相似三角形专项训练试题

相似三角形专项训练试题
相似三角形专项训练试题

相似三角形训练试题

一.解答题(共30小题)

1.(2016?福州)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,

连接BD.

(1)通过计算,判断AD2与AC?CD的大小关系;

(2)求∠ABD的度数.

2.(2016?阜阳校级一模)如图,△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点E在DC的延长线上,且CE=CD,过点B作BF∥DE交AE的延长线于点F,交AC

的延长线于点G.

(1)求证:AB=BG;

(2)若点P是直线BG上的一点,试确定点P的位置,使△BCP与△BCD相似.

3.(2016春?昌平区期末)如图,在△ABC中,∠BAC=90°,M是BC的中点,过点A作AM的垂线,交CB的延长线于点D.求证:△DBA∽△DAC.

4.(2016春?盐城校级月考)已知,如图,==,那么△ABD与△BCE相似吗?为

什么?

5.(2016春?郴州校级月考)如图,△ABC与△ADE中,∠C=∠E,∠1=∠2;

(1)证明:△ABC∽△ADE.

(2)请你再添加一个条件,使△ABC≌△ADE.你补充的条件为:______.

6.(2016春?淮安月考)在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动,点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P、Q同时出发,用t(秒)表示运动时间(0≤t≤6),那么当t为何值时,△APQ与△ABD相似?说明理由.

7.(2015?上饶校级模拟)如图,在正三角形ABC中,D,E分别在AC,AB上,且,

AE=EB.求证:△AED∽△CBD.

8.(2015秋?寿光市期末)如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.

(1)求证:△ABD∽△DCE;

(2)当△ADE是等腰三角形时,求AE的长.

9.(2015春?潍坊校级期末)如图,D是△ABC的BC边上一点,E为AD上一点,若∠DAC=∠B,CD=CE,试说明△ACE∽△BAD.

10.(2015秋?太原期末)如图,在△ABC中,AB=8cm,BC=16cm,动点P从点A开始沿AB边运动,速度为2cm/s;动点Q从点B开始沿BC边运动,速度为4cm/s;如果P、Q两动点同时运动,那么何时△QBP与△ABC相似?

11.(2015秋?睢宁县期末)如图,在△ABC中,AB=8,AC=6,D是AC上的一点,且AD=2,试在AB上确定一点E,使得△ADE与原三角形相似,并求出AE的长.

12.(2015秋?太和县校级期末)如图,已知△ABC中,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.求证:△ACF∽△BEC.

13.(2015秋?包河区期末)如图,在Rt△ABC中,∠A=90°,BC=10cm,AC=6cm,在线段BC上,动点P以2cm/s的速度从点B向点C匀速运动;同时在线段CA上,点Q以acm/s 的速度从点C向点A匀速运动,当点P到达点C(或点Q到达点A)时,两点运动停止,在运动过程中.

(1)当点P运动s时,△CPQ与△ABC第一次相似,求点Q的速度a;

(2)当△CPQ与△ABC第二次相似时,求点P总共运动了多少秒?

14.(2015春?宁波校级期末)如图,四边形ABCD和ACED都是平行四边形,B,C,E在一条直线上,点R为DE的中点,BR分别交AC,CD于点P,Q.

(1)则图中相似三角形(相似比为1除外)共有______对;

(2)求线段BP:PQ:QR,并说明理由.

15.(2015春?成武县期末)如图,已知△ABC中,AB=,AC=,BC=6,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.

16.(2015秋?通州区期末)王华在学习相似三角形时,在北京市义务教育教科书九年级上册第31页遇到这样一道题,如图1,在△ABC中,P是边AB上的一点,连接CP,要使△ACP∽△ABC,还需要补充的一个条件是______,或______.

请回答:

(1)王华补充的条件是______,或______.

(2)请你参考上面的图形和结论,探究,解答下面的问题:

如图2,在△ABC中,∠A=30°,AC2=AB2+AB?BC.求∠C的度数.

17.(2015秋?平顶山校级期中)已知:如图,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),当t为何值时,以A、P、Q为顶点的三角形与△ABC相似?

18.(2015秋?建湖县校级月考)如图,在△ABC中,AB=AC,点D、E分别在BC、AB上,且∠BDE=∠CAD.求证:△ADE∽△ABD.

19.(2014?厦门模拟)如图,在△ABC中,D、E分别是边AB、AC的中点,F为CA延长线上一点,∠F=∠C.

(1)若BC=8,求FD的长;

(2)若AB=AC,求证:△ADE∽△DFE.

20.(2013秋?云梦县期末)如图①,△ABC中,∠ACB=90°,∠ABC=α,将△ABC绕点A顺时针旋转得到△AB′C′,设旋转的角度是β.

(1)如图②,当β=______°(用含α的代数式表示)时,点B′恰好落在CA的延长线上;(2)如图③,连接BB′、CC′,CC′的延长线交斜边AB于点E,交BB′于点F.请写出图中两对相似三角形______,______(不含全等三角形),并选一对证明.

21.(2013秋?蚌埠期末)如图,CD、BE分别是锐角△ABC中AB、AC边上的高线,垂足为D、E.

(1)证明:△ADC∽△AEB;

(2)连接DE,则△AED与△ABC能相似吗?说说你的理由.

22.(2014秋?海淀区期末)如图,△ABC中,AB=AC,D是BC中点,BE⊥AC于E,求证:△ACD∽△BCE.

23.(2014秋?安庆期末)如图,在△ABC,点D、E分别在AB、AC上,连结DE并延长交BC的延长线于点F,连结DC、BE,若∠BDE+∠BCE=180°.请写出图中的两对相似三角形(不另外添加字母和线),并选择其中的一对进行证明.

24.(2014秋?腾冲县校级期末)如图,E是平行四边形ABCD的边BC的延长线上的一点,连接AE交CD于F,求证:△AFD∽△EFC.

25.(2014秋?晋江市校级期中)在△ABC和△A1B1C1中,已知:AB=6cm,BC=8cm,AC=11cm,A1B1=18cm,B1C1=24cm,A1C1=33cm.

求证:△ABC∽△A1B1C1.

