92,点A ,B ,C 在数轴上表示如图:(2)解:设原点为O ,如图,∴OA =3,OC =92,∴AC =OA +OC =152.所以答案是:152.(3)解:①当点A 在点C 的左侧时,设经过x 秒后点A 到点C 的距离为3cm ,由题意得:152−3x =3,解得:x =32.②当点A 在点C 的右侧时,设经过x 秒后点A 到点C 的距离为3cm ,由题意得:3x −152=3,解得:x =72. 综上,经过32或72秒后点A 到点C 的距离为3cm .(4)解:BA −CB 的值不会随着t 的变化而变化,BA −CB =12. 由题意:AB =4cm ,CB =72cm ,∵移动t 秒后,AB =4+t +4t =(4+5t )cm ,CB =9t −4t +72=(5t +72)cm ,∴BA −CB =(4+5t )−(5t +72)=12.∴BA −CB 的值不会随着t 的变化而变化,BA −CB =12. 小提示:本题考查数轴、数轴上两点间的距离等知识,是重要考点,掌握相关知识是解题关键.。

难点探究专题:数轴上两点距离与动点问题(4类热点题型讲练)(原卷版)--初中数学北师大版7年级上册

难点探究专题:数轴上两点距离与动点问题(4类热点题型讲练)(原卷版)--初中数学北师大版7年级上册

第09讲难点探究专题:数轴上动点问题(4类热点题型讲练)目录【考点一根据点在数轴的位置判断式子的正负】 (1)【考点二数轴上的动点中求运动的时间问题】 (2)【考点三数轴上的动点中求定值问题】 (3)【考点四数轴上的动点中找点的位置问题】 (5)【考点一根据点在数轴的位置判断式子的正负】例题:已知实数a、b在数轴上对应点的位置如图:(1)比较a﹣b与a+b的大小;(2)化简|b﹣a|+|a+b|.【变式训练】(1)判断正负,用“>”、“<”或【考点二数轴上的动点中求运动的时间问题】例题:如图,已知线段24cm AB =,点O 为线段AB 上一点,且:1:2OA OB =.动点P 以1cm /s 的速度,从点O 出发,沿OB 方向运动,运动到点B 停止;点P 出发1s 后,点Q 以4cm /s 的速度,从点O 出发,沿OA 方向运动,运动到点A 时,停留2s ,按原速沿AB 方向运动到点B 停止.设P 的运动时间为t s .(1)OA =__________cm ,OB =__________cm ;(2)当Q 从O 向A 运动时,若2OQ OP =,求t 的值.(3)当2cm PQ =时,直接写出t 的值.【变式训练】【考点三数轴上的动点中求定值问题】(1)如图,求线段AB的长;【变式训练】1.阅读下面的材料:(1)请你在数轴上表示出A,B,C三点的位置;【考点四数轴上的动点中找点的位置问题】(1)操作一:折叠纸面,使表示数1的点与表示数﹣1的点重合,则此时表示数(2)操作二:折叠纸面,使表示数6的点与表示数﹣2的点重合,回答下列问题:【变式训练】1.已知在数轴上A,B两点对应数分别为﹣2,6.(1)请画出数轴,并在数轴上标出点A、点B;(2)若同一时间点M从点A出发以1个单位长度/秒的速度在数轴上向右运动,点N从点B出发以3个单位长度/秒的速度在数轴上向左运动,点P从原点出发以2个单位长度/秒的速度在数轴上运动.①若点P向右运动,几秒后点P到点M、点N的距离相等?②若点P到A的距离是点P到B的距离的三倍,我们就称点P是【A,B】的三倍点.当点P是【B,A】的三倍点时,求此时P对应的数.,为数轴上的两个点,点A表示的数是60-,点B表示的数是20.2.如图,已知A B(1)直接写出线段AB的中点C对应的数;BD=,直接写出点D对应的数;(2)若点D在数轴上,且30(3)若熊大从点A出发,在数轴上每秒向右前进8个单位长度;同时熊二从点B出发,在数轴上每秒向左前进12个单位长度它们在点E处相遇,求点E对应的数;(4)若熊大从点A出发,在数轴上每秒向左前进8个单位长度;同时熊二从点B出发,在数轴上每秒向左前进12个单位长度,当它们在数轴上相距20个单位长度时,求熊大所在位置点F对应的数.。

七年级数学上册专题提分精练数轴上动点相距问题(解析版)

七年级数学上册专题提分精练数轴上动点相距问题(解析版)

