天然气水合物
天然气水合物研究的现状与发展前景

天然气水合物研究的现状与发展前景天然气水合物是一种新的天然气储藏形式,其在低温高压条件下,天然气和冰形成的固态混合物。
据统计,全球约有70%的天然气存在于水合物中,其储量远大于普通天然气。
因此,天然气水合物的研究与开发一直备受关注。
本文将就天然气水合物的研究现状和发展前景进行探讨。
一、研究现状目前,天然气水合物的研究已有很大的进展。
从1969年日本首次发现天然气水合物以来,到现在全球已有多个国家和地区参与了相关研究。
这些国家包括俄罗斯、美国、加拿大、挪威、日本、韩国等。
这些国家的研究涉及了天然气水合物的基本特性、地质分布、形成机制、采集与利用等方面。
1.基本特性天然气水合物的基本特性包括化学组成、晶体结构、物理性质等。
研究表明,天然气水合物的主要化学成分是甲烷,还可能含有一些其他气体分子,如乙烷、丙烷、氮气、二氧化碳等。
晶体结构方面,天然气水合物通常呈现出多晶、单晶或腔体晶体结构。
物理性质方面,天然气水合物的稳定条件是低温高压,其保持固态状态的温度和压力取决于化学成分和晶体结构。
2.地质分布天然气水合物主要分布在世界的海洋沉积物、沉积岩等区域。
其中,在北极地区、日本海、南海等区域,天然气水合物的分布较为集中。
此外,在陆地上也有少量天然气水合物存在,如中国青海湖地区、加拿大麦肯齐河流域等。
3.形成机制天然气水合物的形成是多种环节相互作用的结果。
主要包括天然气源、低温高压条件、水分子等因素。
研究表明,在构造活跃的地震带、断层带以及海底渗漏区,天然气可以通过多种途径注入到水体中。
然后,由于低温高压等条件,水分子形成的冰晶网络能够促进天然气分子的聚集形成天然气水合物。
4.采集与利用天然气水合物的采集与利用一直是一个难题。
由于天然气水合物稳定条件苛刻,因此采集和储存的难度很大。
目前,全球尚未有天然气水合物开发利用的商业化生产模式。
但是,各国正在积极研发天然气水合物采集、储存、转化等技术,以期为未来能源需求提供新的解决方案。
天然气水合物的危害与防止

天然气水合物的危害与防止天然气水合物(又称冰火)是一种在高压和低温条件下形成的物质,由水和天然气分子相结合而成。
它主要存在于深海沉积物中,是一种潜在的能源资源。
然而,天然气水合物也具有一定的危害,并需要采取适当的措施进行防止和控制。
以下是有关天然气水合物的危害和防止方法的详细说明。
一、天然气水合物的危害1. 环境污染:天然气水合物的开采和开发过程中,会产生大量的废水和废气。
废水中含有一定浓度的盐和重金属等有毒物质,如果未经处理直接排放到环境中,将会对水体和生态系统造成严重污染。
废气中含有甲烷等温室气体,其对全球气候变化的影响也不可忽视。
2. 地质灾害:天然气水合物属于一种稳定的结构,在地质条件发生改变时,有可能导致其解聚释放出大量的天然气。
这些气体若在地下形成较大规模的气囊,有可能引发火灾、爆炸等地质灾害,对周围环境和人类的安全造成威胁。
3. 海洋生态系统破坏:天然气水合物存在于深海沉积物中,开采和开发这些水合物往往需要使用大量的设备和工具,这些设备在操作过程中可能会对海洋生态系统造成破坏。
例如,底部拖缆或钻浆泄漏可能导致海洋底栖生物死亡,捕捞设备的使用可能破坏底栖生物的生活环境。
4. 社会经济影响:天然气水合物是一种潜在的能源资源,如果能够成功开发和利用,将会对经济产生重大的影响。
然而,由于水合物开发技术的复杂性和风险性,开发难度较大,并且需要大量的资金投入。
一旦投资失败,将会对相关企业和国家的财务状况产生负面影响。
二、天然气水合物的防止1. 加强监管和管理:针对天然气水合物开采和开发活动,应加强监管和管理。
完善相关法律法规,建立健全的监测和检测机制,确保开发活动符合环境保护和安全标准。
