河北工业大学计算方法实验四常微分方程数值解法

河北工业大学计算方法实验四常微分方程数值解法
河北工业大学计算方法实验四常微分方程数值解法

实验四 常微分方程数值解法

目的与要求:

– 熟悉求解常微分方程初值问题的有关方法和理论,主要是欧拉法和改进欧拉法 ;

– 会编制上述方法的计算程序,针对实习题编制程序,并上机计算其所需要的结果;

– 通过对各种求解方法的计算实习,体会各种解法的功能,优缺点及适用场合,会选取适当的求解方法。

实验内容:

– 熟悉求解常微分方程初值问题的有关方法和理论,主要是欧拉法和改进欧拉法,并且通过对各种求解方法的计算实习,体会各种解法的功能,优缺点及适用场合,会选取适当的求解方法。

实验题目:

实验程序:

#include

#define N 10

void ModEuler(float(*fl)(float,float),float x0,float y0,float xn,int n) {

int i;

float yp,yc,x=x0,y=y0,h=(xn-x0)/n;

printf("x[0]=%f\ty[0]=%f\n",x,y);

for(i=0;i<=n;i++)

{

yp=y+h*fl(x,y);

x=x0+i*h;

yc=y+h*fl(x,yp);

y=(yp+yc)/2;

printf("x[%d]=%f\ty[%d]=%f\n",i,x,i,y);

}

}

()202

y xy y '?=-??=??

void main(void)

{

int i;

float xn=3.0,x0=0.0,y0=2.0;

void ModEuler(float(*)(float,float),float,float y0,float,int);

float fl(float,float);

ModEuler(fl,x0,y0,xn,N);

getchar();

}

float fl(float x,float y)

{

return -x*y*y;

}

实验结果

计算方法实验

实验一: 姓名: 学号: 班级:2013级计算机6班实验地点:第二机房 实验时间:2015/3/17

1 实验目的和要求 1. 二分法求方程的根 2. 基本迭代法求方程的根 3. 用埃特金求方程010423=-+x x 在1.5处的一个根,精度要求410-。 4. 牛顿下山法求方程的根 求方程013=--x x 的根,初值取6.00=x ,精度满足510-。 5. 牛顿迭代法求解7,精度满足510- 2 实验环境和工具 机房 VC6 3 实验结果 3.1 算法流程图 3.2 程序核心代码 二分法代码 #include #include

void main() { double x,a=1.0,b=1.5; for(int i=1;i<10;i++) { x=(a+b)/2; if((a*a*a-a-1)*(x*x*x-x-1)<0) b=x; else a=x; if(b-a<0.01) break; cout< #include void main() { double x0=0.5,x,e=2.718281;

for(int i=1;i<20;i++) { x=pow(e,-x0); if(x-x0<0.00001) break; cout< #include #include using namespace std; ////////// double fun(double x); void AitkenIterative(double(*pf)(double x)); ////////// ////////// int main() { AitkenIterative(fun);

数据结构与算法设计实验

《数据结构与算法设计》 实验报告 ——实验二 学院:自动化学院 班级: 学号: : 一、实验目的

按照四则运算加、减、乘、除、幂(^)和括号的优先关系和惯例,编写计算器程序。 二、实验容 简单计算器。 请按照四则运算加、减、乘、除、幂(^)和括号的优先关系和惯例,编写计算器程序。要求: ①从键盘输入一个完整的表达式,以回车作为表达式输入结束的标志。 ②输入表达式中的数值均为大于等于零的整数。中间的计算过程如果出现小数也只取 整。 例如,输入:4+2*5= 输出:14 输入:(4+2)*(2-10)= 输出:-48 三、程序设计 概要设计 1、宏定义 #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 2、基本函数: (1)void InitStack_char(SqStack *S) //char型栈初始化 (2)void InitStack_int(sqStack *S) //int型栈初始化 (3)void Push_char(SqStack *S,char ch) //char型元素进栈 (4)void Push_int(sqStack *S,int num) //int型元素进栈 (5)char GetTop_char(SqStack *S) //取char型栈顶元素 (6)int GetTop_int(sqStack *S) //取int型栈顶元素 (7)Status In(char c) //判断是否为运算符,若是运算符则返回,否则返回 (8)char Precede(char a,char b) //判断两运算符的先后次序 (9)Status Pop_char(SqStack *S,char &x) //char型栈出栈 (10)Status Pop_int(sqStack *S,int &x) //int型栈出栈 (11)int Operate(int a,char theta,int b) //计算a和b运算结果 3、流程图