专题07 数轴上动点相距问题1.如图,A 、B 分别为数轴上的两点,点A 对应的数为20-,点B 对应的数80,(1)请直接写出AB 的中点M 对应的数______;(2)现在有一只电子蚂蚁P 从点A 出发,以2个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q 恰好从点B 出发,以3个单位长度/秒的速度向左运动,设两只电子蚂蚁在数轴上的点C 相遇,请求出点C 对应的数;(3)若当电子蚂蚁P 从点A 出发时,以2个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q 恰好从点B 出发,以3个单位长度/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距25个单位长度?【答案】(1)30(2)20(3)15秒或25秒【解析】【分析】(1)根据数轴上A 、B 两点所表示的数为a 、b ,则AB 的中点所表示的数为2a b +,计算求解即可;(2)方法一:根据路程、速度与时间的关系求出相遇的时间,然后根据数轴上两点的距离求出C 点对应数即可;方法二:由题意知,P 表示为202t -+,Q 表示803t -,则202803t t -+=-,求出t 的值,进而可求C 点对应数;(3)由题意知,第一次相距25个单位长度的时间为()()1002523-÷+(秒);第二次相距25个单位长度时间为()()1002523+÷+(秒).(1)解:AB 的中点M 所对应的数为2080302-+=, 故答案为:30.(2)解:方法一:∵()8020100--=,∴()1002320÷+=(秒),∴2020220-+⨯=,∴C 点对应数为20;方法二:由题意知,P 表示为202t -+,Q 表示803t -,则202803t t -+=-,解得20t =,∴2020220-+⨯=,∴C 点对应数为20.(3)解:由题意知,第一次相距25个单位长度的时间为()()100252315-÷+=(秒); 第二次相距25个单位长度时间为()()100252325+÷+=(秒);∴经过15秒或25秒时,P 、Q 相距25个单位长度.【点睛】本题考查了数轴上的点的表示,数轴上两点之间的距离等知识.解题的关键在于根据题意列方程.2.如图,已知A 、B 、C 是数轴上三点,点B 表示的数为4,8AB =,2BC =.(1)点A 表示的数是______,点C 表示的数是______.(2)动点P 、Q 分别从A 、C 同时出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒1个单位长度的速度沿数轴向左匀速运动,设点P 的运动时间为t (0t >)秒.①用含t 的代数式表示:点P 表示的数为______,点Q 表示是数为______;②当1t =时,点P 、Q 之间的距离为______;③当点Q 在C B →上运动时,用含t 的代数式表示点P 、Q 之间的距离;④当点P 、Q 到点C 的距离相等时,直接写出t 的值.【答案】(1)4-,6(2)①42t -+,6t -;②7;③103t -;④t 的值为103或10 【解析】【分析】(1)根据数轴上两点距离=右边的数-左边的数;计算求值即可;(2)①根据数轴上动点的表示:起点所表示的数加上或减去动点运动的距离,向正方向用加,负方向用减;列代数式即可;②t =1时,求出两点所表示的数,再计算两点距离;③用右边的数-左边的数便可解答;④分两种情况:当P ,Q 相遇时;当P 点在C 点右边,Q 点在C 点左边时;根据数轴上两点距离公式列方程求解即可;(1)解:A 点在B 点左边,B 点表示4,AB =8,∴A 点表示的数,4-8=-4;C 点在B 点右边,BC =2,∴C 点表示的数为:4+2=6;(2)解:①P 点向右运动,∴P 点表示的数为-4+2t ;Q 点向左运动,∴Q 点表示的数为6-t ;②t =1时,P 点-2,Q 点5,两点距离=5-(-2)=7;③∵Q 点在右,P 点在左,∴两点距离=6-t -(-4+2t )=10-3t ,④当P ,Q 相遇时,两点到C 点距离相等,此时2t +t =10,解得:t =103, 当P 点在C 点右边,Q 点在C 点左边时,-4+2t -6=6-(6-t ),解得:t =10,∴t 的值为103或10; 【点睛】本题考查了数轴上动点的问题,一元一次方程的应用;掌握数轴上两点距离公式是解题关键.3.如图,,A B 两点在数轴上对应的数分别为,a b ,且点A 在点B 的左边,||5,45a a b =+=,且0ab <.(1)=a ______,b =______;(2)现有一只电子蚂蚁P 从点A 出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q 从点B 出发,以2个单位长度/秒的速度向左运动.①设两只电子蚂蚁在数轴上的点相遇,点C 对应的数是_____.②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?【答案】(1)-5,50(2)①28;②经过7秒或15秒【解析】【分析】(1)根据题意可知a 、b 的符号相反,可得a =−5,根据a +b =45可得b 的值;(2)①设运动时间为t 秒,由题意可得,3t +2t =5+50,解方程可得答案;②根据题意列方程,注意分相遇前和相遇后.(1)解:∵A 、B 两点在数轴上对应的数分别为a ,b ,且点A 在点B 的左边,|a |=5,a +b =45,ab <0, ∴a =−5,b =50,即a 的值是−5,b 的值是50;故答案为:−5,50;(2)解:①设运动时间为t秒,由题意可得,3t+2t=5+50,解得t=11,∴点C对应的数为−5+3×11=28;故答案为:28;②设经过t秒时间两只电子蚂蚁在数轴上相距20个单位长度,相遇前,3t+2t=5+50−20,解得t=7;相遇后,3t+2t=5+50+20,解得t=15;由上可得,经过7秒或15秒的时间两只电子蚂蚁在数轴上相距20个单位长度.【点睛】本题考查一元一次方程的应用,找到等量关系列出方程是解题关键.4.已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)若M、N分别是AP、BP的中点,在点P运动的过程中,线段MN的长度是.(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?【答案】(1)-14,8-5t(2)11(3)2.5或3秒时P、Q之间的距离恰好等于2【解析】【分析】(1)根据点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,即得点B表示的数为﹣14,由动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t,可得点P表示的数为8﹣5t;(2)根据M、N分别是AP、BP的中点,知M表示的数是8﹣52t,N表示的数是﹣3﹣52t,即得MN为11;(3)点Q表示的数是﹣14+3t,可得|(﹣14+3t)﹣(8﹣5t)|=2,即可解得t=3或t=52.