对违规行为严肃追责,提高违法成本,减少不合规行为的发生。
2. 发展环保技术:开发天然气水合物的过程中,应加强环境保护技术研究和应用。
例如,开展废水处理和废气排放控制技术研发,提高处理效率和降低对环境的影响。
同时,应大力发展清洁能源技术,减少对水合物的依赖,推动可再生能源的发展。
天然气水合物的产生与开采

天然气水合物的产生与开采天然气水合物(Natural gas hydrate),简称天然气水合物,也称冰沸石,是一种在高压、低温条件下形成的天然气沉积物,为天然气与水素键合成分的混合物,通常以颗粒状或其它形态存在于海洋沉积物或极地深层地质中。
天然气水合物的成因是天然气在海洋底层沉积物和极地深层地质中,由于水体在低温高压环境下,形成氢键结合,使天然气分子与水分子形成水合物,形成所谓的天然气水合物。
天然气水合物通常存在于深水海底或者低温高压地区,有些水合物矿床中包含的有机质很高,其中蕴藏的可燃气数量多达全球其他天然气资源总量的数倍,为人类提供了一种巨大的新能源类型。
天然气水合物对人类社会的意义巨大,提供了新的能源来源,天然气水合物在全球应用于较早的国家有日本、韩国等,但其在燃烧时会产生二氧化碳,于是有人提出了是选择安全性高,温室气体排放较少的天然气水合物为新的能源,甚至有人认为天然气水合物是可再生能源。
天然气水合物开采目前在全球尚处于探索阶段,不过这项新能源对世界各国的科学家、工程师以及实验室正在进行着许多尝试。
不同的国家采用了不同的天然气水合物开采方法,如日本研究开发的坑道式和隔断缝隙式;美国和加拿大探讨的地面注射的沸石层,俄罗斯尝试的地面气水合物矿;而中国正在开展利用沉积物层的“4+1”水合物开采技术。
这些开采方法的不同,还需进一步验证其可行性,通常存在着较大的风险和挑战。
天然气水合物的开采面临许多困难和问题:第一是地质勘察和探测,如何准确判断潜在的矿床的位置和含量。
第二是采矿工艺和技术,如何实现高效率、稳定的采矿和萃取。
第三是环境问题,如何在开采过程中保证海洋生态系统和渔民的生产生活。
第四是经济问题,如何在开采中保持盈利和市场竞争力等等。
在开采天然气水合物的过程中,对环境和周围社区的影响需要更多的研究和关注。
虽然天然气水合物是一种很有前途的可再生能源,但我们仍然需要遵循杏仁经营、可持续发展的原则,同时采用更加可持续的生产方式,减少对环境的影响和损害。
天然气水合物的合成与应用

天然气水合物的合成与应用天然气水合物是一种在高压和低温条件下形成的物质,是天然气和水在一定的比例下形成的。
它是地球上最丰富的可再生能源之一,具有丰富的能源储量和广泛的应用前景。
一、天然气水合物的合成天然气水合物的形成与条件密切相关,需要特定的温度和压力下才能形成。
它由氢键和茂分子间的力量相互作用而形成。
这种相互作用在水合物结晶中起着决定性的作用,从而使其形成和稳定。
天然气水合物中主要是甲烷,但也含有少量的乙烷、丙烷、丁烷等轻烃类成分。
天然气水合物的形成温度一般在0℃以下,压力高达几百倍于大气压力,因此常存在于深海底层或泥盆地等地质环境。
二、天然气水合物的应用天然气水合物作为一种天然、可持续的能源资源,被广泛研究和应用。
其应用领域主要包括以下三个方面:1. 能源领域天然气水合物是一种重要的清洁能源资源,其能量储量可与煤、石油相媲美,是一种非常有价值的能源来源。
未来随着科技进步,天然气水合物将成为人类重要的能源供应方式之一。
2. 化工领域天然气水合物还可以被用作化学原料,制备合成氨、合成甲醇等。
同时,天然气水合物还可以作为硫化氢的吸附剂,对于减少氢气硫化的排放,具有十分重要的意义。
3. 地质领域天然气水合物可以被用作地球科学研究的重要对象。
它可以为研究地质气的来源和形成规律提供重要的线索,同时对于开采用于固态氢能和热能存储等研究也有很大的意义。
