银川市高考数学备考复习(理科)专题六:三角函数B卷
高考数学B版真题及模拟:三角函数的图象与性质

的图象,令2s- =2kπ,k∈Z,即得s的最小值.
3
2.(2013北京,3,5分,0.94)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的 ( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
答案 A 当φ=π时,y=sin(2x+φ)=-sin 2x,此时曲线过坐标原点,但曲线y=sin(2x+φ)过坐标原点 时,φ=kπ(k∈Z),∴“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的充分而不必要条件,故选A.
y=sin 2x
2 3
=cos
2x
2 3
2
=cos
2x
6
=cos
2
x
12
,
由y=cos x的图象得到y=cos 2x的图象,需将曲线C1上各点的横坐标缩短到原来的 1 ,纵坐标不
2
变;由y=cos
2x的图象得到y=cos
2
x
12
的图象,需将y=cos
2x的图象上的各点向左平移
7.(2012北京,15,13分)已知函数f(x)= (sin x cos x)sin 2x .
sin x
(1)求f(x)的定义域及最小正周期;
(2)求f(x)的单调递增区间.
解析 (1)由sin x≠0得x≠kπ(k∈Z), 故f(x)的定义域为{x∈R|x≠kπ,k∈Z}.
因为f(x)= (sin x cos x)sin 2x =2cos x(sin x-cos x)
12
个单位长
度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的 1 ,纵坐标不变,再把得到的曲线向右平移 个单位长度,
三角函数、解三角形——2024届高考数学试题分类汇编(解析版)

2024高考复习·真题分类系列2024高考试题分类集萃·三角函数、解三角形
微专题总述:三角函数的图像与性质
【扎马步】2023高考三角函数的图像与性质方面主要考察“卡根法”的运用,是最为基础的表现
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,加强图像考察与其他知识点如几何、函数的结合,对称思想的隐含
微专题总述:正弦定理与余弦定理的应用
【扎马步】2023高考解三角形小题部分紧抓“教考衔接”基础不放,充分考察正余弦定理的运用
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,在考察正余弦定理时与角平分线定理结合(初中未涉及此定理)
微专题总述:解三角形综合问题
【扎马步】2023高考解三角形大题部分仍然与前几年保持一直模式,结构不良题型日益增多,但方向不变,均是化为“一角一函数”模式是达到的最终目的,考察考生基本计算与化简能力
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,如新高考卷中出现的数形结合可加快解题速度,利用初中平面几何方法快速求出对应参量在近几年高考题中频繁出现,可见初高中结合的紧密 2023年新课标全国Ⅰ卷数学
16.已知在ABC 中,
()3,2sin sin A B C A C B +=−=. (1)求sin A ;
(2)设5AB =,求AB 边上的高.
2023高考试题分类集萃·三角函数、解三角形参考答案
2。
大高考高考数学一轮总复习三角函数解三角形三角恒等变换高考AB卷理

【大高考】2017版高考数学一轮总复习 第4章 三角函数、解三角形 第4节 三角恒等变换高考AB 卷 理三角函数的求值与化简1.(2016·全国Ⅱ,9)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α=( )A.725B.15C.-15D.-725解析 因为sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α=2cos 2⎝ ⎛⎭⎪⎫π4-α-1,又因为cos ⎝ ⎛⎭⎪⎫π4-α=35,所以sin 2α=2×925-1=-725,故选D.答案 D2.(2016·全国Ⅲ,8)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010 B.1010C.-1010D.-31010解析 设BC 边上的高AD 交BC 于点D ,由题意B =π4,BD =13BC ,DC =23BC ,tan ∠BAD =1,tan ∠CAD =2,tan A =1+21-1×2=-3,所以cos A =-1010.答案 C3.(2015·全国Ⅰ,2)sin 20°cos 10°-cos 160°sin 10°=( ) A.-32B.32C.-12D.12解析 sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=12.