(1)解:(1)∵点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,∴点B表示的数为﹣14,∵动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t ,∴点P 表示的数为8﹣5t ,故答案为:﹣14,8﹣5t ;(2)解:∵M 、N 分别是AP 、BP 的中点,∴M 表示的数是8(85)2t +-=8﹣52t ,N 表示的数是14(85)2t -+-=﹣3﹣52t , ∴MN =(8﹣52t )﹣(﹣3﹣52t )=11, 故答案为:11;(3)解:点Q 表示的数是﹣14+3t ,根据题意得:|(﹣14+3t )﹣(8﹣5t )|=2,∴|8t ﹣22|=2,∴8t ﹣22=2或8t ﹣22=﹣2,解得t =3或t =52, 答:点P 、Q 同时出发,3秒或52秒时,P 、Q 之间的距离恰好等于2. 【点睛】本题考查了数轴动点问题以及利用一元一次方程解决实际问题,解题的关键是用含t 的代数式表示点运动后表示的数.5.综合与实践:A 、B 、C 三点在数轴上的位置如图所示,点C 表示的数为6,BC =4,AB =12.(1)数轴上点A 表示的数为 ,点B 表示的数为 ;(2)动点P ,Q 同时从A ,C 出发,点P 以每秒4个单位长度的速度沿数轴向右匀速运动.点Q 以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t (t >0)秒; ①求数轴上点P ,Q 表示的数(用含t 的式子表示);②t 为何值时,P ,Q 两点重合;③请直接写出t 为何值时,P ,Q 两点相距5个单位长度.【答案】(1)10-;2(2)①104t -+;62t +;②8;③112或212【解析】【分析】(1)先根据点C 表示的数为6,BC =4,表示出点B ,然后根据AB =12,表示出点A 即可;(2)①求出AP ,CQ ,根据A 、C 表示的数求出P 、Q 表示的数即可;②根据在时间t 内,P 运动的长度-Q 运动的长度=AC 的长,列出方程,解方程即可; ③利用“点P ,Q 相距5个单位长度”列出关于t 的方程,并解答即可.(1)点C 对应的数为6,4BC =,∴点B 表示的数是642-=,12AB =,∴点A 表示的数是21210-=-,故答案是:-10;2.(2)①由题意得:4AP t =,2CQ t =,如图所示:在数轴上点P 表示的数是104t -+,在数轴上点Q 表示的数是62t +;②当点P ,Q 重合时,4216t t -=,解得:8t =;③当点P ,Q 相距6个单位长度,P在Q的左侧时:42165t t -=-, 解得112t =, P在Q的右侧时:42165t t -=+, 解得212t =, 综上分析可知,当112t =或212t =时,点P ,Q 相距5个单位长度. 【点睛】本题考查了一元一次方程的应用,找出等量关系,列出方程是解题的关键.6.如图,已知在原点为O 的数轴上三个点A 、B 、C ,20cm OA AB BC ===,动点P 从点O 出发向右以每秒2cm 的速度匀速运动;同时,动点Q 从点C 出发向左以每秒cm a 的速度匀速运动.设运动时间为t 秒.(1)当点P 从点O 运动到点C 时,求t 的值;(2)若3a =,那么经过多长时间P ,Q 两点相距20cm ?(3)当40cm PA PB +=,10cm QB QC -=时,求a 的值.【答案】(1)30t =(2)8t =和16(3)1或3或15或35【解析】【分析】(1)由OA =AB =BC =20cm ,得OC =60cm ,即可求出点P 从点O 运动到点C 的时间;(2)当a =3时,PO =2t ,QC =3t ,根据点P ,Q 两点相距20cm ,分两种情况分别计算即可求得;(3)分三种情况:①点P 在OA 上时,由P A +PB =40cm ,可得t ,当QB >QC 时,可得a =1;当QB <QC 时,可得a =3;②当点P 在AB 上时,P A =2t -20,PB =40-2t ,故这种情况不存在;③当点P 在点B 右侧时,可得t ,当QB >QC 时,可得a =15,当QB <QC 时,可得a =35. (1)解:由题意知:60OC =,当点P 运动到点C 时,60230t =÷=(秒);(2)解:①当点P 、Q 还没有相遇时,236020t t +=-,解得8t =②当点P 、Q 相遇后,2360t t +=,解得16t =∴8t =和16时,点P ,Q 两点相距20cm ;(3)解:当40cm PA PB +=,10cm QB QC -=时,①当点Р在OA 之间,202PA t =-,402PB t =-,60440PA PB t +=-=,解得5t =;当点Q 在点B 、C 之间时,QB =20-5a ,QC =5a ,当QB QC >,205510a a --=,解得1a =;当QB QC <,520510a a -+=,解得3a =;当点Q 在点B 左侧时,QB =5a -20,QC =5a ,QC -QB =20,故不存在这种情况;②当点P 在AB 之间,220PA t =-,402PB t =-,20PA PB +=与40PA PB +=矛盾, 故不存在满足条件的点P ;③当点P 在点B 右侧,220PA t =-,240PB t =-,46040PA PB t +=-=,解得25t =,QB =20-25a ,QC =25a ,当QB QC >,20252510a a --=,解得15a =, 当QB QC <,25202510a a -+=,35a =, 综上,a 的值为1或3或15或35. 【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,列代数式,解题的关键是读懂题意,用含t 的代数式表示出相关线段的长.7.如图,O 为原点,在数轴上点A 表示的数为a ,点B 表示的数为b ,且a ,b 满足22(3)0a a b +++=.(1)a =________,b =__________.(2)若点P 从点A 出发,以每秒1个单位长度的速度沿数轴向右匀速运动,设运动的时间为t 秒.①当点P 运动到线段OB 上,且PO =2PB 时,求t 的值.②若点P 从点A 出发,同时,另一动点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,到达点O 后立即原速返回向右匀速运动,当PQ =1时,求t 的值.【答案】(1)2-,6(2)①6;②173t =,23t =,35t = 【解析】【分析】(1)根据绝对值的非负性、平方的非负性解题;(2)①由PO =2PB 列方程解题;②分两种情况讨论:点Q 到达原点之前PQ =1,或点Q 到达原点返回之后PQ =1,根据题意列方程解题即可.(1) 解:22(3)0a a b +++=2030a a b ∴+=+=,2,6a b ∴=-=故答案为:-2,6.(2)①根据题意得,PO =2PB[]2026(2)t t ∴-+-=--+21242t t ∴-+=+-318t ∴=6t ∴=②分两种情况讨论:第一种情况:点Q 到达原点之前PQ =1,点P 表示的数为:2t -+,点Q 表示的数为:62t -=62(2)1PQ t t ---+=6221t t ∴-+-=381t ∴-+=381t ∴-+=±127,33t t ∴== 第二种情况:点Q 到达原点返回之后PQ =1,点P 与点Q 相遇时,即622t t -=-+,83t ∴= 此时点P 、Q 表示的数均为23,此时点Q 到达原点还需要221123323÷=⨯=秒, 当点Q 在原点时,点P 表示数2211333t +=+= 当点Q 由原点返回,向右匀速运动时,PQ =1121t t ∴+-=11t ∴-=±342,0t t ∴==(舍去)即当点Q 到达原点返回之后PQ =1,812533t =++= 综上所述,当PQ =1时,173t =,23t =,35t =. 