三、天然气水合物的优点与传统的煤炭和石油等能源资源相比,天然气水合物有着很多的优点。
1. 能源储量大天然气水合物是一种可再生的能源,其含气量约为煤和石油的10倍以上。
未来一旦开始了天然气水合物的开采和利用,将为人类带来巨大的能源資源。
2. 环保清洁相比于传统燃料,天然气水合物的燃烧过程中产生的污染物极低,因而不会产生环境污染。
同时,天然气水合物的生产和运输过程中,也大大减少了污染物的排放。
3. 应用广泛天然气水合物可以广泛应用于能源、化工、地质等领域,因此其潜在的应用前景非常广阔。
天然气水合物的合成与储存

天然气水合物的合成与储存天然气水合物(Gas hydrates)是一种稳定的天然气固体,由天然气和水分子形成的晶体结构,固态下体积特别大,是一种重要的能源资源。
以甲烷水合物为例,每个吨水合物中含有180立方米的天然气,世界上甲烷水合物总储量可能高达2*1016立方米。
但因为它的化学性质稳定而又不稳定的特性,天然气水合物的合成与储存一直是研究的热点之一。
一、天然气水合物的合成天然气水合物的形成需要天然气和水分子碰撞,其中气体分子会插入水分子的网格结构中。
因此,天然气水合物的形成需要一定的温度、压力和水分子数量等条件。
1.温度温度是影响天然气水合物形成的重要条件之一。
一般情况下,水合物形成的温度范围较窄。
一般情况下,甲烷水合物形成温度在-25℃至+15℃。
当温度低于甲烷水合物的组成温度时,水合物会变得结晶,从而形成水合物晶体,反之,随着温度的升高,水合物结构会破坏,甚至完全脱离而转化为天然气。
2.压力很多地方产生天然气水合物的原因是海底深处的寒流,这里的水压非常大,因此水合物的形成需要一定的压力。
压力对于天然气水合物的形成有两个方面的影响,即在高压下可以促进天然气与水的相互作用,储存更多的天然气,可基本排除温度和水等条件对于水合物形成的影响,另一方面,高压下,相变过渡需要更高的能量阈值,这也是增加水合物形成能量的重要条件之一。
3.水分子数量水分子数量对天然气水合物的形成也具有重要的影响。
一般情况下,每个气体分子需要被至少3个水分子包围,因此水分子的数量会直接影响到天然气水合物的形成。
水分子数量通常用甲烷水合物的挤压因子进行衡量,而挤压因子的计算通常也需要考虑到温度和压力等因素。
二、天然气水合物的储存天然气水合物的储存是一项非常重要的问题,因为天然气水合物体积非常大,需要寻找存储方式,以便最大限度地储存和利用天然气水合物的能源。
1.传统的储存方式一般来说,传统的储存方式包括压缩天然气和液化天然气。
压缩天然气的特点是体积较小,可以被储存在普通的容器或是管道中。
天然气水合物的研究和开发

天然气水合物的研究和开发天然气水合物是一种新型能源。
它是一种天然气的固态形式,是一种包含氧化亚氮和甲烷等化合物而形成的天然矿物质。
在自然形成过程中,天然气水合物被压缩,变成一种特殊的固体形态,可以在非常低的温度和高压下稳定存在。
由于它是一种新型能源,因此对于其研究和开发是非常重要的。
天然气水合物是世界上最大的未被开发的自然资源之一。
它的储量可能达到全球化石燃料的总和,远高于传统的天然气、石油矿藏。
因此,研究和开发天然气水合物可以为世界提供巨大的能源供应。
目前,世界各国已经开始开展天然气水合物的研究和开发工作,包括美国、日本、韩国、印度、中国等国家。
天然气水合物在深海和北极等极端环境中存在,这使得研究和开发天然气水合物极具挑战性。
因此,天然气水合物的研究和开发需要仔细考虑使用什么技术和设备。
一些先进的技术和设备,例如带有SAS模块和DP模块的动力定位输送船、深海海底钻探设备、冷却技术等,可以被利用来实现天然气水合物的研究和开发。
天然气水合物的开发需要了解它在自然环境中的分布规律。