26.(2014秋?定陶县期中)如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B,且DM交AC于F,ME交BC于G,写出图中两对相似三角形,并证明其中的一对.

27.(2014秋?浙江校级期中)如图,在△ABC中,AD⊥BC,垂足为D,EC⊥AB,垂足为E,连接DE.试说明△BDE∽△BAC.

28.(2014秋?凌河区校级期中)如图,在同一平面内,将等腰直角三角形ABC和等腰直角三角形AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°.若△ABC固定不动,△AFG 绕点A旋转.

(1)如图(1)在旋转过程中,当AF、AG与边BC的交点分别为D、E(点D不与点B 重合,点E不与点C重合)时,图中相似三角形有哪几对,请逐一写出;并选择一对加以证明.

(2)如图(2)在旋转过程中,当G点在BC边上,AF与BC边交于点D,(1)中的结论是否有变化?若有,请直接写出图中新得出的相似三角形是______.

29.(2013?杭州模拟)在任意△ABC中,作CD⊥AB,垂足为D,BE⊥AC,垂足为E,F 为BC上的中点,连接DE,EF,DF.

(1)求证:DF=EF;

(2)直接写出除直角三角形以外的所有相似三角形;

(3)在(2)中的相似三角形中选择一对进行证明.

30.(2013秋?巴中期末)△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF 的顶点E位于BC的中点处.

①如图甲,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;

②如图乙,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N.求证:△ECN∽△MEN.

2016年09月26日wx98wx的初中数学组卷

参考答案与试题解析

一.解答题(共30小题)

1.(2016?福州)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,

连接BD.

(1)通过计算,判断AD2与AC?CD的大小关系;

(2)求∠ABD的度数.

【解答】解:(1)∵AD=BC,BC=,

∴AD=,DC=1﹣=.

∴AD2==,AC?CD=1×=.

∴AD2=AC?CD.

(2)∵AD=BC,AD2=AC?CD,

∴BC2=AC?CD,即.

又∵∠C=∠C,

∴△BCD∽△ACB.

∴,∠DBC=∠A.

∴DB=CB=AD.

∴∠A=∠ABD,∠C=∠BDC.

设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.

∵∠A+∠ABC+∠C=180°,

∴x+2x+2x=180°.

解得:x=36°.

∴∠ABD=36°.

2.(2016?阜阳校级一模)如图,△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点E在DC的延长线上,且CE=CD,过点B作BF∥DE交AE的延长线于点F,交AC

的延长线于点G.

(1)求证:AB=BG;

(2)若点P是直线BG上的一点,试确定点P的位置,使△BCP与△BCD相似.

【解答】(1)证明:∵BF∥DE,

∴==,

∵AD=BD,

∴AC=CG,AE=EF,

在△ABC和△GBC中:

∴△ABC≌△GBC(SAS),

∴AB=BG;

(2)解:当BP长为或时,△BCP与△BCD相似;

∵AC=3,BC=4,

∴AB=5,

∴CD=2.5,

∴∠DCB=∠DBC,

∵DE∥BF,

∴∠DCB=∠CBP,

∴∠DBC=∠CBP,

第一种情况:若∠CDB=∠CPB,如图1:

在△BCP与△BCD中

∴△BCP≌△BCD(AAS),

∴BP=CD=2.5;

第二种情况:若∠PCB=∠CDB,过C点作CH⊥BG于H点.如图2:

∵∠CBD=∠CBP,

∴△BPC∽△BCD,

∵CH⊥BG,

∴∠ACB=∠CHB=90°,∠ABC=∠CBH,

∴△ABC∽△CBH,

∴=,

∴BH=,BP=.

综上所述:当PB=2.5或时,△BCP与△BCD相似.

3.(2016春?昌平区期末)如图,在△ABC中,∠BAC=90°,M是BC的中点,过点A作AM的垂线,交CB的延长线于点D.求证:△DBA∽△DAC.

【解答】证明:∵∠BAC=90°,点M是BC的中点,

∴AM=CM,

∴∠C=∠CAM,

∵DA⊥AM,

∴∠DAM=90°,

∴∠DAB=∠CAM,

∴∠DAB=∠C,

∵∠D=∠D,

∴△DBA∽△DAC.

4.(2016春?盐城校级月考)已知,如图,==,那么△ABD与△BCE相似吗?为什么?

【解答】解:∵==,

∴△ABC∽△DBE,

∴∠ABC=∠DBE,

∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,

即∠ABD=∠CBE,

∵=,

∴=,

∴△ABD∽△CBE.

5.(2016春?郴州校级月考)如图,△ABC与△ADE中,∠C=∠E,∠1=∠2;

(1)证明:△ABC∽△ADE.

(2)请你再添加一个条件,使△ABC≌△ADE.你补充的条件为:AB=AD(答案不唯一).

【解答】(1)证明:∵∠1=∠2,

∴∠1+∠DAC=∠2+∠DAC,

∴∠BAC=∠DAE.

∵∠C=∠E,

∴△ABC∽△ADE.

(2)补充的条件为:AB=AD(答案不唯一);理由如下:

由(1)得:∠BAC=∠DAE,

在△ABC和△ADE中,,

∴△ABC≌△ADE;

故答案为:AB=AD(答案不唯一).

6.(2016春?淮安月考)在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动,点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P、Q同时出发,用t(秒)表示运动时间(0≤t≤6),那么当t为何值时,△APQ与△ABD相似?说明理由.

【解答】解:设AP=2tcm,DQ=tcm,

∵AB=12cm,AD=6cm,

∴AQ=(6﹣t)cm,

∵∠A=∠A,

∴①当=时,△APQ∽△ABD,

∴=,

解得:t=3;

②当=时,△APQ∽△ADB,

∴=,

解得:t=1.2.

∴当t=3或1.2时,△APQ与△ABD相似.

7.(2015?上饶校级模拟)如图,在正三角形ABC中,D,E分别在AC,AB上,且,AE=EB.求证:△AED∽△CBD.

【解答】证明:∵△ABC为正三角形,

∴∠A=∠C=60°,BC=AB,

∵AE=BE,

∴CB=2AE,

∵,

∴CD=2AD,

∴==,

而∠A=∠C,

∴△AED∽△CBD.