【点睛】 本题考查数轴上的动点、一元一次方程的应用、绝对值的非负性等知识,掌握相关知识是解题关键.8.如图,已知数轴上三点A ,B ,C 对应的数分别为1-,3,5,点P 为数轴上一动点,其对应的数为x .(1)若点P 是线段AC 的中点,则x =________,BP =________;(2)若8AP CP +=,求x 的值;(3)若点P ,点Q 两个动点分别以2个单位长度/秒和1个单位长度/秒的速度同时从点A ,点B 出发,沿数轴的正方向运动,运动时间为t 秒.当t 的值是多少时2PQ =?【答案】(1)2,1(2)-2或6(3)2或6【解析】【分析】(1)根据中点计算公式,即可得出x 的值,进而可得BP 的长;(2) 此小题需分情况讨论,AC 之间距离为6,不存在8AP CP +=的情况,故对在A 点左侧,C 点右侧进行讨论即可得出x 的值;(3)根据一元一次方程应用题中的路程问题进行分析,需要注意的是有两种情况进行逐个分析即可.(1)解,由题意得x =15=22-+, ∴BP =3-2=1,故答案为:2;1.(2)①若P 点在A 的左侧,则()()158x x --+-=,解得:x =-2;②若P 点在C 的右侧,则()()158x x ++-=,解得:x =6;③AC 之间距离为6,不存在8AP CP +=的情况.综上所述,x 的值为-2或6时,8AP CP +=.(3)①若P 点在Q 的左侧,则422t t +-=,解得:t =2;②若P 点在Q 的右侧,则()242t t -+=,解得:t =6;综上所述,t 的值为2或6时,2PQ =.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 9.如图,点A ,B ,C 在数轴上对应数为a ,b ,c .(1)化简a b c b -+-;(2)若B ,C 间距离BC =10,AC =3AB ,且b +c =0,试确定a ,b ,c 的值,并在数轴上画出原点O ;(3)在(2)的条件下,动点P ,Q 分别同时都从A 点C 点出发,相向在数轴上运动,点P 以每秒1个单位长度的速度向终点C 移动,点Q 以每秒0.5个单位长度的速度向终点A 移动;设点P ,Q 移动的时间为t 秒,试求t 为多少秒时P ,Q 两点间的距离为6.【答案】(1)c a -(2)10a =-,5b =-,5c =,见解析(3)6秒或14秒【解析】【分析】(1)根据数轴可得c >b >a ,再去绝对值合并即可求解;(2)根据相反数的定义和等量关系即可求解;(3)根据P ,Q 两点间的距离为,列出方程计算即可求解.(1)解:∵c >b >a ,∴a -b <0,c -b >0, ∴a b c b -+-=b -a +c -b =c -a ;(2)解:原点位置如图:∵BC =10,∴c -b =10,又∵b +c =0,∴c =5,b =-5,又∵BC =10,AC =3AB ,∴BC =2AB =10,∴AB =5,∴b -a =5,∴a =-10;(3)解:∵AC =15,最短运动时间15÷1=15秒,运动t 秒后,点P ,Q 对应的点在数轴上所对的数为P :-10+t ,Q :5-0.5t ,若P ,Q 两点间的距离为6,则有|-10+t -(5-0.5t )|=6,解得t =6或t =14,均小于15秒,∴点P ,Q 移动6秒或14秒时,P ,Q 两点间的距离为6.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键,本题属于中档题,难度不大,但解题过程稍显繁琐,细心仔细是得分的关键.10.已知a 、b 分别对应着数轴上的A 、B 两点,且满足2|4|(4)0a b a -+-=.(1)填空:=a __________,b =____________.(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动.试求运动时间t (秒)为多少时,点P 到点A 的距离恰好是点P 到点B 距离的2倍;(3)设数轴上30的位置上的点为点C P 、Q 分别以每秒3个单位长度从点A 出发、每秒1个单位长度从点B 出发的速度向C 点运动,它们同时出发且各自到达点C 后停止运动.当P 、Q 两点之间的距离为4个单位长度时,试求出点Q 的运动时间.【答案】(1)4;16(2)8秒或83秒 (3)4秒或8秒或10秒【解析】【分析】(1)利用绝对值和偶次方的非负性求出a ,b 的值即可解决问题;(2)利用2PA PB =构建方程即可解决问题;(3)分情形分别构建方程即可解决问题.(1)解:∵a ,b 满足()2440a b a -+-=,∴40a -=,40a b -=,∴4a =,416b a ==,故答案为:4;16.(2)解:设运动时间为t 秒,则点P 表示的数为:34t +,∵2PA PB =, ∴34423416t t +-=+-,∴()32312t t =-或()32312t t =--,解得8t =或83t =, ∴运动时间为8或83秒时, 点P 到点A 的距离恰好是点P 到点B 距离的2倍.(3)解:设运动时间为t 秒,当点P 在到达点C 前,则点P 表示的数为:34t +,点Q 表示的数为:16t +,点P 未到达C 时,保证P 、Q 两点之间的距离为4个单位长度,即()16344t t +-+=, 即2124t -+=,得2124t -+=或2124t -=解得4t =或8,当P 到达C 时,点P 与点C 重合,∴4CQ PQ ==,∴3041610BQ =--=, ∴10101Q BQ t v ===, 综上所述:当P 、Q 两点之间的距离为4个单位长度时,点Q 的运动时间为4秒或8秒或10秒.【点睛】本题考察了数轴,两点间的距离,行程问题,一元一次方程的应用等知识,解题的关键是学会构建方程解决问题,学会用分类的思想思考问题.11.点A 、B 、C 、D 在数轴上的位置如图所示,已知2CD =,5BC =,7AC CD .(1)若点C 为原点,则点A 表示的数是______;(2)若点P 、Q 分别从A 、D 两点同时出发,点P 沿线段AC 以每秒3个单位长度的速度向右运动,到达C 点后立即按原速向A 折返;点Q 沿线段DA 以每秒1个单位长度的速度向左运动.当P 、Q 中的某点到达A 时,两点同时停止运动.①求两点第一次相遇时,与点B 的距离;②设运动时间为t (单位:秒),则t 为何值时,PQ 的值为2?(请直接写出t 值)【答案】(1)-14(2)①两点第一次相遇时,与点B 的距离是3个单位长度;②3.5s ,4.5s ,5s ,7s【解析】【分析】(1)根据2CD =,7AC CD 求出AC =14,即可得到答案;(2)①设运动时间为x 秒.由题意列方程316x x +=,求出x 值,再计算BP 或BQ 即可得到距离;②分四种情况:当两点没有相遇时,当两点第一次相遇后, 当点P 到达点C 返回且未追上点Q 时,当点P 追上点Q 后,分别列方程求解.