高中一年级数学函数经典题目和答案解析

高中一年级数学函数经典题目和答案解析
高中一年级数学函数经典题目和答案解析

1函数解析式的特殊求法

例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式

例2 若x x x f 21

(+=+),求f(x)

例3 已知x x x f 2)1(+=+,求)1(+x f

例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式

例5 已知f(x)满足x x

f x f 3)1()(2=+,求)(x f

2函数值域的特殊求法

例1. 求函数

]2,1[x ,5x 2x y 2-∈+-=的值域。

例2. 求函数

22

x 1x x 1y +++=的值域。

例3求函数y=(x+1)/(x+2)的值域

例4. 求函数1e 1e y x x +-=的值域。

例1下列各组中的两个函数是否为相同的函数? ①3

)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y

③21)52()(-=x x f 52)(2-=x x f

2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点

(A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(-

例3

已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-

0,()6a f a ><当时;(2)12f -=。

(1)求:(2)f 的值;

(2)求证:()f x 是R 上的减函数;

(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。

例4已知{(,)|,,A x y x n y an b n ===+∈Z },

2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},

问是否存在实数,a b ,使得

(1)A B ≠?,(2)(,)a b C ∈同时成立.

证明题

1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时

12()()f x f x ≠,求证:方程()f x =121[()()]2

f x f x +有不等实根,且必有一根属于区间(x 1,x 2).

答案

1解:设f(x)=kx+b 则 k(kx+b)+b=4x -1 则??

???-==????-=+=3121)1(42b k b k k 或 ???=-=12b k ∴3

12)(-=x x f 或12)(+-=x x f 2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。解法一(换元法):令t=1+x 则x=t 2-1, t ≥1代入原式有

1)1(2)1()(22-=-+-=t t t t f

∴1)(2-=x x f (x ≥1)

解法二(定义法):1)1(22-+=+x x x ∴1)1()1(2-+=+x x f 1+x ≥1

∴1)(2-=x x f (x ≥1)

4代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点

则?????=+'-=+'322

2y y x x ,解得:???-='--='y y x x 64 ,

点),(y x M '''在)(x g y =上

x x y '+'='∴2

把???-='--='y y x x 64代入得:

整理得

672---=x x y ∴67)(2---=x x x g

例5构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 ∵已知x x

f x f 3)1()(2=+ ①, 将①中x 换成x 1得x

x f x f 3)()1(2=+ ②, ①×2-②得x x x f 36)(3-= ∴x x x f 12)(-=.

值域求法

例1 解:将函数配方得:4)1x (y 2+-=

∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y m i n =,当1x -=时,8y m a x = 故函数的值域是:[4,8]

2. 判别式法例2. 解:原函数化为关于x 的一元二次方程

0x )1y (x )1y (2=-+-

(1)当1y ≠时,R x ∈

0)1y )(1y (4)1(2≥----=?

解得:23y 2

1≤≤ (2)当y=1时,0x =,而??????∈23,211故函数的值域为?????

?23,21

当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例3求函数y=(x+1)/(x+2)的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y -1),其定义域为y ≠1的实数,故函数y 的值域为{y ∣y ≠1,y ∈R }。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x -10-x)的值域。(答案:函数的值域为{y ∣y<-1或y>1}

5. 函数有界性法

直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。

例4. 求函数1e 1e y x x +-=的值域。解:由原函数式可得:

1y 1y e x -+= ∵0e x > ∴01y 1y >-+

解得:1y 1<<-

故所求函数的值域为)1,1(-

例1(定义域不同)(定义域不同) (定义域、值域都不同) 例3解: (1)()()()6,f a b f a f b +=+- 令0a b ==,得(0)6f =

令2,2a b ==-,得(2)0f =

(2)证明:设12,x x 是R 上的任意两个实数,且12x x <,即210x x ->,

从而有21()6f x x -<,

则212111()()[()]()f x f x f x x x f x -=-+-2111()()6()f x x f x f x =-+-- 21()60f x x =--< ∴21()()f x f x <即()f x 是R 上的减函数

(3)()()()6,f a b f a f b +=+-令1,1a b ==,得(1)3f = ∵(2)(2)3f k f k -<- ∴(2)3(2)f k f k -+<,又(1)3f =,(2)0f =

即有(2)(1)(2)(2)f k f f k f -+<+

∴(2)(1)6(2)(2)6f k f f k f -+-<+-

∴[(2)1][(2)2]f k f k -+<+

又∵()f x 是R 上的减函数 ∴(2)1(2)2k k -+>+即3k <-

(A)∴实数k 的取值范围是3k <-

例4分析:假设存在,a b 使得(1)成立,得到a 与b 的关系后与22x y +≤14联立,然后讨论联立的不等式组.