数值计算实验课题目

数值实验课试题 本次数值实验课结课作业,请按题目要求内容写一篇文章。按题目要求 人数自由组合,每组所选题目不得相同(有特别注明的题目除外)。试题如下: 1)解线性方程组的Gauss 消去法和列主元Gauss 消去法(2人)/*张思珍,巩艳华*/ 用C 语言将不选主元和列主元Gauss 消去法编写成通用的子程序,然后用你编写的程序求解下列84阶的方程组 ???? ?????? ? ??=??????????? ????????????? ? ?1415151515768 168 168 168 1681684 8382321 x x x x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 2)解线性方程组的平方根法(4人)/*朱春成、黄锐奇、张重威、章杰*/ 用C 语言将平方根法和改进的平方根法编写成通用的子程序,然后用你编写的程序求解对称正定方程组b Ax =,其中 (1)b 随机的选取,系数矩阵为100阶矩阵 ?????? ???? ? ? ?101 1101 1101 1101 1101110 ; (2)系数矩阵为40阶的Hilbert 矩阵,即系数矩阵A 的第i 行第j 列元素为 1 1-+= j i a ij ,向量b 的第i 个分量为∑=-+ = n j i j i b 1 1 1. 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编

3.《数值分析简明教程》,王能超编 3)三对角线方程组的追赶法(3人)/*黄佳礼、唐伟、韦锡倍*/ 用C 语言将三对角线方程组的追赶法法编写成通用的子程序,然后用你编写的程序求解如下84阶三对角线方程组 ???? ?????? ? ??=??????????? ????????????? ? ?1415151515768 168 168 168 16816 84 8382321 x x x x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值分析简明教程》,王能超编 4)线性方程组的Jacobi 迭代法(3人)/*周桂宇、杨飞、李文军*/ 用C 语言将Jacobi 迭代法编写成独立的子程序,并用此求解下列方程组, 精确到小数点后5位 ???? ? ??=????? ??????? ? ?-149012 2111221 3 2 1 x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 5)线性方程组的Gauss-Seidel 迭代法(3人)/*张玉超、范守平、周红春*/ 用C 语言将Gauss-Seidel 迭代法编写成独立的子程序,并用此求解下列方程组,精确到小数点后5位 ???? ? ??=????? ??????? ? ?--39721 1111112 3 2 1 x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 6)解线性方程组的最速下降法法(2人)/*赵育辉、阿热孜古丽*/ 用C 语言将最速下降法编写成通用的子程序,然后用你编写的程序求解对称

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

计算方法实验+编程代码

计算方法实验报告 1 在区间[-1,1]上分别取n=10,20,用两组等距节点对龙格函数21()125f x x =+作多项式插值,对每个n 值,分别画出插值函数及()f x 的图形。 解:n=10时: n=20时:

2 在区间[-1,1]上分别取n=10,20,用两组等距节点对龙格函数21()125f x x = +作分段线性插值,对每个n 值,分别画出插值函数及()f x 的图形。 解:n=10: n=20时:

3 对龙格函数21()125f x x = +在区间[-1,1]上取21, 0,1,2k x k k n n =-+= ,n 分别取10,20,试分别求3次、5次最小二乘拟合多项式,打印出此曲线拟合函数,分别画出此拟合函数及()f x 的图形。 3次最小二乘拟合 n=10时: n=20时:

5次最小二乘拟合n=10时: n=20时:

4 取点 21 cos,0,1,2 2(1) k k x k n n π + == + ,n分别取10,20,对龙格函数 2 1 () 125 f x x = + 作多项式插值,对每个n值,分别画出插值函数及() f x的图形。解:n=10时: n=20时:

5 比较上面三组近似函数,说说你的体会。你能在此基础上做进一步的探索吗,比如n如果继续增加下去,结果会如何? 附注:编程语言不限,但用matlab等语言编程时,不得直接调用现成的插值与逼近函数,需要你在我们课堂教学的基础上,编程实现上述算法。 解:用不同方法进行插值,得出的插值函数差异较大。其中,最小二乘拟合的曲线精度较低,多项式插值拟合的曲线精度较高。曲线拟合的精度不仅和拟合方法有关,还和采样点位置的选取、个数有关。如1,4题都是多项式插值,但是第4题的拟合度最高。n值越大,拟合的函数会更加接近原函数。 程序: 1.等距节点多项式插值 clear; clc; syms x n=input('input n='); x1=linspace(-1,1,n+1); y1=1./(1.+25*x1.^2); yy=zeros(1,n+1); fx=0; for i=1:n+1; lga=1; for j=1:n+1 if j~=i lga=lga*(x-x1(1,j))/(x1(1,i)-x1(1,j)); else end end fx=fx+y1(1,i)*lga; end disp(fx); x=-1:0.01:1; plot(x,eval(fx),'rh') hold on a=linspace(-1,1,100); y2=1./(1.+25*a.^2); plot(a,y2,'b')

曲线拟合的数值计算方法实验

曲线拟合的数值计算方法实验 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过 实验或观测得到量x与y的一组数据对(X i ,Y i )(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或 拟合已知数据。f(x,c)常称作拟合模型,式中c=(c 1,c 2 ,…c n )是一些待定参 数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c使得拟合模型与实际观测值在

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

计算方法实验

算方法实验指导 姓名学号院系专业哈尔滨工业大学

计算方法实验指导 根据实际问题建立的数学模型,一般不能求出所谓的解析解,必须针对数学模型 的特点确定适当的计算方法,编制出计算机能够执行的计算程序,输入计算机,进行 调试,完成运算,如果计算结果存在问题或不知是否正确,还需要重新确定新的计算 方法,再编制出计算程序,输入计算机,重新调试,完成运算,直至获得正确的计算 结果,这就是数值计算的全部过程。 学生在学习“计算方法”和“高级语言”等课程时普遍存在的问题是:只会套用 教科书中的标准程序进行数值计算,很少有人能够独立地将学过的数值算法编制成计 算机程序,至于灵活应用已经掌握的算法求解综合性较大的课题,则更是困难的事情。 编写《计算方法实验指导》的目的是:突出数值计算程序结构化的思想。提高学 生的编程能力,加深对“计算方法”课程内容的理解和掌握,为”计算方法“课程的 教学服务,进一步奠定从事数值计算工作的基础。具体地 1. 根据“计算方法”课程内容的特点,给出五个典型算法的分析流程,学生可以 利用所掌握的 “高级语言”顺利地编制出计算机程序,上机实习,完成实验环节的教 学要求。 2. 所有的计算实习题目都经过任课教师逐一检验,准确无误。 3. 充分利用循环的思想、 迭代的思想, 给出算法结构描述和程序语言的对应关系, 有利于学生编 制相应的程序。 4. 结合实习题目,提出实验要求,要求学生按规范格式写出相应的实验报告,实 验报告成绩记入 期末总成绩。需要提醒学生:不能简单地套用现成的标准程序完成实 验题目,应当把重点放在对算法的理解、程序的优化设计、上机调试和计算结果分析 上,否则就失去实验课的目的啦。 5. 五个具体的实验题目是: 实验题目 实验题目 实验题目 实验题目 实验题目 要求必须完 成其中三个(如果全部完成更好) 。 1 拉格朗日 (Lagrange) 插值 2 龙贝格 (Romberg) 积分法 3 四阶龙格—库塔 (Runge — Kutta) 方法 4 牛顿 (Newton) 迭代法 5 高斯 (Gauss) 列主元消去法