答案 D4.(2014·全国Ⅰ,8)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A.3α-β=π2B.3α+β=π2C.2α-β=π2D.2α+β=π2解析 由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+sin βcos α,所以sin(α-β)=cos α,又cos α=sin ⎝ ⎛⎭⎪⎫π2-α,所以sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α,又因为α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,所以-π2<α-β<π2,0<π2-α<π2,因此α-β=π2-α,所以2α-β=π2,故选C. 答案 C5.(2012·大纲全国,7)已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A.-53B.-59C.59D.53解析 由(sin α+cos α)2=13,得2sin αcos α=-23.∵α在第二象限,∴cos α<0,sin α>0,∴cos α-sin α=-(sin α+cos α)2-4sin αcos α =-153, 故cos 2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α) =33×⎝ ⎛⎭⎪⎫-153=-53,选A. 答案 A6.(2014·全国Ⅱ,14)函数f (x )=sin(x +2φ)-2sin co φs(x +φ)的最大值为 .解析 f (x )=sin[(x +φ)+φ]-2sin cos φ(x +φ)=sin(x +φ)cos -φcos(x +φ)sin φ=sin(x +φ-φ)=sin x ,因为x ∈R ,所以f (x )的最大值为1.答案 17.(2013·全国Ⅰ,15)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ= .解析 f (x )=sin x -2cos x =5⎝ ⎛⎭⎪⎫15sin x -25cos x , 令cos α=15,sin α=-25,则f (x )=5sin(α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )有最大值5,即θ=2k π+π2-α(k ∈Z ), 所以cos θ=cos ⎝ ⎛⎭⎪⎫2k π+π2-α=cos ⎝ ⎛⎭⎪⎫π2-α =sin α=-25=-255.答案 -255三角函数的求值与化简1.(2016·山东,7)函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( ) A.π2 B.π C.3π2D.2π解析 ∵f (x )=2sin x cos x +3(cos 2x -sin 2x )=sin 2x +3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π3,∴T =π,故选B. 答案 B2.(2013·重庆,9)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3D.22-1解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin 100°-sin 40°cos 40°=2sin (60°+40°)-sin 40°cos 40°=2×32cos 40°+2×12sin 40°-sin 40°cos 40°= 3.答案 C3.(2012·山东,7)若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( ) A.35 B.45 C.74D.34解析 ∵θ∈⎣⎢⎡⎦⎥⎤π4,π2,∴2θ∈⎣⎢⎡⎦⎥⎤π2,π,∴cos 2θ=-1-sin 22θ=-18,∴sin θ=1-cos 2θ2=34,故选D. 答案 D4.(2016·四川,11)cos2π8-sin 2π8= . 解析 由题可知,cos2π8-sin 2π8=cos π4=22(二倍角公式). 答案225.(2015·四川,12)sin 15°+sin 75°的值是 .解析 sin 15°+sin 75°=sin 15°+cos 15°=2sin(15°+45°)=2sin 60°=62. 答案626.(2015·江苏,8)已知tan α=-2,tan(α+β)=17,则tan β的值为 .解析 ∵tan α=-2,∴tan(α+β)=tan α+tan β1-tan αtan β=-2+tan β1+2tan β=17,解得tan β=3.答案 37.