(1)解:∵2CD =,7AC CD .∴AC =14,∵点C 为原点,∴点A 表示的数是-14,故答案为:-14;(2)解:①设运动时间为x 秒.由题意得316x x +=,解得4x =,∵AB =14-5=9,∴3493BP AP AB =-=⨯-=,答:两点第一次相遇时,与点B 的距离是3个单位长度.②当两点没有相遇时,3162t t +=-,解得t =3.5;当两点第一次相遇后,3162t t +=+,解得t =4.5;当点P 到达点C 返回且未追上点Q 时,31422t t -+=-,解得t =5;当点P 追上点Q 后,31422t t --=-,解得t =7;故t 为3.5s ,4.5s ,5s ,7s 时,PQ 的值为2.【点睛】此题考查了数值上的动点问题,数轴上两点之间的距离,一元一次方程与动点问题,正确理解题意列出一元一次方程求解是解题的关键.12.已知如图,在数轴上有A ,B 两点,所表示的数分别为10-,4-,点A 以每秒5个单位长度的速度向右运动,同时点B 以每秒3个单位长度的速度也向右运动,如果设运动时间为t 秒,解答下列问题:(1)运动前线段AB 的长为 ;运动1秒后线段AB 的长为 ;(2)运动t 秒后,点A ,点B 在数轴上表示的数分别为 和 ;(用含t 的代数式表示)(3)求t 为何值时,点A 与点B 恰好重合;(4)在上述运动的过程中,是否存在某一时刻t ,使得线段AB 的长为5,若存在,求t 的值;若不存在,请说明理由.【答案】(1)6;4(2)510t -;34t -(3)3t = (4)12t =或112t = 【解析】【分析】(1)根据数轴上两点间的距离等于右边的数减去左边的数求出AB 的长,且求出1秒后AB 的长即可;(2)根据路程=时间×速度分别表示出A ,B 运动的距离,用原来表示的是加上运动的距离,即可表示出A ,B 表示的数;(3)根据A ,B 表示的数相同列出方程,求出方程的解即可得到t 的值;(4)存在,分两种情况分别求出t 的值即可.(1)解:运动前线段AB 的长为(﹣4)﹣(﹣10)=6;运动1秒后线段AB 的长为(﹣1)﹣(﹣5)=4;故答案为:6;4.(2)解:运动t 秒后,用t 表示A ,B 分别为5t ﹣10,3t ﹣4;故答案为:5t ﹣10,3t ﹣4.(3)解:根据题意得:5t ﹣10=3t ﹣4,解得:3t =;答:当3t =时,点A 与点B 恰好重合.(4)解: 存在.当A 没追上B 时,可得由题意:()()345105t t ---= , 解得:12t =; 当A ,B 错开后,可得()()510345t t ---=, 解得:112t =, ∴t 的值为12或112秒时,线段AB 的长为5. 【点睛】 此题考查了一元一次方程的应用,数轴以及两点间的距离,弄清题意是解本题的关键. 13.已知数轴上三点A ,B ,C 表示的数分别为-12,-5,5,点P ,Q 分别从A ,C 两点同时相向而行,点P 的速度为4个单位/秒,点Q 的速度为6个单位/秒.(1)问P ,Q(2)设点P 运动时间为(s)t ,当2QB BP =时,求t 的值;(3)当点P 到A 、B 、C 的距离和为20个单位时,点P 调头返回.速度不变,问点P ,Q 还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.【答案】(1)-5.2(2)2或127(3)点P 、Q 能相遇,相遇点对应的数为22-,理由见解析【解析】【分析】(1)根据题意可得AC =5-(-12)=17,从而得到运动1.7 秒时,点P ,Q 相遇,即可求解;(2)根据题意可得AB =7,BC =10,点P 需要74 秒到达点B ,点Q 需要10563= 秒到达点B ,然后分三种情讨论,即可求解;(3)设P 运动x 秒到A ,B ,C 距离和为20,继续运动y 秒后P ,Q 相遇,然后分两种情况:当P 在AB 之间时,当P 在BC 之间时,即可求解.(1)解:根据题意得:AC =5-(-12)=17, ∴运动17 1.746=+ 秒时,点P ,Q 相遇, 此时点P 运动4 1.7 6.8⨯= 个单位,∴P ,Q 在数轴上的12 6.8 5.2-+=- 对应的点相遇;(2)解:根据题意得:AB =7,BC =10,点P 需要74 秒到达点B ,点Q 需要10563= 秒到达点B , 当503t << 时,106QB t =- ,74BP t =- , ∵2QB BP =,∴()106274t t -=- ,解得:2t = ,不合题意,舍去; 当5734t ≤< 时,610QB t =- ,74BP t =- , ∵2QB BP =,∴()610274t t -=- , 解得:127t =; 当74t ≥ 时, ∵2QB BP =,∴()610247t t -=- ,解得:2t = ;综上所述,当2QB BP =时,t 的值为2或127(3)解:点P 、Q 能相遇,相遇点对应的数为22-,理由如下:设P 运动x 秒到A ,B ,C 距离和为20,继续运动y 秒后P ,Q 相遇,当P 在AB 之间时,到A ,B ,C 距离和为20,717420x +-=,解得:1x =,∴此时点P 对应的数为-8,根据题意得:()56184y y -+=--,解得: 3.5y =,∴点P 、Q 的相遇点对应的数为84 3.522--⨯=-;当P 在BC 之间时,到A ,B ,C 距离和为20,174720x +-=,解得: 2.5x =,∴此时点P 对应的数为124 2.52-+⨯=- ,根据题意得:()56 2.524y y -+=--,解得:4y =-不符合题意,舍去,∴点P 、Q 能相遇,相遇点对应的数为22-.【点睛】本题主要考查了数轴上两点间的距离,动点问题,利用分类讨论思想解答是解题的关键. 14.如图,已知数轴上点A 表示的数为6,点B 是数轴上在点A 左侧的一点,且A ,B 两点间的距离为10,动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动.(1)数轴上点B 表示的数是______;(2)运动1秒时,点P 表示的数是______;(3)动点Q 从点B 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P ,Q 同时出发,请完成填空:①当点P 运动______秒时,点P 与点Q 相遇;②当点P 运动______秒时,点P 与点Q 的距离为8个单位长度.【答案】(1)4-(2)0(3)①5;②1或9【解析】【分析】(1)点向左移动时,用点表示的数减去移动的距离,即可得到移动后点表示的数,利用点移动规律解答;(2)用6减去点P 移动的距离即可得到点P 表示的数;(3)①设点P 运动t 秒时,列方程6-6t =-4-4t ,求解即可;②设点P 运动x 秒时,点P 与点Q 间的距离为8个单位长度,根据当Q 在P 点左边时,当P 在Q 的左边时,分别列方程求解.(1)解:点B表示的数为6-10=-4,故答案为:-4;(2)解:点P表示的数为6160-⨯=,故答案为:0;(3)解:①设点P运动t秒时,由题意得:6-6t=-4-4t,解得:t=5,∴当点P运动5秒时,点P与点Q相遇,故答案为:5;②设点P运动x秒时,点P与点Q间的距离为8个单位长度,由题意得:当Q在P点左边时,4x+10-6x=8,解得:x=1,当P在Q的左边时,6x-(4x+10)=8,解得:x=9.