数值计算实验报告

(此文档为word格式,下载后您可任意编辑修改!) 2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:宋元台 学号: 成绩:

数值计算方法与算法实验报告 学期: 2014 至 2015 第 1 学期 2014年 12月1日课程名称: 数值计算方法与算法专业:信息与计算科学班级 12级5班 实验编号: 1实验项目Neton插值多项式指导教师:孙峪怀 姓名:宋元台学号:实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页)

1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)* Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. 2.用C语言实现算法的程序代码 #includeMAX_N) { printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } printf("now input the (x_i,y_i)i=0,...%d\n",n); for(i=0;i<=n;i++) { printf("please input x(%d) y(%d)\n",i,i);

计算方法上机实验报告——拉格朗日插值问题

计算方法上机实验报告——拉格朗日插值问题 一、方法原理 n次拉格朗日插值多项式为:Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0) n=2时,称为二次插值或抛物线插值,精度相对高些 L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x 2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1) 二、主要思路 使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。 对节点xi(i=0,1,…,n)中任一点xk(0<=k<=n)作一n次多项式lk(xk),使它在该点上取值为1,而在其余点xi(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) 上式表明:n个点xi(i=0,1,…,k-1,k+1,…,n)都是lk(x)的零点。可求得lk 三.计算方法及过程:1.输入节点的个数n 2.输入各个节点的横纵坐标 3.输入插值点 4.调用函数,返回z 函数语句与形参说明 程序源代码如下: 形参与函数类型 参数意义 intn 节点的个数 doublex[n](double*x) 存放n个节点的值 doubley[n](double*y) 存放n个节点相对应的函数值 doublep 指定插值点的值 doublefun() 函数返回一个双精度实型函数值,即插值点p处的近似函数值 #include #include usingnamespacestd; #defineN100 doublefun(double*x,double*y,intn,doublep); voidmain() {inti,n; cout<<"输入节点的个数n:"; cin>>n;

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

计算方法实验报告

中北大学信息商务学院计算方法实验报告 学生姓名:刘昊文学号: 30 学院:中北大学信息商务学院 专业:电气工程及其自动化 指导教师:薛晓健 2017 年 04 月 19 日

实验一:非线性方程的近似解法 1.实验目的 1.掌握二分法和牛顿迭代法的原理 2.根据实验内容编写二分法和牛顿迭代法的算法实现 注:(可以用C语言或者matlab语言) 2.实验设备 matlab 3.实验内容及步骤 解方程f(x)=x5-3x3-2x2+2=0 4.实验结果及分析 二分法: 数据: f =x^5-3*x^3-2*x^2+2 [ n xa xb xc fc ]

1 -3 3 0 2 0

牛顿迭代法 > syms x; f=(x^5-3*x^3-2*x^2+2) [x,k]=Newtondd(f,0,1e-12) f = x^5 - 3*x^3 - 2*x^2 + 2 x = NaN k =2 实验二:解线性方程组的迭代法 1.实验目的 1.掌握雅克比迭代法和高斯-塞德尔迭代法的原理 2.根据实验内容编写雅克比迭代法和高斯-塞德尔迭代法的算法实现 注:(可以用C语言或者matlab语言) 2.实验设备 Matlab

3.实验内容及步骤 1、分别用雅克比迭代法和高斯-塞德尔迭代法解方程Ax=b 其中A=[4 -1 0 -1 0 0 -1 4 -1 0 -1 0 0 -1 4 -1 0 -1 -1 0 -1 4 -1 0 0 -1 0 -1 4 -1 0 0 -1 0 -1 4] b=[0 ;5;-2;5;-2;6] 4.实验结果及分析 (雅克比迭代法) a=[4 -1 0 -1 0 0;-1 4 -1 0 -1 0;0 -1 4 -1 0 -1;-1 0 -1 4 -1 0;0 -1 0 -1 4 -1;0 0 -1 0 -1 4] b=[0;5;-2;5;-2;6] x=agui_jacobi(a,b) a = 4 -1 0 -1 0 0 -1 4 -1 0 -1 0 0 -1 4 -1 0 -1 -1 0 -1 4 -1 0 0 -1 0 -1 4 -1 0 0 -1 0 -1 4 b = 0 5 -2 5 -2 6