(2015·山东,16)设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4. (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解 (1)由题意知f (x )=sin 2x 2-1+cos ⎝⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z, 可得-π4+k π≤x ≤π4+k π,k ∈Z ;由π2+2k π≤2x ≤3π2+2k π,k ∈Z, 可得π4+k π≤x ≤3π4+k π,k ∈Z . 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z );单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ).(2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12,由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A , 可得1+3bc =b 2+c 2≥2bc , 即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34. 8.(2014·江西,16)已知函数f (x )=sin(x +θ)+a co8(x +2θ),其中a ∈R ,θ∈⎝⎛⎭⎪⎫-π2,π2.(1)若a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,求a ,θ的值.解 (1)f (x )=sin ⎝ ⎛⎭⎪⎫x +π4+2cos ⎝⎛⎭⎪⎫x +π2=22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝ ⎛⎭⎪⎫π4-x , 因为x ∈[0,π],从而π4-x ∈⎣⎢⎡⎦⎥⎤-3π4,π4,故f (x )在[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1, 又θ∈⎝ ⎛⎭⎪⎫-π2,π2知cos θ≠0,解得⎩⎪⎨⎪⎧a =-1,θ=-π6.9.(2014·广东,16)已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫x +π4,x ∈R ,且f ⎝ ⎛⎭⎪⎫5π12=32.(1)求A 的值;(2)若f (θ)+f (-θ)=32,θ∈⎝ ⎛⎭⎪⎫0,π2,求f ⎝ ⎛⎭⎪⎫3π4-θ.解 (1)f ⎝⎛⎭⎪⎫5π12=A sin ⎝ ⎛⎭⎪⎫5π12+π4=32,∴A ·32=32,A = 3.(2)f (θ)+f (-θ)=3sin ⎝ ⎛⎭⎪⎫θ+π4+3·sin ⎝ ⎛⎭⎪⎫-θ+π4=32,∴3⎣⎢⎡⎦⎥⎤22(sin θ+cos θ)+22(-sin θ+cos θ)=32,∴6cos θ=32,cos θ=64,又θ∈(0,π2),∴sin θ=1-cos 2θ=104,∴f ⎝ ⎛⎭⎪⎫34π-θ=3sin(π-θ)=3sin θ=304.10.(2013·广东,16)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12,x ∈R . (1)求f ⎝ ⎛⎭⎪⎫-π6的值; (2)若cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,求f ⎝⎛⎭⎪⎫2θ+π3.解 (1)因为f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12, 所以f ⎝ ⎛⎭⎪⎫-π6=2cos ⎝ ⎛⎭⎪⎫-π6-π12 =2cos ⎝ ⎛⎭⎪⎫-π4=2cos π4=1.(2)因为cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,所以sin θ=-45. 所以sin 2θ=2sin θcos θ=-2425,cos 2θ=cos 2θ-sin 2θ=-725.所以f ⎝ ⎛⎭⎪⎫2θ+π3=2cos ⎝ ⎛⎭⎪⎫2θ+π3-π12=2cos ⎝ ⎛⎭⎪⎫2θ+π4 =cos 2θ-sin 2θ=-725-⎝ ⎛⎭⎪⎫-2425=1725。
银川一中高考数学二轮专题复习《三角函数的恒等变形与计算》