解:假设存在实数,a b ,使得A B ≠?,(,)a b C ∈同时成立,则集合

{(,)|,,A x y x n y an b n ===+∈Z }与集合2{(,)|,315,B x y x m y m m

===+∈Z }分别对应集合1{(,)|,A x y y ax b x ==+∈Z }与21{(,)|315,B x y y x x ==+∈Z },1A 与1B 对应的直线y ax b =+与抛物线

2315y x =+至少有一个公共点,所以方程组2315

y ax b y x =+??=+?有解,即方程2315x ax b +=+必有解. 因此212(15)a b ?=--≥20a ?-≤12180b -,①

又∵22a b +≤14 ②

由①②相加,2b 得≤1236b -,即2(6)b -≤0.∴6b =.

将6b =代入①得2a ≥108,

再将6b =代入②得2a ≤108,因此63a =±, 将63a =±,6b =代入方程2315x ax b +=+得236390x x ±+=, 解得3x =±?Z .

所以不存在实数,a b ,使得(1),(2)同时成立. 证明题1

1解:设F (x )=()f x -121[()()]2

f x f x +, 则方程 ()f x =121[()()]2

f x f x + ① 与方程 F (x )=0 ② 等价

∵F (x 1)=1()f x -121[()()]2f x f x +=121[()()]2

f x f x - F (x 2)=2()f x -121[()()]2f x f x +=121[()()]2

f x f x -+ ∴ F (x 1)·F (x 2)=-2121[()()]4

f x f x -,又12()()f x f x ≠ ∴F (x 1)·F (x 2)<0

故方程②必有一根在区间(x 1,x 2)内.由于抛物线y =F (x )在x 轴上、下方均有分布,所以此抛

物线与x 轴相交于两个不同的交点,即方程②有两个不等的实根,从而方程①有两个不等的实根,且必有一根属于区间(x 1,x 2).

点评:本题由于方程是()f x =121[()()]2

f x f x +,其中因为有()f x 表达式,所以解题中有的学生不理解函数图像与方程的根的联系,误认为证明()f x 的图像与x 轴相交于两个不同的点,从而证题中着眼

于证1()f x 2()f x <0,使本题没法解决. 本题中将问题转化为F (x )=()f x -121[()()]2

f x f x +的图像与x 轴相交于两个不同的两点是解题的关健所在.

高中数学必修一函数难题

高中函数大题专练 2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。 ① 对任意的[0,1]x ∈,总有()0f x ≥; ② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。 已知函数2()g x x =与()21x h x a =?-是定义在[0,1]上的函数。 (1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值; (3)在(2)的条件下,讨论方程(21)()x g h x m -+=()m R ∈解的个数情况。 3.已知函数| |212)(x x x f - =. (1)若2)(=x f ,求x 的值; (2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围. 4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x ?-?=??? 0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件. 5.已知函数()(0)|| b f x a x x =-≠。 (1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围; (2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是 [,]m n ,则称()g x 是[,]m n 上的闭函数。若函数()f x 是某区间上的闭函数,试探求,a b 应满足的条件。 6、设bx ax x f += 2)(,求满足下列条件的实数a 的值:至少有一个正实数b ,使函数)(x f 的定义域和值域相同。 7.对于函数)(x f ,若存在R x ∈0 ,使00)(x x f =成立,则称点00(,)x x 为函数的不动点。

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

函数定义域、值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = (2 )01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为 ________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取 值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈

⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式

高一函数经典难题讲解

高一经典难题讲解 1.已知函数f(x)=(x+1-a)/(a-x),x∈R且x≠a,当f(x)的定义域为[a-1,a-1/2]时,求f(x)值 解:由题知,已知函数f(x)=(x+1-a)/(a-x), 所以,f(x)= -1+1/(a-x), 当f(x)的定义域为[a-1,a-1/2]时 x∈[a-1,a-1/2] (a-x)∈[1/2,1] 1/(a-x)∈[1,2] f(x)=-1+1/(a-x)∈[0,1] 2.设a为非负数,函数f(x)=x|x-a|-a. (1)当a=2时,求函数的单调区间 (2)讨论函数y=f(x)的零点个数 解析:(1)∵函数f(x)=x|x-2|-2 当x<2时,f(x)=-x^2+2x-2,为开口向下抛物线,对称轴为x=1 当x>=2时,f(x)=x^2-2x-2,为开口向上抛物线,对称轴为x=1 ∴当x∈(-∞,1)时,f(x)单调增;当x∈[1,2]时,f(x)单调减;当x∈(2,+∞)时,f(x)单调增; (2).f(x)=x|x-a|-a=0, x|x-a|=a,① a=0时x=0,零点个数为1; a>0时x>0,由①,x>=a,x^2-ax-a=0,x1=[a+√(a^2+4a)]/2; 04时,②无实根,零点个数为1。 a<0时,x<0,由①,x>=a>-4,x^2-ax-a=0③,x1,2=[a土√(a^2+4a)]/2; x4时零点个数为1; a=土4时,零点个数为2; -4

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

综合题:高一数学函数经典习题及答案

函 数 练 习 题 一、 求函数的定义域 1、求下列函数的定义域: ⑴33y x =+- ⑵y = ⑶01(21)111 y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311 x y x -=+ (5)x ≥ ⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =

6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 )5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3) 11、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2(2)10x a x a +-+->恒成立的x 的取值范围是( ) (A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<< 13、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}- 14、函数1()(0)f x x x x =+≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数

高一数学函数经典难题讲解

- 1 - 高一函数经典难题讲解 1.已知函数f(x)=(x+1-a)/(a-x),x∈R 且x≠a,当f(x)的定义域为 [a-1,a-1/2]时,求f(x)值 解:由题知,已知函数f(x)=(x+1-a)/(a-x), 所以,f(x)= -1+1/(a-x), 当f(x)的定义域为[a-1,a-1/2]时 x∈[a -1,a-1/2] (a-x)∈[1/2,1] 1/(a-x)∈[1,2] f(x)=-1+1/(a-x)∈[0,1] 2.设a 为非负数,函数f(x)=x|x-a|-a. (1)当a=2时,求函数的单调区间 (2)讨论函数y=f(x)的零点个数 解析:(1)∵函数f(x)=x|x-2|-2 当x<2时,f(x)=-x^2+2x-2,为开口向下抛物线,对称轴为x=1 当x>=2时,f(x)=x^2-2x-2,为开口向上抛物线,对称轴为x=1 ∴当x∈(-∞,1)时,f(x)单调增;当x∈[1,2]时,f(x)单调减;当x∈(2,+∞)时,f(x)单调增; (2).f(x)=x|x-a|-a=0, x|x-a|=a,① a=0时x=0,零点个数为1; a>0时x>0,由①,x>=a,x^2-ax-a=0,x1=[a+√(a^2+4a)]/2; 04时,②无实根,零点个数为1。 a<0时,x<0,由①,x>=a>-4,x^2-ax-a=0③,x1,2=[a 土√(a^2+4a)]/2; x4时零点个数为1; a=土4时,零点个数为2; -4

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高一数学函数经典题目及答案

1函数解析式的特殊求法 例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式 例2 若x x x f 21 (+=+),求f(x) 例3 已知x x x f 2)1(+=+,求)1(+x f 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 例5 已知f(x)满足x x f x f 3)1()(2=+,求)(x f 2函数值域的特殊求法 例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。 例2. 求函数 22 x 1x x 1y +++=的值域。 例3求函数y=(x+1)/(x+2)的值域 例4. 求函数1e 1e y x x +-=的值域。 例1下列各组中的两个函数是否为相同的函数? ①3 )5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y ③21)52()(-=x x f 52)(2-=x x f

2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点 (A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(- 例3 已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+- 0,()6a f a ><当时;(2)12f -=。 (1)求:(2)f 的值; (2)求证:()f x 是R 上的减函数; (3)若(2)(2)3f k f k -<-,求实数k 的取值范围。 例4已知{(,)|,,A x y x n y an b n ===+∈Z }, 2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得 (1)A B ≠?,(2)(,)a b C ∈同时成立. 证明题 1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时 12()()f x f x ≠,求证:方程()f x =121[()()]2 f x f x +有不等实根,且必有一根属于区间(x 1,x 2).