目前,在世界范围内,天然气水合物的分布区域是比较广泛的,其中最大的储藏区主要位于北极及其周边海区,以及东海、南海等地区。
天然气水合物的开发不仅需要寻找储藏区,还要确定储层性质、开采条件和采矿工艺等相关因素。
天然气水合物不仅是一种新型的能源,还是一种重要的储层。
近年来,天然气水合物的开发和利用已经引起了全世界的注意。
在开发和利用天然气水合物的过程中需要注意其环保问题。
天然气水合物的开采与传统石油、天然气的开采不同,可能会对环境造成一定的影响,因此需要采取一系列的环保措施。
总之,天然气水合物的开发可以为全球能源安全做出重要的贡献。
目前,各国都在积极的开展相关工作,以期实现天然气水合物的开发和利用,将其转化为一种新的清洁能源,为人类的发展带来更为广阔的前景。
《天然气水合物》课件

3 特点
天然气水合物具有高能 量密度、资源丰富、无 燃烧产物和环境友好等 特点。
天然气水合物的开发与利用
1
开发历程
天然气水合物的开发始于20世纪60年
开发现状
2
代,经历了不断的实验研究和技术突 破。
目前,天然气水合物的商业开发仍处
于初级阶段,但已取得了一些关键进
展。
3
利用前景
天然气水合物可能成为未来能源的重 要替代品,具有广阔的利用前景。
天然气水合物的未来发展
1
发展趋势ቤተ መጻሕፍቲ ባይዱ测
天然气水合物的发展前景广阔,将成为能源行业的重要一环。
2
技术难题解决方案
持续的技术研发和创新将帮助解决天然气水合物开发中的技术难题。
3
政策支持分析
政府的政策支持将成为天然气水合物发展的重要推动力。
结束语
1 未来展望
天然气水合物作为一种重要的能源资源,其开发与利用将在未来发挥重要作用。
天然气水合物的应用
能源领域
天然气水合物可作为天然气的替代品,满足 能源需求,并适应未来能源趋势。
其他应用领域
天然气水合物也具有广泛的应用领域,包括 医药、生物学和矿产等领域。
天然气水合物市场前景
1 市场潜力分析
天然气水合物市场潜力巨大,可能在未来成为能源市场的重要组成部分。
2 投资前景分析
天然气水合物的商业开发需要大量的投资,但可能带来可观的经济回报。
2 总结回顾
通过本课件的学习,我们对天然气水合物有了更深入的了解,并认识到其潜力与挑战。
《天然气水合物》PPT课 件
天然气水合物是一种具有巨大能量储备的资源,本课件将介绍其定义、形成 原理和特点,探讨其开发与利用、应用领域以及市场前景,同时分析其风险 与挑战并展望未来发展。
天然气水合物形成条件

天然气水合物形成条件天然气水合物(Natural Gas Hydrate,简称Gas Hydrate),也称为可燃冰、甲烷水合物、甲烷冰、天然气水合物、“笼形包合物”(Clathrate),分子式为:CH4·nH2O,现已证实分子式为CH4·8H2O。
因其外观像冰一样而且遇火即可燃烧,所以又被称作“可燃冰”(英译为:Flammable ice)或者“固体瓦斯”和“气冰”。
形成天然气水合物有三个基本条件:温度、压力和原材料。
天然气水合物是一种白色固体物质,有极强的燃烧力,主要由水分子和烃类气体分子(主要是甲烷)组成,它是在一定条件(合适的温度、压力、气体饱和度、水的盐度、PH 值等)下由水和天然气在中高压和低温条件下混合时组成的类冰的、非化学计量的、笼形结晶化合物(碳的电负性较大,在高压下能吸引与之相近的氢原子形成氢键,构成笼状结构)。
一旦温度升高或压强降低,甲烷气则会逸出,固体水合物便趋于崩解。
“天然气水合物”,是天然气在0℃和30个大气压的作用下结晶而成的“冰块”。
“冰块”里甲烷占80%~99.9%,可直接点燃。
可用mCH4·nH2O来表示,m代表水合物中的气体分子,n为水合指数(也就是水分子数)。
组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天然气水合物。