宁夏银川一中2006高考数学二轮专题复习-----《三角函数的恒等变形与计算》 一选择题1在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( b )A 、223 B 、233 C 、23D 、332对任意的锐角α,β,下列不等关系中正确的是 (d ) (A )sin(α+β)>sin α+sin β(B )sin(α+β)>cos α+cos β (C )cos(α+β)<sinα+sinβ(D )cos(α+β)<cosα+cosβ 3在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断:(b ) ①1cot tan =⋅B A ②2sin sin 0≤+<B A③1cos sin 22=+B A ④C B A 222sin cos cos =+ 其中正确的是(A )①③(B )②④(C )①④(D )②③ 4设02x π≤≤,sin cos x x =-,则 ( C)(A)0x π≤≤ (B)744x ππ≤≤(C) 544x ππ≤≤ (D)322x ππ≤≤ 5函数⎪⎩⎪⎨⎧≥<<-π=-0,01),sin()(12x e x x x f x ,若2)()1(=+a f f ,则a 的所有可能值为( b )(A )1 (B )22,1-(C )22- (D )22,1 6△ABC 中,命题甲:A =90º,命题乙:sin C =c os A +c os B ,那么甲是乙的………………………( a )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分又不必要条件7△ABC 中,sin A =2sin Cc os B ,那么此三角形是…………………………………………………( c )(A )等边△(B )锐角△(C )等腰△(D )直角△ 4、△ABC 中,如果8tg A >tg B ,那么此三角形是…………………………………………………( d )(A )钝角△(B )直角△(C )锐角△(D )不能确定 9△ABC 满足:CcB b A a cos cos cos ==,那么此三角形的形状是…………………………( b ) (A )直角三角形 (B )正三角形 (C ) 任意三角形 (D ) 等腰三角形 10若12sin cos 25αα=,则cos2α=( b ) A 、725 B 、725± C 、725- D、5±11若向量(cos ,sin ),(cos ,sin )a b ααββ==,则a 与b 一定满足( c )A 、a 与b 的夹角等于αβ-B 、//a bC 、()()a b a b +⊥-D 、a b ⊥12已知tan α,tan β是方程04x 33x 2=++两根,且α,β)2,2(ππ-∈,则α+β等于(a)A 、π-32 B 、π-32或3π C 、3π-或π32 D 、3π 13已知x ∈(2π-,0),cosx=54,则tan2x = ( b ) A.247 B. 247- C. 724 D.724-14已知)(x f 是定义在)3,3(-上的奇函数,当30<<x 时,)(x f 的图象如图所示,那么不等式0cos )(<x x f 的解集是( b )(A) )3,2()1,0()2,3(ππ⋃⋃--(B) )3,2()1,0()1,2(ππ⋃⋃--(C) )3,1()1,0()1,3(⋃⋃-- (D) )3,1()1,0()2,3(⋃⋃--π15若5sin()413πα-=,且(0,)2πα∈, 则cos 2cos()4απα+值为 ( b )A .1213B .2413C .1113D .231316已知A 是△ABC 的一个内角,且2sin cos 3A A +=,则△ABC 是( b )A .锐角三角形B .钝角三角形C .直角三角形D .形状不确定二填空题17在ABC ∆中,c b a 、、分别是A ∠、B ∠、C ∠所对的边。
专题46 《三角函数》综合测试卷(B)--《2022-2023学年高中数学人教A版》(解析版)

第五章 专题46 《三角函数》综合测试卷(B )第I 卷 选择题部分(共60分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2022·湖北·3) A .2sin15cos15︒︒ B .22sin 15cos 15︒+︒ C .22sin 151︒- D .22cos 15sin 15︒-︒【答案】D【分析】运用倍角公式逐项计算即可. 【详解】1A.2sin15cos15sin302︒︒=︒=,不成立; B. 22sin 15cos 151︒+︒=,不成立 C. 232sin 151cos302︒-=-︒=-,不成立; D. 223cos 15sin 15cos302︒-︒=︒=,成立 故选:D.2.(2022·安徽省宿州市苐三中学高一期中)已知sin 63α⎛⎫+= ⎪⎝⎭,则cos 2+3α⎛⎫= ⎪⎝⎭( )A .79-B .23-C .23D .79【答案】D【分析】利用倍角公式2cos 212s πin 36παα⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,即得. 【详解】因为π1sin 63α⎛⎫+= ⎪⎝⎭,所以2ππcos 212sin 36171299αα⎛⎫⎛⎫+=-+=-⨯ ⎪ ⎭⎝⎭=⎪⎝.故选:D.3.