高一数学函数经典习题及答案

函 数 练 习 题 班级 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)111 y x x =+-++ - 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,数m 的取值围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y =⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y ⑽ 4y = ⑾y x =-

6、已知函数22 2()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y =⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;

(完整)高一函数经典难题讲解.docx

1.已知函数 f(x)=(x+1-a)/(a-x),x ∈ R 且 x≠a,当 f(x) 的定义域为 [a-1,a-1/2] 时,求 f(x) 值解:由题知,已知函数 f(x)=(x+1-a)/(a-x), 所以, f(x)= -1+1/(a-x), 当f(x) 的定义域为 [a-1,a-1/2] 时 x∈ [a-1,a-1/2] (a-x) ∈ [1/2,1] 1/(a-x) ∈ [1,2] f(x)=-1+1/(a-x) ∈ [0,1] 2.设 a 为非负数 ,函数 f(x)=x|x-a|-a. (1) 当 a=2 时,求函数的单调区间 (2)讨论函数 y=f(x) 的零点个数 解析: (1)∵函数 f(x)=x|x-2|-2 当 x<2 时, f(x)=-x^2+2x-2 ,为开口向下抛物线,对称轴为x=1 当 x>=2 时, f(x)=x^2-2x-2 ,为开口向上抛物线,对称轴为x=1 ∴当 x∈ (-∞,1)时, f(x) 单调增;当x∈ [1,2] 时, f(x) 单调减;当x∈ (2,+ ∞)时, f(x) 单调增; (2).f(x)=x|x-a|-a=0, x|x-a|=a,① a=0 时 x=0,零点个数为1; a>0 时 x>0,由①, x>=a,x^2-ax- a=0,x1=[a+ √ (a^2+4a)]/2; 04 时,②无实根,零点个数为1。 a<0 时, x<0,由①, x>=a>-4,x^2-ax-a=0 ③ ,x1,2=[a 土√ (a^2+4a)]/2; x4 时零点个数为1; a=土 4 时,零点个数为2; -41, 6/(x-3)>6 所以t(x)=1+[6/(x-3)]>7 那么 ,原函数在( 3,4)上值域是( log3 (7) ,正无穷) 3、先求函数定义域 (x+3)/(x-3)>0 且 x≠ 3解得x>3 或 x<-3 (1)当 x>3 时, 因为 t(x)=(x+3)/(x-3)=1+[6/(x-3)]单调递减,所以函数f(x)=log3 t(x)单调递减。 (2)当 x<-3 时,因为t(x)=(x+3)/(x-3)=1+[6/(x-3)]单调递减,所以函数f(x)=log3 t(x) 4.已知函数 f ( x ) =log4 ( 4^x+1 ) +kx 是偶函数 . (1) 求 k 的值 (2) 设 f ( x ) =log4(a2^x-4/3a)有且只有一个实数根,求实数的取值范围. 解:( 1)f(x)=log4 ( 4^x+1)+kx ( K ∈ R)是偶函数, ∴f(-x)=f(x), 即log<4>[4^(-x)+1]+k(-x)=log<4>(4^x+1)+kx, ∴l og<4>{[4^(-x)+1]/(4^x+1)}=2kx, -x=2kx, k=-1/2.

2018高中数学(函数难题)

难点突破 一.选择题(共18小题) 1.已知奇函数f(x)是定义在R上的连续可导函数,其导函数是f'(x),当x >0时,f'(x)<2f(x)恒成立,则下列不等关系一定正确的是()A.e2f(1)>﹣f(2)B.e2f(﹣1)>﹣f(2) C.e2f(﹣1)<﹣f(2)D.f(﹣2)<﹣e2f(﹣1) 2.当x>0时,不等式恒成立,则a的取值范围是() A.[0,1)∪(1,+∞)B.(0,+∞) C.(﹣∞,0]∪(1,+∞) D.(﹣∞,1)∪(1,+∞) 3.设n∈N*,函数f1(x)=xe x,f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),曲线y=f n(x)的最低点为P n,△P n P n+1P n+2的面积为S n,则()A.{S n}是常数列B.{S n}不是单调数列 C.{S n}是递增数列D.{S n}是递减数列 4.中国古代十进制的算筹计数法,在世界数学史上是一个伟大的创造,算筹实际上是一根根同样长短的小木棍,如图,算筹表示数1~9的方法的一种. 例如:163可表示为“”27可表示为“”问现有8根算筹可以表示三位数的个数(算筹不能剩余)为() A.48 B.60 C.96 D.120 5.已知函数f(x)是定义在(0,+∞)上的可导函数,f'(x)是f(x)的导函数,若,且f'(2)=2,那么f(2)=()A.0 B.﹣2 C.﹣4 D.﹣6 6.函数f(x)=x﹣ln(x+2)+e x﹣a+4e a﹣x,其中e为自然对数的底数,若存在实数x0使f(x0)=3成立,则实数a的值为() A.ln2 B.ln2﹣1 C.﹣ln2 D.﹣ln2﹣1