形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物(Methane Hydrate)。
每单位晶胞内有两个十二面体(20 个端点因此有20 个水分子)和六个十四面体(tetrakaidecahedral)(24 个水分子)的水笼结构。
其水合值(hydratation value)20 可由MAS NMR 来求得。
甲烷气水包合物频谱于275 K 和3.1 MPa 下记录,显示出每个笼形都反映出峰值,且气态的甲烷也有个别的峰值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天然气水合物结构图天然气水合物(Natural Gas Hydrate,简称GasHydrate)是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。
因其外观象冰一样而且遇火即可燃烧,所以又被称作“可燃冰”或者“固体瓦斯”和“气冰”。
天然气水合物天然气水合物(Natural Gas Hydrate,简称Gas Hydrate)形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物.。
天然气水合物在自然界广泛分布在大陆永久冻土、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。
在标准状况下,一单位体积的气水合物分解最多可产生164单位体积的甲烷气体,因而其是一种重要的潜在未来资源。
据了解,全球天然气水合物的储量是现有天然气、石油储量的两倍,具有广阔的开发前景,美国、日本等国均已经在各自海域发现并开采出天然气水合物,据测算,中国南海天然气水合物的资源量为700亿吨油当量,约相当中国目前陆上石油、天然气资源量总数的二分之一。
天然气水合物可燃冰的学名为“天然气水合物”,是天然气在0℃和30个大气压的作用下结晶而成的“冰块”。
“冰块”里甲烷占80%~99.9%,可直接点燃,燃烧后几乎不产生任何残渣,污染比煤、石油、天然气都要小得多。
1立方米可燃冰可转化为164立方米的天然气和0.8立方米的水。
目前,全世界拥有的常规石油天然气资源,将在40年或50年后逐渐枯竭。
而科学家估计,海底可燃冰分布的范围约4000万平方公里,占海洋总面积的10%,海底可燃冰的储量够人类使用1000年,因而被科学家誉为“未来能源”、“21世纪能源”。
可燃冰主要储存于海底或寒冷地区的永久冻土带,比较难以寻找和勘探。
新研制的这套灵敏度极高的仪器,可以实地即时测出海底土壤、岩石中各种超微量甲烷、乙烷、丙烷及氢气的精确含量,由此判断出可燃冰资源存在与否和资源量等各种指标。
开采方法传统开采(1) 热激发开采法热激发开采法是直接对天然气水合物层进行加热,使天然气水合物层的温度超过其平衡温度,从而促使天然气水合物分解为水与天然气的开采方法。
这种方法经历了直接向天然气水合物层中注入热流体加热、火驱法加热、井下电磁加热以及微波加热等发展历程。
热激发开采法可实现循环注热,且作用方式较快。
加热方式的不断改进,促进了热激发开采法的发展。
但这种方法至今尚未很好地解决热利用效率较低的问题,而且只能进行局部加热,因此该方法尚有待进一步完善。
(2) 减压开采法减压开采法是一种通过降低压力促使天然气水合物分解的开采方法。
减压途径主要有两种:①采用低密度泥浆钻井达到减压目的;②当天然气水合物层下方存在游离气或其他流体时,通过泵出天然气水合物层下方的游离气或其他流体来降低天然气水合物层的压力。
减压开采法不需要连续激发,成本较低,适合大面积开采,尤其适用于存在下伏游离气层的天然气水合物藏的开采,是天然气水合物传统开采方法中最有前景的一种技术。