数据结构与算法实验报告

竭诚为您提供优质文档/双击可除数据结构与算法实验报告 篇一:数据结构与算法实验报告-图 沈阳工程学院 学生实验报告 (课程名称:数据结构与算法) 实验题目: 班级网络本112学号27姓名郑乐乐地点F606指导教师吕海华祝世东实验日期:20XX年11月13日 1 2 3 4 篇二:《数据结构与算法》实验报告模板 软件工程系实验报告封面 课程名称:数据结构与算法 课程代码:ss1005 实验指导老师:钟迅科

实验报告名称: 本实验报告包括以下几个内容: 一、实验(实践)目的 二、实验(实践)环境 三、实验(实践)实现过程 四、实验(实践)分析与总结 五、指导教师评语与评分 我申明,本报告内的实验已按要求完成,报告完全是由我个人完成,并没有抄袭行为。我已经保留了这份实验报告的副本。 申明人(签名): 学生姓名:张三学号:1140888888教学班:FJ01递交日期:20XX年10月11日 篇三:数据结构与算法实验报告c++版 算法与数据结构 实验报告 实验一:栈与队列 一、实验目的 1、掌握栈和队列特点、逻辑结构和存储结构 2、熟悉对栈和队列的一些基本操作和具体的函数定义。 3、利用栈和队列的基本操作完成一定功能的程序。 二、实验任务

1.出顺序栈的类定义和函数实现,利用栈的基本操作完成十进制数n与其它d进制数 的转换。(如n=1357,d=8) 2.给出顺序队列的类定义和函数实现,并利用队列计算并打印杨辉三角的前n行的内 容。(n=8) 3.给出链栈的类定义和函数实现,并设计程序完成如下功能:读入一个有限大小的整 数n,并读入n个数,然后按照与输入次序相反的次序输出各元素的值。 三、实验原理 1、将十进制数n转化为d进制时,用除去余数法,用d 除n所得余数作为d进制当前个位,将相除所得的商的整数部分作为新的n值重复上述计算,直到n为0为止。将前所得到的各余数反过来连接便得到最终结果。将每次求出的余数入栈,求解结束后,再依次出栈。 2、在杨辉三角中可用上一行的数来求出对应位置的下一行的内容。用队列保存上行内容,每当由上行的两个数求出下行的一个数时,其中的前一个便需要删除,而求出的数就 入队。为便于求解,在每行的第一个位置添加一个0作为辅助。 3、输出操作应在读入所有输入的整数后才能进行,用

数值计算方法实验5

实验报告 学院(系)名称: 主程序部分列选主元部分

实验结果: 一.列主元消去法 输入各个数据,最终使用列选主元法,得到结果为:x1=x2=x3=1二.高斯-赛德尔迭代法 输入各个数据,输出每一步迭代数据,最终结果为:x1=0.285716,附录(源程序及运行结果) 一.列主元高斯消去法 #include #include void print(double a[3][3],int n,double b[3]){ printf("输出矩阵:\n"); for(int i=0;ifabs(d)){ d=a[i][k]; l=i; } i++; } printf("选出主元:%lf\n",d); if(d==0) printf("矩阵奇异!\n"); else if(l!=k){ for(int j=k;j