8.(2015秋?寿光市期末)如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.

(1)求证:△ABD∽△DCE;

(2)当△ADE是等腰三角形时,求AE的长.

【解答】(1)证明:Rt△ABC中,∠BAC=90°,AB=AC=2,

∴∠B=∠C=45°.

∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,

∴∠ADE+∠EDC=∠B+∠BAD.

又∵∠ADE=45°,

∴45°+∠EDC=45°+∠BAD.

∴∠EDC=∠BAD.

∴△ABD∽△DCE.

(2)解:讨论:①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意.

②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,

于是AB=AC=2,BC=2,AE=AC﹣EC=2﹣BD=2﹣(2﹣2)=4﹣2

③若AE=DE,此时∠DAE=∠ADE=45°,

如下图所示易知AD⊥BC,DE⊥AC,且AD=DC.由等腰三角形的三线合一可知:

AE=CE=AC=1.

9.(2015春?潍坊校级期末)如图,D是△ABC的BC边上一点,E为AD上一点,若∠DAC=∠B,CD=CE,试说明△ACE∽△BAD.

【解答】证明:∵CE=CD,

∴∠CED=∠CDE,

∴∠AEC=∠ADB,

∵∠DAC=∠B,

∴△ACE∽△BAD.

10.(2015秋?太原期末)如图,在△ABC中,AB=8cm,BC=16cm,动点P从点A开始沿AB边运动,速度为2cm/s;动点Q从点B开始沿BC边运动,速度为4cm/s;如果P、Q两动点同时运动,那么何时△QBP与△ABC相似?

【解答】解:设经过t秒时,以△QBC与△ABC相似,则AP=2t,BP=8﹣2t,BQ=4t,

∵∠PBQ=∠ABC,

∴当=时,△BPQ∽△BAC,即=,解得t=2(s);

当=时,△BPQ∽△BCA,即=,解得t=0.8(s);

即经过2秒或0.8秒时,△QBC与△ABC相似.

11.(2015秋?睢宁县期末)如图,在△ABC中,AB=8,AC=6,D是AC上的一点,且AD=2,试在AB上确定一点E,使得△ADE与原三角形相似,并求出AE的长.

【解答】解:在AB上存在一点E,使得△ADE与△ABC相似,

理由是:分为两种情况:①当∠ADE=∠C时,如图1:

∵∠A=∠A,∠ADE=∠C,

∴△ADE∽△ACB,

∴,

∴AE=;

②当∠ADE=∠C时,如:2:

∵∠A=∠A,∠ADE=∠ACB,

∴△ADE∽△ABC,

∴,

∴,

∴AE=.

∴在AB上存在一点E,使得△ADE与△ABC相似,符合条件的AE的长是或.

12.(2015秋?太和县校级期末)如图,已知△ABC中,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.求证:△ACF∽△BEC.

【解答】证明:∵∠ACB=90°,AC=BC,

∴∠A=∠B=45°,

∴∠BEC=∠ACE+∠A=∠ACE+45°,

∵∠ECF=45°,

∴∠ACF=∠ACE+45°,

∴△ACF∽△BEC.

13.(2015秋?包河区期末)如图,在Rt△ABC中,∠A=90°,BC=10cm,AC=6cm,在线段BC上,动点P以2cm/s的速度从点B向点C匀速运动;同时在线段CA上,点Q以acm/s

的速度从点C向点A匀速运动,当点P到达点C(或点Q到达点A)时,两点运动停止,在运动过程中.

(1)当点P运动s时,△CPQ与△ABC第一次相似,求点Q的速度a;

(2)当△CPQ与△ABC第二次相似时,求点P总共运动了多少秒?

【解答】解:(1)如图1,BP=×2=,

∵∠QCP=∠ACB,

∴当=,△CPQ∽△CBA,即=,解得a=1,

∴点Q的速度a为1cm/s;

(2)如图2,设点P总共运动了t秒,

∵∠QCP=∠ACB,

∴当=,△CPQ∽△CAB,即=,解得t=,

∴点P总共运动了秒.

14.(2015春?宁波校级期末)如图,四边形ABCD和ACED都是平行四边形,B,C,E在一条直线上,点R为DE的中点,BR分别交AC,CD于点P,Q.

(1)则图中相似三角形(相似比为1除外)共有3对;

(2)求线段BP:PQ:QR,并说明理由.

【解答】解:(1)∵四边形ACED是平行四边形,

∴∠BPC=∠BRE,∠BCP=∠E,

∴△BCP∽△BER;

同理可得∠CDE=∠ACD,∠PQC=∠DQR,

∴△PCQ∽△RDQ;

∵四边形ABCD是平行四边形,

∴∠BAP=∠PCQ,

∵∠APB=∠CPQ,

∴△PCQ∽△PAB;

∵△PCQ∽△RDQ,△PCQ∽△PAB,

∴△PAB∽△RDQ.

综上所述,图中相似三角形(相似比为1除外)共有3对.

故答案是:3.

(2)∵四边形ABCD和四边形ACED都是平行四边形,

∴BC=AD=CE,

∵AC∥DE,

∴BC:CE=BP:PR,

∴BP=PR,

∴PC是△BER的中位线,

∴BP=PR,=,

又∵PC∥DR,

∴△PCQ∽△RDQ.

又∵点R是DE中点,

∴DR=RE.

===,

∴QR=2PQ.

又∵BP=PR=PQ+QR=3PQ,

∴BP:PQ:QR=3:1:2.

15.(2015春?成武县期末)如图,已知△ABC中,AB=,AC=,BC=6,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.

【解答】解:①图1,作MN∥BC交AC于点N,则△AMN∽△ABC,

有,

∵M为AB中点,AB=,

∴AM=,

∵BC=6,

∴MN=3;

②图2,作∠ANM=∠B,则△ANM∽△ABC,

有,

∵M为AB中点,AB=,

∴AM=,

∵BC=6,AC=,

∴MN=,

∴MN的长为3或.

16.(2015秋?通州区期末)王华在学习相似三角形时,在北京市义务教育教科书九年级上册第31页遇到这样一道题,如图1,在△ABC中,P是边AB上的一点,连接CP,要使△ACP∽△ABC,还需要补充的一个条件是∠ACP=∠B(或∠APC=∠ACB),或

AC2=AP?AB.