但它对天然气水合物藏的性质有特殊的要求,只有当天然气水合物藏位于温压平衡边界附近时,减压开采法才具有经济可行性。
(3) 化学试剂注入开采法化学试剂注入开采法通过向天然气水合物层中注入某些化学试剂,如盐水、甲醇、乙醇、乙二醇、丙三醇等,破坏天然气水合物藏的相平衡条件,促使天然气水合物分解。
这种方法虽然可降低初期能量输入,但缺陷却很明显,它所需的化学试剂费用昂贵,对天然气水合物层的作用缓慢,而且还会带来一些环境问题。
所以,目前对这种方法投入的研究相对较少。
新型开采(1)CO2置换开采法。
这种方法首先由日本研究者提出,方法依据的仍然是天然气水合物稳定带的压力条件。
在一定的温度条件下,天然气水合物保持稳定需要的压力比CO2水合物更高。
因此,在某一特定的压力范围内,天然气水合物会分解,而CO2水合物则易于形成并保持稳定。
如果此时向天然气水合物藏内注入CO2气体,CO2气体就可能与天然气水合物分解出的水生成CO2水合物。
这种作用释放出的热量可使天然气水合物的分解反应得以持续地进行下去。
(2)固体开采法。
固体开采法最初是直接采集海底固态天然气水合物,将天然气水合物拖至浅水区进行控制性分解。
这种方法进而演化为混合开采法或称矿泥浆开采法。
该方法的具体步骤是,首先促使天然气水合物在原地分解为气液混合相,采集混有气、液、固体水合物的混合泥浆,然后将这种混合泥浆导入海面作业船或生产平台进行处理,促使天然气水合物彻底分解,从而获取天然气。
天然气水合物开采中的环境问题天然气水合物藏的开采会改变天然气水合物赖以赋存的温压条件,引起天然气水合物的分解。
在天然气水合物藏的开采过程中如果不能有效地实现对温压条件的控制,就可能产生一系列环境问题,如温室效应的加剧、海洋生态的变化以及海底滑塌事件等。
(1) 甲烷作为强温室气体,它对大气辐射平衡的贡献仅次于二氧化碳。
一方面,全球天然气水合物中蕴含的甲烷量约是大气圈中甲烷量的3 000倍;另一方面,天然气水合物分解产生的甲烷进入大气的量即使只有大气甲烷总量的0. 5 %,也会明显加速全球变暖的进程。
因此,天然气水合物开采过程中如果不能很好地对甲烷气体进行控制,就必然会加剧全球温室效应。
除温室效应之外,海洋环境中的天然气水合物开采还会带来更多问题。
①进入海水中的甲烷会影响海洋生态。
甲烷进入海水中后会发生较快的微生物氧化作用,影响海水的化学性质。
甲烷气体如果大量排入海水中,其氧化作用会消耗海水中大量的氧气,使海洋形成缺氧环境,从而对海洋微生物的生长发育带来危害。
②进入海水中的甲烷量如果特别大,则还可能造成海水汽化和海啸,甚至会产生海水动荡和气流负压卷吸作用,严重危害海面作业甚至海域航空作业。
(2) 开采过程中天然气水合物的分解还会产生大量的水,释放岩层孔隙空间,使天然气水合物赋存区地层的固结性变差,引发地质灾变。
海洋天然气水合物的分解则可能导致海底滑塌事件]。
近年的研究发现,因海底天然气水合物分解而导致陆坡区稳定性降低是海底滑塌事件产生的重要原因。
钻井过程中如果引起天然气水合物大量分解,还可能导致钻井变形,加大海上钻井平台的风险。
(3) 如何在天然气水合物开采中对天然气水合物分解所产生的水进行处理,也是一个应该引起重视的问题。
成因分析可燃冰是天然气分子(烷类)被包进水分子中,在海底低温与压力下结晶形成的。
形成可燃冰有三个基本条件:温度、压力和原材料。
首先,可燃冰可在0℃以上生成,但超过20℃便会分解。
而海底温度一般保持在2~4℃左右;其次,可燃冰在0℃时,只需30个大气压即可生成,而以海洋的深度,30个大气压很容易保证,并且气压越大,水合物就越不容易分解。
最后,海底的有机物沉淀,其中丰富的碳经过生物转化,可产生充足的气源。
海底的地层是多孔介质,在温度、压力、气源三者都具备的条件下,可燃冰晶体就会在介质的空隙间中生成。