(2021·上海市光明中学高一期中)已知180360α<<,cos 2的值等于( ) A 1cos 2α+B 1cos 2α-C .1cos 2α+D .1cos 2α--【答案】C 【分析】求出2α的取值范围,结合二倍角的余弦公式可得结果. 【详解】因为180360α<<,则901802α<<,所以,cos 02α<,又因为2cos 2cos12αα=-,解得1cos cos22αα+=-. 故选:C.A 21m-B 21m-C 21m -D 21m -【答案】D【分析】根据二倍角的余弦公式结合平方关系及商数关系化弦为切,计算即可得解.【详解】解:222222cos 50sin 501tan 50cos100cos 50sin 501tan 50m ︒-︒-︒︒===︒+︒+︒,即()221tan 501tan 50m -︒=+︒,解得21tan501m m-︒=+(211m m --+舍去).故选:D.5.(2022·江苏·滨海县五汛中学高一阶段练习)已知cos(),cos()33αβαβ+=-=,则cos cos αβ的值为( )A .0B .12-C .12D .0或±12【答案】C【分析】利用两角和差的余弦公式结合条件即得. 【详解】因为()1cos cos cos sin sin 3αβαβαβ+=-= ()2cos cos cos sin sin 3αβαβαβ-=+=两式相加可得2cos cos 1αβ=,即1cos cos 2αβ=.故选:C.6.(2022·上海市向明中学高一期末)要得到函数2)4y x π+的图象,只需将函数2y x =的图象上所有的点的( )A .横坐标缩短到原来的12倍(纵坐标不变),再向右平行移动8π个单位长度 B .横坐标缩短到原来的12倍(纵坐标不变),再向左平行移动8π个单位长度 C .横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动8π个单位长度 D .横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度 【答案】A【分析】先将函数2sin(2)4y x π=+化为2sin(2)2cos 244y x x ππ⎛⎫=+=- ⎪⎝⎭,再根据三角函数图象的平移变换即可得到答案.【详解】根据题意得2sin(2)2cos 244y x x ππ⎛⎫=+=- ⎪⎝⎭,所以要得到函数2sin(2)4y x π=+的图象,只需将函数2cos y x =的图象上所有的 点横坐标缩短到原来的12倍(纵坐标不变)得到2cos 2y x =,再向右平行移动8π个单位长度即可得到函数2cos 22cos 284y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭的图象.故选:A.7.(2022·辽宁·沈阳市第四十中学高一阶段练习)函数()()2sin 04f x x ωω⎛⎫=+> ⎪⎝⎭的图象在[0,2]上恰有两个最大值点,则ω的取值范围为( ) A .[π,2π) B .9,2ππ⎡⎫⎪⎢⎣⎭C .139,122ππ⎡⎫⎪⎢⎣⎭D .917,88ππ⎡⎫⎪⎢⎣⎭【答案】D【分析】首先代入求4x πω+的取值范围,再根据三角函数的图象,列式求ω的取值范围.【详解】当[]0,2x ∈时,,2444x πππωω⎡⎤+∈+⎢⎥⎣⎦,若函数在此区间恰取得两个最大值,则592242πππω≤+<,解得:91788ππω≤<. 故选:D8.(2022·江苏省灌云高级中学高一期末)定义:正割1sec cos αα=,余割1csc sin αα=.已知m 为正实数,且22csc tan 15m x x +≥对任意的实数,2x x k k Z ππ∈⎛⎫≠+ ⎪⎝⎭均成立,则m 的最小值为( ) A .1 B .4 C .8 D .9【答案】D【分析】利用已知条件先化简,分离参数,转化恒成立求最值问题 【详解】由已知可得22222sin csc tan 15sin cos xx x xm m x +=+≥,即422sin 15sin cos xx xm ≥-. 因为()2x k k Z ππ≠+∈,所以2cos (0,1]x ∈,则422sin 15sin cos x x x -()222222(1-cos )1=151cos =17+16cos cos cos x x x x x ---⎛⎫ ⎪⎝⎭ 22117216cos 9cos x x≤-=, 当且仅当21cos 4x =时等号成立,故9m ≥,故选:D.选项中,有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.(2022·全国·高一课时练习)下列函数中,既为偶函数又在,02π⎛⎫- ⎪⎝⎭上单调递增的是( )A .cos y x =B .cos y x =C .sin 2y x π⎛⎫=- ⎪⎝⎭D .tan cos y x x =-【答案】AB【分析】逐一研究函数的奇偶性与单调性即可.