请回答:

(1)王华补充的条件是∠ACP=∠B(或∠APC=∠ACB),或AC2=AP?AB.(2)请你参考上面的图形和结论,探究,解答下面的问题:

如图2,在△ABC中,∠A=30°,AC2=AB2+AB?BC.求∠C的度数.

【解答】解:∵∠A=∠A,

∴当∠ACP=∠B,或∠APC=∠ACB;

或,即AC2=AP?AB时,△ACP∽△ABC;

故答案为:∠ACP=∠B(或∠APC=∠ACB),或AC2=AP?AB;

(1)王华补充的条件是:∠ACP=∠B(或∠APC=∠ACB);或AC2=AP?AB;理由如下:∵∠A=∠A,

∴当∠ACP=∠B,或∠APC=∠ACB;

或,即AC2=AP?AB时,△ACP∽△ABC;

故答案为:∠ACP=∠B(或∠APC=∠ACB),或AC2=AP?AB;

(2)延长AB到点D,使BD=BC,连接CD,如图所示:

∵AC2=AB2+AB?BC=AB(AB+BC)=AB(AB+BD)=AB?AD,

∴,

又∵∠A=∠A,∴△ACB∽△ADC,

∴∠ACB=∠D,

∵BC=BD,

∴∠BCD=∠D,

在△ACD中,∠ACB+∠BCD+∠D+∠A=180°,

∴3∠ACB+30°=180°,

∴∠ACB=50°.

17.(2015秋?平顶山校级期中)已知:如图,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),当t为何值时,以A、P、Q为顶点的三角形与△ABC相似?

【解答】解:∵∠C=90°,AC=4cm,BC=3cm,

∴AB==5,

相似三角形练习题含解析

相似三角形练习题 一、选择题 1、下列各组图形中不是位似图形的是() A.B. C.D. 2、若2:3=7:x,则x=() A.2B.3C.3.5D.10.5 3、两个相似三角形的一组对应边分别为5cm和3cm,如果它们的面积之和为136cm2,则较大三角形的面积是() A.36cm2B.85cm2C.96cm2D.100cm2 4、如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为() A.(1,-2)B.(-2,1)C.()D.(1,-1) 5、如图,已知点A在反比例函数y=(x < 0)上,作Rt△ABC,点D是斜边AC的中点,连DB并延长交y轴于点E,若△BCE的面积为8,则k的值为( )

A .8 B .12 C .16 D .20 6、如图,平面直角坐标系中,直线y=-x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=-的图象交于点C,若BA:AC=2:1,则a的值为() A.2B.-2C.3D.-3 7、如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于( ) A .6 B .5 C .9 D .

8、如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于( ) A .5∶8 B .3∶8 C .3∶5 D .2∶5 9、如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③=; ④=AD?AB.其中单独能够判定△ABC∽△ACD的个数为( ) A .1 B .2 C .3 D .4 10、如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从 点B出发,沿着B-A-D在菱形ABCD的边上运动,运动到点D停止,点P′是点P 关于BD的对称点,PP′交BD于点M,若BM=x,△OPP′的面积为y,则y与x之 间的函数图象大致为()

相似三角形知识点讲解及专项练习

相似三角形知识点讲解及专项练习 相似三角形的判定方法总结: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS ) 3. 两边成比例且夹角相等的两个三角形相似. (SAS) 4. 两角分别相等的两个三角形相似.(AA) 5. 斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A”型与“反X”型. 示意图 结论 E D C B A 反A 型: 如图,已知△ABC ,∠ADE =∠C ,则△ADE ∽△ACB (AA ),∴AE · AC =AD ·AB. 若连CD 、BE ,进而能证明△ACD ∽△ABE (SAS) O D C B A 反X 型: 如图,已知角∠BAO =∠CDO ,则△AOB ∽△DOC (AA ),∴OA ·OC =OD ·OB . 若连AD ,BC ,进而能证明△AOD ∽△BOC . “类射影”与射影模型 示意图 结论 相似三角形证明方法 模块一 相似三角形6大证明技巧 专题

类射影 如图,已知2AB AC AD =?,求证: BD AB BC AC = A B C D 射影定理 已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =?,2BC BH BA =?,2HC HA HB =? 通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。 在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 技巧二:等线段代换 技巧三:等比代换 比例式的证明方法 模块二

经典相似三角形练习题(附参考答案)

相似三角形 一.解答题(共30小题) 1.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC . 2.如图,梯形ABCD 中,AB ∥CD ,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)求证:△CDF ∽△BGF ; (2)当点F 是BC 的中点时,过F 作EF ∥CD 交AD 于点E ,若AB=6cm ,EF=4cm ,求CD 的长. 3.如图,点D ,E 在BC 上,且FD ∥AB ,FE ∥AC . 求证:△ABC ∽△FDE . 4.如图,已知E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于F ,试说明:△ABF ∽△EAD . 5.已知:如图①所示,在△ABC 和△ADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE ,且点B ,A ,D 在一条直线上,连接BE ,CD ,M ,N 分别为BE ,CD 的中点. (1)求证:①BE=CD ;②△AMN 是等腰三角形; (2)在图①的基础上,将△ADE 绕点A 按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:△PBD ∽△AMN . 6.如图,E 是?ABCD 的边BA 延长线上一点,连接EC ,交AD 于点F .在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= _________ °,BC= _________ ; (2)判断△ABC 与△DEC 是否相似,并证明你的结论. 8.如图,已知矩形ABCD 的边长AB=3cm ,BC=6cm . 某一时刻,动点M 从A 点出发沿AB 方向以1cm/s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方向以2cm/s 的速度向A 点匀速运动,问: (1)经过多少时间,△AMN 的面积等于矩形ABCD 面积的? (2)是否存在时刻t ,使以A ,M ,N 为顶点的三角形与△ACD 相似?若存在,求t 的值;若不存在,请说明理由. 9.如图,在梯形ABCD 中,若AB ∥DC ,AD=BC ,对角线BD 、AC 把梯形分成了四个小三角形. (1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明. 10.如图△ABC 中,D 为AC 上一点,CD=2DA ,∠BAC=45°,∠BDC=60°,CE ⊥BD 于E ,连接AE . (1)写出图中所有相等的线段,并加以证明; (2)图中有无相似三角形?若有,请写出一对; 若没有,请说明理由; (3)求△BEC 与△BEA 的面积之比.