开采设想由于可燃冰在常温常压下不稳定,因此开采可燃冰的方法设想有:①热解法。
②降压法。
③二氧化碳置换法。
2009年9月中国地质部门公布,在青藏高原发现了一种名为可燃冰(又称天然气水合物)的环保新能源,预计十年左右能投入使用。
这是中国首次在陆域上发现可燃冰,使中国成为加拿大、美国之后,在陆域上通过国家计划钻探发现可燃冰的第三个国家。
商业用途沉淀物生成的甲烷水合物含量可能还包含了2至10倍的已知的传统天然气量。
这代表它是未来很有潜力的重要矿物燃料来源。
然而,在大多数的矿床地点很可能都过于分散而不利于经济开采。
另外面临经济开采的问题还有:侦测可采行的储藏区、以及从水合物矿床开采甲烷气体的技术开发。
在日本,已进行一项研发计划,预计要在2016年进行商业规模的开采。
2006年8月,中国大陆宣布计划,耗资8000万元(1000万美元)在未来的十年内研究天然气水化合物。
而另一个富潜力的经济储藏区于墨西哥湾,可能更包含了大约1010m³的甲烷资源。
只有四个国家有能力开采“可燃冰”这种矿物,分别为:美国、日本、印度及中国。
可燃冰是天然气和水结合在一起的固体化合物,外形与冰相似。
由于含有大量甲烷等可燃气体,因此极易燃烧。
同等条件下,可燃冰燃烧产生的能量比煤、石油、天然气要多出数十倍,而且燃烧后不产生任何残渣,避免了最让人们头疼的污染问题。
科学家们如获至宝,把可燃冰称作“属于未来的能源”。
可燃冰这种宝贝可是来之不易,它的诞生至少要满足三个条件:第一是温度不能太高,如果温度高于20℃,它就会“烟消云散”,所以,海底的温度最适合可燃冰的形成;第二是压力要足够大,海底越深压力就越大,可燃冰也就越稳定;第三是要有甲烷气源,海底古生物尸体的沉积物,被细菌分解后会产生甲烷。
所以,可燃冰在世界各大洋中均有分布。
中国东海、南海都有相当数量分布。
未来规划作为未来重要的新型能源矿藏——“可燃冰”将首次纳入到能源规划之中。
2011年3月15日,可燃冰已经纳入“十二五”能源发展规划,加快加强勘探和科学研究,以便为未来开发利用奠定基础。
无论是国土资源部,还是国家能源局,对可燃冰的态度都日渐明确。
作为一种新型能源,可燃冰纳入“十二五”能源发展规划更多的是侧重于勘探和科学研究。
国土资源部总工程师张洪涛曾向记者介绍,天然气水合物又称“可燃冰”,是由水和天然气在高压、低温条件下混合而成的一种固态物质,外貌极像冰雪或固体酒精,遇火即可燃烧,具有使用方便、燃烧值高、清洁无污染等特点,是公认的尚未开发的最大新型能源。
[2]在2011年全国“两会”期间,国家能源局副局长钱智民向媒体透露,天然气水合物将在能源发展规划中得到体现。
而中国矿产资源权威人士也明确表示,在“十二五”能源规划中,可燃冰作为一种新型资源将被纳入其中。
数据显示,“十一五”期间,全国油气勘探投入2750多亿元,平均每年550亿元,较“十五”期间翻番;同期页岩气、砂岩气、天然气水合物等非常规油气资源勘查速度进一步加快,而“十二五”期间,相关工作将更上一层楼。
中国在南海、青藏高原冻土带先后发现可燃冰,其中中国作为第三大冻土大国,具备良好的天然气水合物赋存条件和资源前景。
据科学家粗略估算,远景资源量至少有350亿吨油当量。
虽然开发利用前景广阔,但短期内可燃冰的开采瓶颈却难以突破。
“可燃冰勘探开发是一个系统工程,涉及海洋地质、地球物理、地球化学、流体动力学、钻探工程等多个学科。
”广州海洋地质调查局专家说,大力开展可燃冰勘探开发研究,可带动相关产业发展,形成新的经济增长点。
业内分析人士指出,尽管中国可燃冰勘探研究起步较晚,但在海域可燃冰勘探和实验合成等领域已经与世界保持同步,在某些方面还形成了自己的技术特色,在可燃冰纳入能源规划的大背景下,提早获得开采技术突破的可能性应该存在。