高一数学函数经典题目及答案

精选 1函数解析式的特殊求法 例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式 例2 若x x x f 21 (+=+),求f(x) 例3 已知x x x f 2)1(+=+,求)1(+x f 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 例5 已知f(x)满足x x f x f 3)1()(2=+,求)(x f 2函数值域的特殊求法 例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。 例2. 求函数 22 x 1x x 1y +++=的值域。 例3求函数y=(x+1)/(x+2)的值域 例4. 求函数1e 1e y x x +-=的值域。 例1下列各组中的两个函数是否为相同的函数? ①3 )5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y ③21)52()(-=x x f 52)(2-=x x f

精选 2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点 (A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(- 例3 已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+- 0,()6a f a ><当时;(2)12f -=。 (1)求:(2)f 的值; (2)求证:()f x 是R 上的减函数; (3)若(2)(2)3f k f k -<-,求实数k 的取值范围。 例4已知{(,)|,,A x y x n y an b n ===+∈Z }, 2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得 (1)A B ≠?I ,(2)(,)a b C ∈同时成立. 证明题 1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时 12()()f x f x ≠,求证:方程()f x =121[()()]2 f x f x +有不等实根,且必有一根属于区间(x 1,x 2).

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

综合题:高一数学函数经典习题及答案

函数练习题 一、求函数的定义域 1、求下列函数的定义域: ⑴2 2153 3 x x y x ⑵ 2 11() 1 x y x ⑶ 2 1(21) 411 1 y x x x 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _ ;函数f x ()2的定义域为________; 3、若函数(1)f x 的定义域为 []23,,则函数 (21)f x 的定义域是 ;函数 1( 2)f x 的定义域 为 。 4、知函数f x ()的定义域为[1,1],且函数()()()F x f x m f x m 的定义域存在,求实数 m 的取值范围。 二、求函数的值域 5、求下列函数的值域:⑴2 23y x x () x R ⑵2 23y x x [1,2] x ⑶311 x y x ⑷311 x y x (5) x ⑸262 x y x ⑹ 2 2594 1 x x y x +⑺ 3 1y x x ⑻ 2y x x ⑼ 2 45 y x x ⑽2 445 y x x ⑾ 12y x x 6、已知函数 2 2 2() 1 x ax b f x x 的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、已知函数 2 (1)4f x x x ,求函数()f x ,(21)f x 的解析式。2、已知()f x 是二次函数,且2 (1) (1) 24f x f x x x ,求()f x 的解析式。 3、已知函数 ()f x 满足2()()34f x f x x ,则()f x = 。 4、设()f x 是R 上的奇函数,且当 [0, )x 时, 3 ()(1)f x x x ,则当(,0)x 时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x 且,()f x 是偶函数,()g x 是奇函数,且1() () 1 f x g x x ,求() f x 与() g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间:⑴ 2 23 y x x ⑵ 2 23 y x x ⑶ 2 61 y x x 7、函数()f x 在[0,)上是单调递减函数,则 2 (1)f x 的单调递增区间是 8、函数236 x y x 的递减区间是 ;函数 236 x y x 的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为( ) ⑴3 ) 5)(3(1x x x y , 52 x y ; ⑵111 x x y , )1)(1(2 x x y ; ⑶x x f ) (,2 ) (x x g ;⑷x x f )(,3 3 ()g x x ;⑸2 1)52() (x x f , 52)(2x x f 。

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

最新高一数学函数经典习题及答案

函 数 练 习 题 班级 姓名 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01(21)111 y x x =+-++- 2 _ _ _ ________3、若函数(1)f x +(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范 围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -= + ⑷ 311 x y x -=+ (5)x ≥ ⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x = -++ ⑻2y x x =- ⑼ y ⑽ 4y = ⑾y x =-

6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y = ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( )

相关文档
最新文档