相似三角形经典大题解析(含答案)

相似三角形经典大题解析 1.如图,已知一个三角形纸片ABC ,B C 边的长为8,B C 边上的高为6,B ∠和C ∠都为锐角,M 为A B 一动点(点M 与点A B 、不重合),过点M 作M N B C ∥,交A C 于点N ,在A M N △中,设M N 的长为x ,M N 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿M N 折叠,使A M N △落在四边形B C N M 所在平面,设点A 落在平面的点为1A ,1A M N △与四边形B C N M 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1)M N B C ∥ A M N A B C ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AM N A M N △≌△ 1A M N ∴△的边M N 上的高为h , ①当点1A 落在四边形B C N M 内或B C 边上时, 1A M N y S =△= 2 11332 2 4 8 M N h x x x = = ·· (04x <≤) ②当1A 落在四边形B C N M 外时,如下图(48)x <<, 设1A EF △的边E F 上的高为1h , 则132662h h x =-= - 11EF M N A EF A M N ∴ ∥△∽△ 11A M N ABC A EF ABC ∴ △∽△△∽△

12 16A EF S h S ??= ??? △△ABC 168242 A B C S = ??= △ 2 2 3632241224 62EF x S x x ?? - ?∴==?=-+ ? ??? 1△A 112 223 3912241224828A M N A EF y S S x x x x x ??=-= --+=-+- ??? △△ 所以 2 91224 (48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取163 x = ,8y =最大 86> ∴当163 x = 时,y 最大,8y =最大 M N C B E F A A 1

专题:相似三角形的几种基本模型及练习

专题:相似三角形的几种基本模型 (1)如图:DE ∥BC ,则△ADE ∽△ABC 称为“平截型”的相似三角形. “A ”字型 “X ”(或8)字型 “A ” 字型 (2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜截型”的相似三角形. A B C D E 1 2A A B B C C D D E E 124 1 2 (3) “母子” (双垂直)型 射影定理: 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _。 “母子” (双垂直)型 “旋转型” (4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形. (5)一线“三等角”型 “K ” 字(三垂直)型 (6)“半角”型 图1 :△ABC 是等腰直角三角形,∠MAN= 1 2∠BAC ,结论:△ABN ∽△MAN ∽△MCA ; 1 A E B C B E A C D 1 2B D 图2 图1 旋转 N M 60° 120° B A 45° D C B A

应用 1.如图3,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E ,若AC =8,BC =6,DE =3,则AD 的长为 ( ) A .3 B .4 C .5 D .6 2.如图4,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与△ABC 相似的三角形是 ( ) A .△DBE B .△AED 和△BDC C .△ABD D .不存在 图3 图4 图5 3.如图5, □ABCD 中, G 是AB 延长线上一点, DG 交AC 于E, 交BC 于F, 则图中所有相似三角形有( )对。 A.4 对 B. 5对 C.6对 D. 7对 4.如图6,在△ABC 中,D ,E 分别是AB ,AC 上的点,在下列条件下:①∠AED =∠B ;②AD ∶AC =AE ∶AB ;③DE ∶BC =AD ∶AC .能判定△ADE 与△ACB 相似的是 ( )A .①② B .①③ C .①②③ D .① 5.如图7,在△ABC 中,点D ,E 分别是AB ,AC 的中点,则下列结论:①BC =2DE ;②△ADE ∽△ABC ; ③ AD AE =AB AC .其中正确的有 ( ) A .3个 B .2个 C .1个 D .0个 6.如图8,添加一个条件:_____________________________,使得△ADE ∽△ACB .(写出一个即可) 7.如图9,在四边形ABCD 中,AB ∥CD ,∠B =∠C =90°,点E 在BC 边上,AB =3,CD =2,BC =7.若△ABE 与△ECD 相似,则CE =___________. 图6 图7 图8 图9 8.如图10,已知∠C =∠E ,则不一定能使△ABC ∽△ADE 的条件是 ( ) A .∠BAD =∠CAE B .∠B =∠D C.B C DE =AC AE D.AB A D =AC AE 9.如图11,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =1 4CD ,下列结论:①∠BAE =30°, ②△ABE ∽△AEF ,③AE ⊥EF , ④△ADF ∽△ECF .其中正确的个数为 个。 图10 图11 A B C D E

相似三角形经典证明题解析

相似三角形经典证明题 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?

2.如图,已知直线128:33 l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合. (1)求ABC △的面积; (2)求矩形DEFG 的边DE 与EF 的长; (3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.

3.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒. (1)若4a =厘米,1t =秒,则PM =______厘米; (2)若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比; (3)若在运动中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围; (4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由. 4.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题: (1)当t =2时,判断△BPQ 的形状,并说明理由; (2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式; (3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ? N

中考相似三角形经典综合题

中考相似三角形经典综合题 1、如图,在平面直角坐标系中,点0为坐标原点,A点的坐标为(3,0),以0A为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从0点出发沿0C 向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。设运动时间为t秒. (1)求线段BC的长; (2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围: (3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE1F1,使点E的对应点E1落在线 段AB上,点F的对应点是F1,E1F1交x轴于点G,连接PF、QG,当t为何值时,2BQ-PF= 3 3 QG? 2、在平面直角坐标系中,已知点A(﹣2,0),点B(0,4),点E在OB上,且∠OAE=∠0BA. (Ⅰ)如图①,求点E的坐标; (Ⅱ)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B、BE′. ①设AA′=m,其中0<m<2,试用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标; ②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).