故答案为:1或9.【点睛】此题考查数轴上两点之间的距离,数轴上动点问题,动点与一元一次方程,正确理解点的运动及表示点运动前后的数是解题的关键.15.如图,数轴上点A表示-10,点O表示0,点B表示10,点C表示18.动点P从点A 出发,以2单位/秒的速度沿着数轴的正方向运动;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动.当点Р到达点C时,两点都停止运动.设点P运动的时间为t(秒).(1)点A和点C在数轴上相距_____________个单位.(2)当3t=时,求点P与点Q的距离.(3)求P、Q两点相遇时t的值.(4)当线段PO与线段QB的长度相等时,直接写出t的值.【答案】(1)28;(2)19;(3)283;(4)2或6【解析】【分析】(1)利用两点之间的距离公式求解即可;(2)当3t =时,分别表示出点点P 、点Q 的数,然后用两点之间的距离公式求解即可; (3)利用总路程÷总速度即可得出答案;(4)分点Q 在点B 的左边和点Q 在点B 的右边,分别列出等式求解即可.【详解】(1)18-(﹣10)=28,故答案为:28;(2)当3t =时,点P 表示的数为:10234-+⨯=-;点Q 表示的数为:18315-=;此时,()15419PQ =--=;(3)()181028--=;123+=;282833÷=, ∴P 、Q 两点相遇时,t 的值为283; (4)当点Q 在点B 的左边时:PO =﹣10+2t ,QB =18-t -10=8-t ,当PO =QB ,即﹣10+2t =8-t ,解得:t =6,当点Q 在点B 的左边时:PO =﹣10+2t ,QB =t -8,当PO =QB ,即﹣10+2t =t -8,解得:t =2,∴当时间为2秒或6秒时, PO =QB .【点睛】本题综合考查了数轴与有理数的关系,一元一次方程在数轴上的应用,路程、速度、时间三者的关系等相关知识点,重点掌握一元一次方程的应用,易错点是分类计算时不重不漏. 16.如图:在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,且a ,b 满足|a +3|+(b ﹣9)2=0,c =1.(1)a = ,b = ;(2)点P 为数轴上一动点,其对应的数为x ,则当x 时,代数式|x ﹣a |﹣|x ﹣b |取得最大值,最大值为 ;(3)点P 从点A 处以1个单位/秒的速度向左运动;同时点Q 从点B 处以2个单位/秒的速度也向左运动,在点Q 到达点C 后,以原来的速度向相反的方向运动,设运动的时间为t (t ≤8)秒,求第几秒时,点P 、Q 之间的距离是点B 、Q 之问距离的2倍?【答案】(1)﹣3,9;(2)≥9,12;(3)125秒或367秒.【解析】【分析】(1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;(2)由(1)得a=﹣3、b=9,则代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;(3)先由点C表示的数是1,点B表示的数是9,计算出B、C两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.【详解】解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,∴|a+3|=0,(b﹣9)2=0,∴a=﹣3,b=9,故答案为:﹣3,9.(2)∵a=﹣3,b=9,∴代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,当x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,∵﹣12≤2x﹣6<12,∴﹣12≤|x+3|﹣|x﹣9|<12;当x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,综上所述,|x+3|﹣|x﹣9|的最大值为12,故答案为:≥9,12.(3)∵点C表示的数是1,点B表示的数是9,∴B、C两点之间的距离是9﹣1=8,当点Q与点C重合时,则2t=8,解得t=4,当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t,根据题意得9﹣2t﹣(﹣3﹣t)=2×2t,解得t=125;当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t,∵1+(2t﹣8)=2t﹣7,∴点Q表示的数是2t﹣7,根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),解得t=367,综上所述,第125秒或第367秒,点P、Q之间的距离是点B、Q之间距离的2倍.【点睛】本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键.17.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P、Q 同时出发,点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至点C需要多少时间?(2)求P、Q两点相遇时,t的值和相遇点M所对应的数.【答案】(1)动点P从点A运动至点C需要19秒;(2)P、Q两点相遇时,t的值为313秒,相遇点M所对应的数是163.【解析】【分析】(1)由路程、速度、时间三者关系分三段求出各段时间,再相加求出总时间为19秒;(2)由路程、速度、时间三者关系求出P、Q两点相遇的时间为313秒,确定相遇点M对应的数是163.(1)解:由图可知:动点P从点A运动至C分成三段,分别为AO、OB、BC,AO段时间为102=5,OB段时间为101=10,BC段时间为82=4,∴动点P从点A运动至C点需要时间为5+10+4=19(秒),答:动点P从点A运动至点C需要19秒;(2)解:点Q经过8秒后从点B运动到OB段,而点P经过5秒后从点A运动到OB段,经过3秒后还在OB段,∴P、Q两点在OB段相遇,设点Q经过8秒后从点B运动到OB段,再经进y秒与点P在OB段相遇,依题意得:3+y+2y=10,解得:y=73,∴P、Q两点相遇时经过的时间为8+73=313(秒),此时相遇点M在“折线数轴”上所对应的数是为3+73=163;答:P、Q两点相遇时,t的值为313秒,相遇点M所对应的数是163.【点睛】本题综合考查了数轴与有理数的关系,一元一次方程在数轴上的应用,路程、速度、时间三者的关系等相关知识点,重点掌握一元一次方程的应用.18.数轴上点A表示-8,点B表示6,点C表示12,点D表示18.如图,将数轴在原点O 和点B,C处各折一下,得到一条“折线数轴”.在“折线数轴”上,把两点所对应的两数之差的绝对值叫这两点间的和谐距离.例如,点A和点D在折线数轴上的和谐距离为81826--=个单位长度.动点M从点A出发,以4个单位/秒的速度沿着折线数轴的正方向运动,从点O运动到点C 期间速度变为原来的一半,过点C后继续以原来的速度向终点D运动;点M从点A出发的同时,点N从点D出发,一直以3个单位/秒的速度沿着“折线数轴”负方向向终点A运动.其中一点到达终点时,两点都停止运动.设运动的时间为t秒.。