【详解】对于A ,∵cos cos x x -=,且函数cos y x =的定义域为R ,∴函数cos y x =为偶函数,又0x >时,cos cos x x =,且函数cos y x =在0,2π⎛⎫⎪⎝⎭上单调递减,∴函数cos y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,故A 符合题意;对于B ,∵()cos cos x x -=,且函数cos y x =定义域为R ,∴函数cos y x =为偶函数,当,02x π⎛⎫∈- ⎪⎝⎭时,cos cos y x x ==,且函数cos y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,∴函数cos y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,故B 符合题意;对于C ,∵sin cos 2y x x π⎛⎫=-=- ⎪⎝⎭,∴函数sin 2y x π⎛⎫=- ⎪⎝⎭在,02π⎛⎫- ⎪⎝⎭上单调递减,故C 不符合题意;对于D ,记()tan cos y f x x x ==-,则()()()tan cos tan cos f x x x x x -=---=--,∴()()f x f x -≠, ∴函数tan cos y x x =-不是偶函数,故D 不符合题意. 故选:AB.αx 过点(1,2)-,则下列式子正确的是( ) A .sin cos 1sin 7cos 9αααα+=--B .5cos(5)πα-=C .2232sin sin cos 3cos 5αααα+-=D .若α为钝角,则223ππα<<【答案】CD【分析】根据终边上的点求出三角函数值进行计算,诱导公式,余弦函数在第二象限单调递减即可解决.【详解】解:因为角α终边经过点(1,2)-, 则222222515sin ,cos ,55(1)2(1)2αα-====--+-+对于A :255sin cos 155sin 7cos 9257555αααα-+==-+,故A 错误; 对于B :5cos(5)cos 5παα-=-=,故B 错误; 对于C :224255132sin sin cos 3cos 2()355555αααα+-=⨯+⨯--⨯=,故C 正确;对于D :因为当[,]2παπ∈,cos y α=单调递减,而15cos 025α-<=-<,即2coscos cos 32ππα<<,所以223ππα<<,故D 正确. 故选:CD.11.(2022·辽宁·沈阳市第四十中学高一阶段练习)已知函数())222sin cos 3sin cos f x x x x x =-,判断下列给出的四个命题,其中正确的命题有( ) A .对任意的x ∈R ,都有()23f x f x π⎛⎫-= ⎪⎝⎭B .将函数()y f x =的图象向左平移12π个单位,可以得到偶函数 C .函数()y f x =在区间7,1212ππ⎛⎫⎪⎝⎭上是减函数D .“函数()y f x =取得最大值”的一个充分条件是“12x π=”【答案】BCD【分析】首先利用二倍角公式,辅助角公式化简函数,再根据函数的性质,采用代入法,判断选项.【详解】()()222sin cos 3sin cos f x x x x x =--sin 23cos 22sin 23x x x π⎛⎫=+=+ ⎪⎝⎭,当3x π=时,013f π⎛⎫=≠± ⎪⎝⎭,所以不关于3x π=对称,故A 错误; 函数()f x 图象向左平移12π个单位,得函数2sin 22sin 22cos 21232y x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,是偶函数,故B 正确;当71212x ππ<<,则32232x πππ<+<,函数()f x 单调递减,故C 正确; 当12x π=时,12232πππ⨯+=,所以212f π⎛⎫= ⎪⎝⎭,函数取得最大值,故D 正确. 故选:BCD12.(2022·江苏·连云港市赣马高级中学高一期末)将函数()sin f x x =的图象向左平移3个单位长度,再将图象上所有点的横坐标变为原来的12倍(纵坐标不变),得到()g x 的图象,则( )A .函数π3g x ⎛⎫- ⎪⎝⎭是偶函数B .π6x =-是函数()g x 的一个零点C .函数()g x 在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增D .函数()g x 的图象关于直线π12x =对称 【答案】BCD【分析】根据三角函数图象变换可得π()sin 23g x x ⎛⎫=+ ⎪⎝⎭,根据函数()g x 图象性质逐项判断即可.