3、如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为ι秒.(1)当ι=7时,点P与点Q相遇; (2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形? (3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位. ①求s与ι之间的函数关系式; ②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直 线PC上,求折叠后的△APD与△PCQ重叠部分的面积. 4、如图,点A是△ABC和△ADE的公共顶点,∠BAC+∠DAE=180°,AB=k·AE,AC=k·AD,点M是DE的中点,直线AM交直线BC于点N. (1)探究∠ANB与∠BAE的关系,并加以证明. (2)若△ADE绕点A旋转,其他条件不变,则在旋转的过程中(1)的结论是否发生变化?如果没有发生变化,请写出一个可以推广的命题;如果有变化,请画出变化后的一个图形,并证明变化后∠ANB与∠BAE的关系. 5.如图,已知一个三角形纸片ABC,BC边的长为8,BC边上的高为6,B ∠和C ∠都为锐角,M为AB一动点(点M与点A B 、不重合),过点M作MN BC ∥,交AC于点N,在AMN △中,设MN的长为x,MN上的高为h. (1)请你用含x的代数式表示h. (2)将AMN △沿MN折叠,使AMN △落在四边形BCNM所在平面,设点A落在平面 A B C E M D N

初中数学相似三角形专项练习题

初中数学相似三角形专项练习题 1 / 3 第18.1课时 相似三角形 一.填空题(基础) 1. 如图,ABC ?∽MNP ?,则它们的对应角分别是A ∠与∠___M__,∠B 与∠___N__, C ∠与∠___P__;对应边成比例的是________=_________=_________;若AB =2.7cm,cm MN 9.0=,cm MP 1=,则相似比=_________,=BC _________cm . B A G F E D C B A N P M (第2题) (第1题) 2. 如图,四边形ABCD 中,AD ∥EF ∥BC ,AC 交EF 于G .图中能相似的三角形共有 _______对,它们分别是_________、___________,小明通过这两对相似三角形推出了比例 式: AB BE AD FG =,对不对,为什么? 二.填空题 3. 如图,ABC ?和DEF ?的三边长分别为7、2、6和12、4、14,且两三角形相似,则A ∠与∠_____,∠B 与∠_____,C ∠与∠_____, ) ()()(AC DF AB ==。 (第5题) (第4题) (第3题) C G F E D C B A F E B A E F D C B A 4. 如图,ABC ?∽AEF ?,写出三对对应角:_________=_________,_________=________, ________=_________,并且 ) () ()()()(==AF ,若ABC ?与AEF ?的相似比是3:2,cm EF 8=,则________=BC 。 5. 如图,ABC ?中,点D 在BC 上,EF ∥BC ,分别交AB 、AC 、AD 于点E 、F 、 G , 图中共有______对相似三角形,它们是______________________________________.

初中数学相似三角形的经典综合题

初中数学相似三角形的性质与应用经典试题 一、知识体系: 1.相似三角形的性质 ①相似三角形的对应角相等; ②相似三角形的对应边成比例; ③相似三角形对应边上的高之比,对应边上的中线之比,对应角的角平分线之比都等于相似比; ④相似三角形的周长之比等于相似比。 ⑤相似三角形的面积之比等于相似比的平方(2 k )。 二、典型例题: 例1:若△ABC∽△A′B′C′,且,, 3 4AB A B ,△ABC 的周长为15cm ,则△A′B′C′的周长为( ) A .18 B .20 C .154 D .80 3 针对练习: 1.已知△ABC∽△DEF,且△ABC 的三边长为3、4、5,若△DEF 的周长为6,那么下列不可能是△DEF 一边长的是( ) A .1.5 B .2 C .2.5 D .3 2.一直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值为( ) A .7 B .5 C .7或5 D .无数个 例2:(2014江苏南京,3)若△ABC ∽△A′B′C′,相似比为1:2,则△ABC 与△A′B′C′的面积的比为( ) A .1:2 B .2:1 C .1:4 D .4:1 针对练习: 1.两相似三角形的最短边分别是5cm 和3cm ,它们的面积之差为322 cm ,那么小三角形的面积为( ) A .102 cm B .142 cm C .162 cm D .182 cm 2.如图,DE ∥BC ,若AD =1,BD =2,则△ADE 与四边形DBCE 面积之比是 ▲ 。 3.如图,平行四边形ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD =2DE ,若△DEF 的面积为a ,则平行四边形ABCD 的面积为 ▲ (用a 的代数式表示)。 4.如图,在四边形ABCD 中,E 是AD 上的一点,EC ∥AB ,EB ∥DC ,若△ABE 的面积为3,△ECD 的面积为1,则△BCE 的面积为 ▲ 。

相似三角形判定专项练习题

相似三角形判定专项练 习题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

1.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且 CF=3FD,△ABE与△DEF相似吗为什么 2.如图,在正三角形ABC中,D,E分别在AC,AB上,且,AE=EB.求 证:△AED∽△CBD. 3.如图,已知∠1=∠2,且AB?ED=AD?BC,则△ABC与△ADE相似吗说明理 由. 4.已知:如图,在△ABC中,∠C=90°,点D、E分别AB、CB延长线上的 点,CE=9,AD=15,连接DE.若BC=6,AC=8,求证:△ABC∽△DBE. 5.如图,点D在等边△ABC的BC边上,△ADE为等边三角形,DE与AC交于 点F.证明:△ABD∽△DCF 6.如图,CD、BE分别是锐角△ABC中AB、AC边上的高线,垂足为D、E. 证明:△ADC∽△AEB; 7.如图,在△ABC,AC⊥BC , D是BC延长线上的一点,E是AC上的一点,连 接ED,∠A=∠D.求证:△ABC∽△DEC.

8.如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与 BE相交于点F.试说明△ABD≌△BCE; 9.如图,在△ ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,交BA于点 E,EC与AD相交于点F.求证:△ABC∽△FCD. 10.如图,∠DEC=∠DAE=∠B,试说明:△DAE∽△EBA; 11.如图,在△ABC中,∠BAC=90°,D为BC的中点,AE⊥AD,AE交CB的延 长线于点E.求证:△EAB∽△ECA; 12.如图,已知:△ABC为等腰直角三角形,∠ACB=90°,延长BA至E,延 长AB至F,∠ECF=135°,求证:△EAC∽△CBF. 13.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的 两点.若 P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出 发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形 与△BDC相似

经典相似三角形练习的题目(附参考答案详解)

实用标准文案 相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长. 3.如图,点D,E在BC上,且FD∥AB,FE∥AC. 求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD. 5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.