数轴动点问题压轴专题(二)2021-2022学年人教版七年级数学上册第一章 有理数

数轴动点问题压轴专题(二)2021-2022学年人教版七年级数学上册第一章  有理数

第一章《有理数》——数轴动点问题压轴专题(二)1.如图,在数轴上的A点表示数a,B点表示数b,a、b满足(a+2)2+|b﹣4|=0.(1)点A表示的数为,点B表示的数为.(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒).①t=1时,甲小球到原点的距离=;乙小球到原点的距离=.当t=3时,甲小球到原点的距离=;乙小球到原点的距离=.②试探究:甲、乙两小球到原点的距离可能相等吗?若不能,请说明理由;若能,请举例说明.2.阅读下面的材料并解答问题:A点表示数a,B点表示数b,C点表示数c,且点A到点B的距离记为线段AB的长,线段AB的长可以用右边的数减去左边的数表示,即AB=b﹣a.若b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)b=,c=.(2)若将数轴折叠,使得A与C点重合:①点B与数表示的点重合;②若数轴上P、Q两点之间的距离为2018(P在Q的左侧),且P、Q两点经折叠后重合,则P、Q两点表示的数是、.(3)点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,设运动时间为t秒,试探索:3AC﹣5AB的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出其值.3.在数轴上点A表示数a,点B表示数b,点C表示数c;a是最大的负整数,a、b、c满足|a+b|+(c﹣5)2=0.(1)填空:a=,b=,c=;(2)P为数轴上一动点,其对应的数是x,当P在线段AC上,且PA+PB+PC=7时,求x的值.(3)若点P,Q分别从A,C同时出发,匀速相向运动,点P的速度为3个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回A;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q的相遇点在数轴上对应的数.4.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB=10呢?5.如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a、c满足|a+3|+(c﹣5)2=0.(1)a=,b=,c=.(2)若将数轴折叠,使得点A与点C重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C 分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=,BC=.(用含t的代数式表示)(4)请问:3BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.6.已知:数轴上的点A、B分别表示﹣1和3.5.(1)在数轴上画出A、B两点;(2)若点C与点A距离4个单位长度,则点C表示的数是.(3)若折叠纸面,使数轴上﹣1表示的点与3表示的点重合,则10表示的点与数表示的点重合.7.如图,在数轴上点A所表示的数是﹣5,点B在点A的右侧,AB=6;点C在AB之间,AC=2BC.(1)在数轴上描出点B;(2)求点C所表示的数,并在数轴上描出点C;(3)已知在数轴上存在点P,使PA+PC=PB,求点P所表示的数.8.如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合.(提示:圆的周长C=2πr,结果保留π的形式)(1)把圆片沿数轴向右滚动1周,点Q到达数轴上点A的位置,点A表示的数是;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣5,﹣1①第几次滚动后,Q点距离原点最远?②当圆片结束运动时,Q点运动的路程共有多少?此时点Q所表示的数是多少?9.某巡警骑摩托车在一条东西大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向东方向为正,向西方向为负,当天行驶情况记录如下(单位:千米):+10,﹣8,+6,﹣14,+4,﹣2.(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?10.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,式子|x﹣2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离;因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上x所对应的点与﹣1所对应的点之间的距离.(1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?(2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.∵|x+1|+|x﹣2|的几何意义是线段PA与PB的长度之和,∴当点P在线段AB上时,PA+PB=3,当点P在点A的左侧或点B的右侧时,PA+PB>3.∴|x+1|+|x﹣2|的最小值是3.(3)解决问题:①|x+3|+|x﹣1|的最小值是多少?并利用下面所给数轴说明理由;②填空:当a为时,代数式|x+a|+|x﹣3|的最小值是2.11.已知:|b|=1,b>0,且a,b,c满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a,b,c的值(2)a,b,c在数轴上所对应的点分别为A、B、C,在上标出A、B、C(3)点P为一移动的点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(写出化简过程).12.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)如果点A表示数5,将点A先向左移动4个单位长度,再向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是;(2)数轴上表示x和﹣3的两点之间的距离可以表示为;(3)若x表示一个有理数,则|x﹣1|+|x+3|有无最小值,若有,最小值是?(4)若x表示有理数,则|x﹣1|+|x+3|=8时,x的值是?13.如图,数轴上每相邻两点的相距一个单位长度,点A、B、C、D是这些点中的四个,且对应的位置如图所示,它们对应的数分别是a,b,c,d.(1)当ab=﹣1,则d=.(2)若|d﹣2a|=7,求点C对应的数.(3)若abcd<0,a+b>0,化简|a﹣b|﹣|b+c﹣5|﹣|c﹣5|﹣|d﹣a|+|8﹣d|.14.如图,数轴上点A、B表示的有理数分别为﹣10、5,点P是射线AB上的一个动点(不与点A、B重合),点M是线段AP靠近点A的三等分点,点N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为;若点P表示的有理数是1,那么MN的长为.(2)点P在射线AB上运动(不与点A、B重合)的过程中,MN的长是否发生改变?若不改变,请求出MN的长;若改变,请说明理由.15.数轴上,点M表示﹣2,现从M点开始先向右移动3个单位到达P点,再从P点向左移动5个单位到达Q点.(1)点P、Q各表示什么数?(2)到达Q点后,再向哪个方向移动几个单位,才能回到原点?16.已知数轴上有A,B,C三点,它们分别表示数a,b,c,且|a+24|+|b+10|=0,又b,c互为相反数.(1)求a,b,c的值.(2)若有两只电子蚂蚁甲、乙分别从A,C两点同时出发相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒,当两只蚂蚁在数轴上点m处相遇时,求点m表示的数.(3)若电子蚂蚁丙从A点出发以4个单位/秒的速度向右爬行,问多少秒后蚂蚁丙到A,B,C的距离和为40个单位?17.邮递员骑车从邮局出发,先向南骑行2km,到达A村,继续向南骑行3km到达B村,然后向北骑行9km 到达C村,最后回到邮局.(1)以邮局为原点,以向北为正方向,用0.5cm示1km,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置.(2)C村离A村有多远?(3)邮递员一共骑了多少千米?18.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.19.如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示,设点B所表示的数为m.(1)求m的值;(2)求|m﹣1|+(m﹣6)2的值.。