【详解】解:将函数()sin f x x =的图象向左平移π3个单位长度,可得πsin 3y x ⎛⎫=+ ⎪⎝⎭,再将图象上所有点的横坐标变为原来的12倍(纵坐标不变),可得π()sin 23g x x ⎛⎫=+ ⎪⎝⎭,对于A 选项,令()ππππsin 2sin 23333h x g x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,则π06h ⎛⎫= ⎪⎝⎭,π2πsin 063h ⎛⎫⎛⎫-=-≠ ⎪ ⎪⎝⎭⎝⎭,故函数π3g x ⎛⎫- ⎪⎝⎭不是偶函数,A 不正确;对于B 选项,因为πsin 006g ⎛⎫-== ⎪⎝⎭,故π6x =-是函数()g x 的一个零点,B 正确;对于C 选项,当5,1212x ππ⎡⎤∈-⎢⎥⎣⎦时,2,322x πππ⎡⎤+∈-⎢⎥⎣⎦,所以函数()g x 在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增,C 正确;对于D 选项,因为对称轴满足2π,Z 32x k k ππ+=+∈,解得ππ,Z 122k x k =+∈, 则0k =时,π12x =,所以函数()g x 的图象关于直线π12x =对称,D 正确. 故选:BCD .第II 卷 非选择题部分(共分)三、填空题:本大题共4小题,每小题5分,共20分.13.(2022·上海市曹杨中学高一期末)已知函数π()sin 23f x x ⎛⎫=+ ⎪⎝⎭,若存在12,x x ∈R ,有()()122f x f x -=,则12x x -的最小值为______. 【答案】π2【分析】由三角函数的性质可得()()122f x f x -=时12min 2T x x -=. 【详解】∵()f x 的周期2ππ2T ==,由()()122f x f x -=得12minπ22T x x -==. 故答案为:π2.14.(2021·上海市光明中学高一期中)已知0πα<<,sin cos 2αα+=,则cos α=____________.【答案】174- 【分析】将1sin cos 2αα+=两边平方,结合平方关系可求得sin cos αα,从而可得cos α的符号,再利用平方关系即可得解. 【详解】解:因为1sin cos 2αα+=, 所以221sin cos 2sin cos 4αααα++=,则3sin cos 8αα=-, 又0πα<<,所以sin 0,cos 0αα><,则22221sin cos cos cos 12αααα⎛⎫+=-+= ⎪⎝⎭,解得17cos 4α-=或174+(舍去). 故答案为:174-. 15.(2022·全国·高一课时练习)已知()()()()sin cos tan π22tan πsin πf θθθθθθ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=---. (1)若()13f θ=,则tan θ的值为______;(2)若π163f θ⎛⎫-= ⎪⎝⎭,则5π6f θ⎛⎫+ ⎪⎝⎭的值为______. 【答案】 22或22- 13-【分析】利用诱导公式化简得出()cos f θθ=.(1)对角θ的终边位置进行分类讨论,结合同角三角函数的基本关系可求得tan θ的值; (2)利用诱导公式可求得5π6f θ⎛⎫+ ⎪⎝⎭的值.【详解】解:()()()()()()3π3πsin cos tan πcos sin tan 22cos tan πsin πtan sin f θθθθθθθθθθθθ⎛⎫⎛⎫++- ⎪ ⎪-⋅⋅-⎝⎭⎝⎭===-+-⋅-. (1)()1cos 3f θθ==,当θ为第一象限角时,222sin 1cos 3θθ=-=,tan θsin 22cos θθ==; 当θ为第四象限角时,222sin 1cos 3θθ=--=-,sin tan 22cos θθθ==-.综上所述,tan 22θ=±. (2)π5ππ66θθ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,且ππ1cos 663f θθ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭, 所以,5π5πππ1cos cos πcos 66663f θθθθ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+=--=--=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:(1)22±;(2)13-.16.(2022·辽宁·东北育才学校高一期中)若α,0,2β⎛⎫∈ ⎪⎝⎭,且()21sin sin sin cos cos αβααβ+=,则tan β的最大值为______.【答案】24【分析】由题意结合商数关系及平方关系可得2tan tan 2tan 1=+αβα,再利用基本不等式即可得出答案.