6.如图,E是?ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= _________ °,BC= _________ ; (2)判断△ABC与△DEC是否相似,并证明你的结论. 8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm. 某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: (1)经过多少时间,△AMN的面积等于矩形ABCD面积的? (2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t 的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD 、AC 把梯形分成了四个小三角形. (1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明. 10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE. (1)写出图中所有相等的线段,并加以证明; (2)图中有无相似三角形?若有,请写出一对; 若没有,请说明理由; (3)求△BEC与△BEA的面积之比.

初三数学相似三角形典型例题(含标准答案)

初三数学相似三角形典型例题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质:a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0

中考相似三角形经典综合题解析资料

中考相似三角形经典综合题解析 1、(2013哈尔滨)如图,在平面直角坐标系中,点0为坐标原点,A点的坐标为(3,0),以0A为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从0点出发沿0C向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。设运动时间为t秒. (1)求线段BC的长; (2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围: (3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE1F1,使点E的对应点E1落在线 段AB上,点F的对应点是F1,E1F1交x轴于点G,连接PF、QG,当t为何值时,2BQ-PF= 3 3 QG? (1)解:如图l∵△AOB为等边三角形∴∠BAC=∠AOB=60。∵BC⊥AB ∴∠ABC=900∴∠ACB=300∠OBC=300 ∴∠ACB=∠OBC ∴CO=OB=AB=OA=3 ∴AC=6 ∴3 33 (2)解:如图l过点Q作QN∥0B交x轴于点N ∴∠QNA=∠BOA=600=∠QAN ∴QN=QA ∴△AQN为等边三角形 ∴NQ=NA=AQ=3-t ∴NON=3- (3-t)=t ∴PN=t+t=2t ∴OE∥QN.∴△POE∽△PNQ ∴OE PO QN PN = ∴ 1 32 OE t = - ∴ 31 22 OE t =- ∵EF∥x轴 ∴∠BFE=∠BCO=∠FBE=300 ∴EF=BE∴m=BE=OB-OE 13 22 t =+ (0

(3)解:如图2 11180120BE F BEF EBF EFB ∠=∠=-∠-∠= ∴∠AEG=600=∠EAG ∴GE 1 =GA ∴△AE’G 为等边三角形 111331 2222 QE BE BQ m t t t t =-=-=+-=- 111131 22 QE GA AE AB BE BQ t QE ∴===--=-= ∴∠l=∠2 ∠3=∠4 ∵∠l+∠2+∠3+∠4=1800∴∠2+∠3=900 即∠QGA=900 ∵EF ∥OC BF BE BC BO ∴ =333 332233 BF m BF m t ∴ =∴==+31 3322 BC CF -= - 3CP CO OP t =-=- 31 33322633 t CF t CP CB CA --∴=== ∵∠FCP=∠BCA ∴△FCP∽△BCA. 32 PF CP t PF AB CA -∴ =∴= ∵2BQ —PF=33QG ∴33312(33)2322t t t --=?-∴t=1∴当t=1 时,2BQ —PF= 3 3 QG 2、(2013?天津)在平面直角坐标系中,已知点A (﹣2,0),点B (0,4),点E 在OB 上,且∠OAE=∠0BA . (Ⅰ)如图①,求点E 的坐标; (Ⅱ)如图②,将△AEO 沿x 轴向右平移得到△A ′E ′O ′,连接A ′B 、BE ′. ①设AA ′=m ,其中0<m <2,试用含m 的式子表示A ′B 2+BE ′2,并求出使A ′B 2+BE ′2取得最小值时点E ′的坐标;

中考数学相似三角形专题练习

中考数学相似三角形专题练习 一、选择题 1. 已知b a = 23,则a a+b 的值是( ) A. 32 B .25 C .53 D .5 2 2. 如图,在等边△ABC 中,P 为BC 上的一点,D 为AC 上一点,且∠APD =60°,BP =1,CD =2 3 ,则△ABC 的边长为( ) A .3 B .4 C .5 D .6 3. 如图,在长为8cm ,宽为6cm 的矩形中,截去一个矩形(图中阴影部分的面积),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( ) A .28cm 2 B .27cm 2 C .21cm 2 D .20cm 2 4. 如图,已知AD 为△ABC 的角平分线,DE ∥AB 交AC 于点E ,如果DE AB =35,那么AB AC = ( ) A. 13 B .23 C .25 D .3 5

5. 如图,△ABC 中,D ,E 分别为AC ,BC 边上的点,AB ∥DE ,CF 为AB 边上的中线,若AD =5,CD =3,DE =4,则BF 的长为( ) A. 323 B .163 C .163 D .83 6. 如图,在直角三角形ABC 中(∠C =90°),放置边长分别为3,4,x 的三个正方形,则x 的值为( ) A .5 B .6 C .7 D .12 7. 如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A 与点B 重合,折痕为DE ,则S △BCE :S △BDE 等于( ) A .2:5 B .14:25 C .16:25 D .4:21 8. 如图,点M 在BC 上,点N 在AM 上,CM =CN ,AM AN = BM CM ,下列结论正确的是( ) A. △ABM ∽△ACB B .△ANC ∽△AMB C .△ANC ∽△ACM D .△CMN ∽△BCA 9. 如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPE =∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角形有( )

(完整版)相似三角形知识点及典型例题

相似三角形知识点及典型例题 知识点归纳: 1、三角形相似的判定方法 (1)定义法:对应角相等,对应边成比例的两个三角形相似。 (2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似。 (3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似。简述为:两角对应相等,两三角形相似。 (4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 (5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成比例,两三角形相似。 (6)判定直角三角形相似的方法: ①以上各种判定均适用。 ②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 ③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。 #直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。 每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高, 则有射影定理如下: (1)(AD)2=BD·DC,(2)(AB)2=BD·BC , (3)(AC)2=CD·BC 。 注:由上述射影定理还可以证明勾股定理。即(AB)2+(AC)2=(BC)2。