计算方法实验报告4

计算方法实验报告(四) (一)线性方程的迭代解法 一、实验问题 利用简单迭代法,两种加速技术,牛顿法,改进牛顿法,弦割法求解习题5-1,5-2,5-3中的一题,并尽可能准确。 选取5-3:求在x=1.5附近的根。 二、问题的分析(描述算法的步骤等) (1)简单迭代法算法: 给定初始近似值,求的解。 Step 1 令i=0; Step 2 令(计算); Step 3 如果,则迭代终止,否则重复Step 2。 (2)Aitken加速法算法 Step 1 令k=0,利用简单迭代算法得到迭代序列; Step 2 令-(计算得到一个新的序列,其中k=0,1,2…);Step 3 如果,则迭代终止,否则重复Step 2。 (3)插值加速法算法 Step 1 令k=0,利用简单迭代算法得到迭代序列; Step 2 令+(计算得到一个新的序列,其中k=1,2,3…); Step 3 如果,则迭代终止,否则重复Step 2。 (4)牛顿法算法

Step 1给定初始近似值; Step 2令,其中k计算得到的序列; Step 3如果,则迭代终止,否则重复Step 2。 (5)改进牛顿法的算法 Step 1给定初始近似值; Step 2令,其中k迭代计算得到的序列; Step 3如果,则迭代终止,否则重复Step 2。 (6)弦割法算法(双点弦割法) Step 1给定初始近似值,; Step 2令其中k计算得到的序列; Step 3如果,则迭代终止,否则重复Step 2。 三、程序设计 (1)简单迭代法 利用迭代公式进行迭代运算。 #include #include #include double fun(double x) { double c=1+x*x; returnpow(c,1/3.0); } void main() { double x=1.5; double y=0; double D=1;

数据结构与算法的实验报告

数据结构与算法第二次实验报告 电子105班 赵萌 2010021526

实验二:栈和队列的定义及基本操作 一、实验目的: . 熟练掌握栈和队列的特点 . 掌握栈的定义和基本操作,熟练掌握顺序栈的操作及应用 . 掌握对列的定义和基本操作,熟练掌握链式队列的操作及应用, 掌握环形队列的入队和出队等基本操作 . 加深对栈结构和队列结构的理解,逐步培养解决实际问题的编程能力 二、实验内容: 定义顺序栈,完成栈的基本操作:空栈、入栈、出栈、取栈顶元素; 实现十进制数与八进制数的转换; 定义链式队列,完成队列的基本操作:入队和出队; 1.问题描述: (1)利用栈的顺序存储结构,设计一组输入数据(假定为一组整数),能够对顺序栈进行如下操作: . 初始化一个空栈,分配一段连续的存储空间,且设定好栈顶和栈底; . 完成一个元素的入栈操作,修改栈顶指针; . 完成一个元素的出栈操作,修改栈顶指针; . 读取栈顶指针所指向的元素的值; . 将十进制数N 和其它d 进制数的转换是计算机实现计算的基本问题,其解决方案很多,其中最简单方法基于下列原理:即除 d 取余法。例如:(1348)10=(2504)8 N N div 8 N mod 8 1348 168 4 168 21 0 21 2 5 2 0 2 从中我们可以看出,最先产生的余数 4 是转换结果的最低位,这正好符合栈的特性即后进先出的特性。 所以可以用顺序栈来模拟这个过程。以此来实现十进制数与八进制数的转换; . 编写主程序,实现对各不同的算法调用。 (2)利用队列的链式存储结构,设计一组输入数据(假定为一组整数),能够对链式队列进行如下操作: . 初始化一个空队列,形成一个带表头结点的空队; . 完成一个元素的入队操作,修改队尾指针; . 完成一个元素的出队操作,修改队头指针; . 修改主程序,实现对各不同的算法调用。

河工模型试验中的DPIV技术及其应用

河工模型试验中的DPIV技术及其应 用 摘要粒子图像测速是一种快速全 流场测量方法。本文根据河工模型试验的特点建立了一套多CCD的DPIV测量系统,在 自然光照明的条件下对河工模型近千平方 米区域内流体的表面流厨行快速测量;根据河工模型中粒子分布的特点,对PIV常用的速度提取算法(互相关和二次傅立叶变换) 进行了改进,提高了速度提取的效率,在一定的分辨率前提下达到了对河工模型表面 流场实时测量和记录的要求,测量误差较小。 关键词粒子图像测速河工模型速度测量 流场显示 0 引言河工模型是探讨河流工程问题 的有效研究方法之一,但由于河工模型尺寸大,观测的范围广,使用单点式速度测量仪器费时费力;对于动床模型或非定常流动模型,床面和边界形态均在不断变化之中,因