初一上_数轴动点专题整理

初一上_数轴动点专题整理

第1讲 数轴上的动点明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值.......,也即用右边的数减去左边的数的差。

即数轴上两点间的距离......... =. 右边点表示的数....... -. 左边点表示的数.......。

2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即一个点表示的数为a ,向左运动b 个单位后表示的数为a -b ;向右运动b 个单位后所表示的数为a+b 。

3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。

基础题1.如图所示,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C 点.(1)求动点A 所走过的路程及A 、C 之间的距离.(2)若C 表示的数为1,则点A 表示的数为 .2.画个数轴,想一想(1)已知在数轴上表示3的点和表示8的点之间的距离为5个单位,有这样的关系5=8-3,那么在数轴上表示数4的点和表示-3的点之间的距离是________单位;(2)已知在数轴上到表示数-3的点和表示数5的点距离相等的点表示数1,有这样的关系11(35)2=-+,那么在数轴上到表示数a的点和表示数b的点之间距离相等的点表示的数是__________________.(3)已知在数轴上表示数x的点到表示数-2的点的距离是到表示数6的点的距离的2倍,求数x.应用题1已知,如图数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时出发相向而行,甲的速度为4个单位/秒。

⑴问多少秒后,甲到A、B、C的距离和为40个单位⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微专题:数轴上点的移动与两点间距离问题
类型一数轴上点的移动问题
1.点A在数轴上距原点3个单位长度,且位于原点左侧.若一个点从点A处向左移4个单位长度,再向右移1个单位长度,则该点此时所表示的数是()
A.-8
B.-6
C.-2
D.0
2.变式组
(1)(2019-2020·衡水期中)已知在数轴上原处有一点A,将点A 先向左移动3个单位长度,再向右移动5个单位长度.
①移动后点A在数轴上所表示的数为
②若数轴上有一点B与移动后点A相距4个单位长度,求点B表示的数;
③在(2)的条件下,若将点B移动3个单位长度后与点C重合,求点C所表示的数.
(2)已知点A在数轴上对应的有理数为a,将点A向左移动6个单位长度,再向右移动2个单位长度与点B重合,点B对应的有理
数为-24
①求a的值;
②如果数轴上的点C在数轴上移动3个单位长度后,距B点8个单位长度,那么移动前的点C距离原点有几个单位长度?
类型二数轴上的距离问题
方法点拨:如图,点A、B在数轴上分别表示有理数a、b,则有以下结论:
①点A、B到原点的距离分别为|a|、|b|;
②A、B两点之间的距离为|a-b|=b-a;
③A、B两点表示的数互为相反数等价于A、B两点到原点的距离相等(或|a|=|b|).
3.如图,数轴上标出了7个点,相邻两点之间的距离都相等.
(1)若将原点取在点D,则点B与点表示的有理数互为相反数.
(2)若相邻两点之间的距离为1,点A和点E所表示的两个数的绝对值相等,则点G表示的数是 .
(3)若点A表示-4,点G表示8,则点B表示的数是,表示原点
的是点 .
4.【阅读】已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB=|a-bl.
【理解】(1)数轴上表示2和-4的两点之间的距离是 ; (2)数轴上表示x和-6的两点A和B之间的距离是 ; 【应用】(1)请说明|x-1|+|x+2|表示的几何意义;
(2)当|x-1|+|x+2|取最小值时,请写出此时x的取值范围以及这个最小值;
(3)若|x-1|+|x+5|=8,则x=。

相关文档
最新文档