典型例题: 例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE 2=EF·EG 证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC ∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G 又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF ∴EC 2=EG· EF ,故EB 2=EF·EG 【解题技巧点拨】 本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。 例2 已知:如图,AD 是Rt △ABC 斜BC 上的高,E 是AC 的中点,ED 与AB 的延长线相交于F ,求证:BA FB =AC FD 证法一:如图,在Rt △ABC 中,∵∠BAC =Rt ∠,AD ⊥BC , ∴∠3=∠C ,又E 是Rt △ADC 的斜边AC 上的中点, ∴ED=21 AC =EC ,∴∠2=∠C ,又∠1=∠2,∴∠1=∠3, ∴∠DFB =∠AFD ,∴△DFB ∽△AFD ,∴FD FB =AD BD (1) 又AD 是Rt △ABC 的斜边BC 上的高,∴Rt △ABD ∽Rt △CAD ,∴AD BD =AC BA (2) 由(1)(2)两式得FD FB =AC BA ,故BA FB =AC FD 证法二:过点A 作AG ∥EF 交CB 延长线于点G ,则BA FB =AG FD (1) ∵E 是AC 的中点,ED ∥AC ,∴D 是GC 的中点,又AD ⊥GC ,∴AD 是线段GC 的垂直平分线,∴AG =AC (2) 由(1)(2)两式得:BA FB =AC FD ,证毕。 【解题技巧点拨】

最新相似三角形经典解答题难题含答案(个人精心整理)

一、相似三角形中的动点问题1.如图,在Rt△ABC 中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时 间为t秒. (1)当t为何值时,AD=AB,并 求出此时DE的长度; (2)当△DEG与△ACB相似时, 求t的值. 2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒. (1)①当t=2.5s时,求△CPQ的 面积; ②求△CPQ的面积S(平方米)关 于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当 △CPQ为等腰三角形时,求出t的 值. 3.如图1,在Rt△ABC 中,ACB =90°,AC=6,BC=8,点D在 边AB上运动,DE 平分CDB交 边BC于点E,EM⊥BD,垂足为 M,EN⊥CD,垂足为N. (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中, BA=BC=20cm,AC= 30cm,点P从A点出发, 沿着AB以每秒4cm的速 度向B点运动;同时点Q 从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由. 5.如图,在矩形ABCD中, AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A 以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6)。 (1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似? 二、构造相似辅助线——双垂直模型 6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求 精品文档

相似三角形典型例题精选

相似三角形的判定与性质综合运用经典题型 考点一:相似三角形的判定与性质: 例1、如图,△PCD是等边三角形,A、C、D、B在同一直线上,且∠APB=120°. 求证:⑴△PAC∽△BPD;⑵ CD2 =AC·BD. 例2、如图,在等腰△ABC中, ∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B、C 重合),在AC上取一点E,使∠ADE=45° (1)求证:△ ABD∽△DCE; (2)设BD=x,AE=y,求y关于x函数关系式及自变量x值范围,并求出当x为何值时AE 取得最小值? (3)在AC上是否存在点E,使得△ADE为等腰三角形若存在,求AE的长;若不存在,请说明理由 例3、如图所示,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B: 1)求证:△ADF∽△DEC; 2)若AB=4,3 3 AD,AE=3,求AF的长。 A B C D F

考点二:射影定理: 例4、如图,在RtΔABC中,∠ACB=90°,CD⊥AB于D,CD=4cm,AD=8cm,求AC、BC及BD的长。 例5、如图,已知正方形ABCD,E是AB的中点,F是AD上的一点,且AF= 1 4 AD,EG⊥CF于点G, (1)求证:△AEF∽△BCE;(2)试说明:EG2=CG·FG. 例6、已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连结AF和CE. (1)求证:四边形AFCE是菱形; (2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长; (3)在线段AC上是否存在一点P,使得2AE2=AC·AP若存在,请说明点P的位置,并予以证明;若不存在,请说明理由. A B C D E F G

相似三角形综合题解析Word版

相似三角形综合题解析 一.解答题(共22小题) 1.(2008?眉山)如图,E是矩形ABCD的边DC延长线上一点,连接AE分别交BC,BD于F,G. (1)图中有全等三角形吗?(对角线分矩形所得两个三角形除外)若有,请写出一对来;若没有,请添加一个条件(不添加辅助线和不改变图中字母),使得图中有全等三角形,并写出来; (2)图中有相似三角形吗?设矩形ABCD的周长为20,对角线长为2,求DE的长,使得你找出的一对相似三角形的相似比为2:3. 2.如图(1),在锐角三角形ABC中,AB>BC>AC.D、E分别是AB、BC边上的两个动点,连接DE、CD. (1)当点D、E运动时,分别在图(2)、图(3)中画出D.E运动的位置,要求在图(2)中,仅有一组三角形相似,在图(2)中,仅有两组三角形相似. (2)当AB=9,BC=8,CA=6时,选择(1)中的图(3),即有两组三角形相似时,求DE的 长. 3.已知:如图,在△ABC中,AB=3,AC=2,能否在AC上(不同于A,C)找到点D,过点D 作DE∥AB交于BC于E,过点E作EF∥AC交AB于F,连接FD,将△ABC分割成四个相似的小三角形,但其中至少有两个小三角形的相似比不等于1?若能,求出点D位置;若不能,请说明理由. 4.如图,E为?ABCD的边BC延长线上一点,AE与BD交于点F,与DC交于点G. (1)写出所有与△ABE相似的三角形,并选择其中一对相似三角形加以证明;

(2)若BC=2CE,求的值. (3)若BC=k?CE,求的值. 5.如图1,在四边形ABCD的AB边上取一点E(点E不与A,B重合),分别连接ED,EC,可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似,我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似,我们就把点E叫做四边形ABCD的AB边上的强相似点. (1)图1中,若∠A=∠B=∠DEC=50°,说明点E是四边形ABCD的AB边上的相似点;(2)如图2,点E是矩形ABCD的AB边上的一个强相似点,若DE=3,AE=BE,求矩形ABCD 的面积; (3)在梯形ABCD中,AD∥BC,AD<BC,∠B=90°,点E是梯形ABCD的AB边上的一个强相似点,请判断AE与BE的数量关系(要求画出示意图,不必说明理由). 6.(2013?咸宁)阅读理解: 如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB 上的强相似点.解决问题: (1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由; (2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD 的边AB上的一个强相似点E; 拓展探究: (3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.

相关文档
最新文档