此,在河工模型试验中采用全场实时测速技术十分必要,具有很大的科研和经济价值。粒子示踪的图像全场测速技术(Particle Image Velocimetry[1,和Particle Tracking Velocimetry[3,4])以及数字化粒子图像测速技术(Digital PIV和Digital PTV)具有方便快捷的特点,在流体力学研究中得到了广泛应用。国内科研人员根据PIV 和PTV的基本原理,已成功开发出应用于大型河工模型表面流场测量的粒子示踪测速 系统:清华大学研制的DPTV系统、中国科学院力学研究所研制的DPIV系统等。 DPIV系统的核心是对流动图像进行处理,得到示踪粒子代表的流体的速度,这一过程称为速度提取。速度提取一般采用互相关算法和二次傅立叶变换[7,8,9]进行,需优良的硬件设备(运算速度高的计算机和浮点运算加速器件)才能满足实时测量的要求。本文考虑到河工模型中示踪粒子的分布特点 以及自然光照明的条件等,采用了三种改进的速度提取算法,缩短了速度提取时间,在普通Pentium系列微机由软件实现河工模型

(完整版)数值计算方法上机实习题答案

1. 设?+=1 05dx x x I n n , (1) 由递推公式n I I n n 1 51+-=-,从0I 的几个近似值出发,计算20I ; 解:易得:0I =ln6-ln5=0.1823, 程序为: I=0.182; for n=1:20 I=(-5)*I+1/n; end I 输出结果为:20I = -3.0666e+010 (2) 粗糙估计20I ,用n I I n n 51 5111+- =--,计算0I ; 因为 0095.05 6 0079.01020 201 020 ≈<<≈??dx x I dx x 所以取0087.0)0095.00079.0(2 1 20=+= I 程序为:I=0.0087; for n=1:20 I=(-1/5)*I+1/(5*n); end I 0I = 0.0083 (3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。 首先分析两种递推式的误差;设第一递推式中开始时的误差为000I I E '-=,递推过程的舍入误差不计。并记n n n I I E '-=,则有01)5(5E E E n n n -==-=-Λ。因为=20E 20020)5(I E >>-,所此递推式不可靠。而在第二种递推式中n n E E E )5 1(5110-==-=Λ,误差在缩小, 所以此递推式是可靠的。出现以上运行结果的主要原因是在构造递推式过程中,考虑误差是否得到控制, 即算法是否数值稳定。 2. 求方程0210=-+x e x 的近似根,要求4 1105-+?<-k k x x ,并比较计算量。 (1) 在[0,1]上用二分法; 程序:a=0;b=1.0; while abs(b-a)>5*1e-4 c=(b+a)/2;

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

计算方法实验指导书.

计算方法 实 验 指 导 书 彭彬 计算机技术实验中心 2012年3月

· 实验环境: VC++ 6.0 · 实验要求:在机房做实验只是对准备好的实验方案进行验证,因此上机前要检查实验准备情况,通过 检查后方可上机。没有认真准备的学生不能上机,本次实验没有分数。实验中要注意考察和体会数值计算中出现的一些问题和现象:误差的估计,算法的稳定性、收敛性、收敛速度以及迭代初值对收敛的影响等。 · 关于计算精度:如果没有特别说明,在计算的过程中,小数点后保留5位数字,最后四舍五入到小数 点后四位数字。迭代运算的结束条件统一为 51 102 -?。在VC++ 6.0中,可使用setprecision 在流的输出中控制浮点数的显示(缺省显示6位)。演示如下: # include # include # include //输出6位精度,输出左对齐 cout<

相关文档
最新文档