【详解】解:由()21sin sin sin cos cos αβααβ+=,得2222sin cos sin cos tan tan 1sin 2sin cos 2tan 1αααααβαααα===+++,因为π0,2α⎛⎫∈ ⎪⎝⎭,所以()tan 0,α∈+∞,则2tan 112tan 12tan 1412tan 22tan tan tan αβααααα==≤=++⋅,当且仅当12tan tan αα=,即2tan 2α=时,取等号, 所以tan β的最大值为24. 故答案为:24. 步骤.17.(2022·福建漳州·高一期末)已知,A B 是单位圆O 上的点,点A 是单位圆与x 轴正半轴的交点,点B 在第二象限,记AOB α∠=且3sin 5α=. (1)求点B 的坐标;(2)求()()sin sin 24tan ππααπα⎛⎫++- ⎪⎝⎭-的值.【答案】(1)43,55B ⎛⎫- ⎪⎝⎭(2)715-【分析】(1)根据角α的终边与单位交点为()cos ,sin αα,结合同角三角函数关系和3sin 5α=,可得B 点坐标;(2)利用诱导公式化简()()sinsin 24tan ππααπα⎛⎫++- ⎪⎝⎭-,将(1)中结果代入,即可得到答案.(1)解:设点B 坐标为(),B x y ,则3sin 5y α==, 因为点B 在第二象限,所以2234cos 1sin 155x αα⎛⎫==--=--=- ⎪⎝⎭,点B 坐标为43,55B ⎛⎫- ⎪⎝⎭.(2)解:由诱导公式可得()()sin sin sin cos 24tan 4tan ππααααπαα⎛⎫++- ⎪-+⎝⎭=--由(1)知34sin ,cos 55αα==-,所以sin 3tan cos 4ααα==-, 所以()()7sin sin sin cos 72534tan 4tan 1544ππααααπαα⎛⎫++--⎪-+⎝⎭===---⨯. 18.(2022·上海市金汇高级中学高一期末)函数()3sin(2)6f x x π=+的部分图象如图所示.(1)写出()f x 的最小正周期及图中0x 、0y 的值;(2)求()f x 在区间[,]122ππ上的最大值和最小值.【答案】(1)周期为π,076x π=,03y = (2)最大值是3,最小值是32-【分析】(1)根据周期公式求周期,结合图象求00,x y ; (2)首先求26x π+的范围,再求函数的最值. 【详解】(1)222T πππω===, 令2262x k πππ+=+,Z k ∈,解得:,Z 6x k k ππ=+∈,由图可知,当1k =时,076x π=,此时函数取得最大值03y =; (2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,72,636x πππ⎡⎤+∈⎢⎥⎣⎦,此时1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦所以函数()3sin(2)6f x x π=+的最大值是3,最小值是32-19.(2022·江苏·滨海县五汛中学高一阶段练习)已知(0,),(,0)22αβ∈∈-,32cos(),sin 5αββ-== (1)求α;(2)若角γ的终边落在点(1,2)P -,求cos()γα+的值. 【答案】(1)π4α= (2)31010-【分析】(1)推导出(0,π)αβ-∈,4sin()5αβ-=,72cos 10β=,由正弦两角和公式求解sin α,即可求解角α;(2)根据三角函数的定义得cos ,sin γγ,在根据余弦两角和公式求解cos()γα+的值即可. 【详解】(1)解:π(0,)2α∈,π(,0)2β∈-,且3cos()5αβ-=,2sin 10β=-,(0,π)αβ∴-∈,则24sin()1cos ()5αβαβ-=--=,272cos 1sin 10ββ=-=, sin sin[()]sin()cos cos()sin ααββαββαββ∴=-+=-+-472322()5105102. π(0,)2α∈,π4α∴=. (2)解:角γ的终边落在点(1,2)P -,则()()222215225cos ,sin 551212γγ-==-==-+-+则()52252310cos cos cos sin sin 525210γαγαγα+=-=-⨯-⨯=-. (1)求函数()(π)y f x f x =⋅-的单调递增区间;(2)求函数2π()(2)4y f x f x =+-的值域.【答案】(1)ππ,π2k k ⎡⎤+⎢⎥⎣⎦()k Z ∈(2)13,13⎡⎤-+⎣⎦【分析】(1)利用诱导公式及其余弦的二倍角公式化简,即为cos2y x =-,然后利用余弦函数的性质求其单调递增区间即可;(2)利用正弦的二倍角公式及其辅助角公式化简,即为13sin(2+)y x ϕ=-,利用正弦函数的性质求值域即可. (1)∵()()(sin cos )sin πcos π(sin cos )(sin cos )y x x x x x x x x =---=-+⎡⎤⎣⎦-22sin cos cos2x x x =-=-∴π2π22ππππ2k x k k x k ≤≤+⇒≤≤+()k Z ∈, 即所求单调递增区间为:()ππ,π2k k k ⎡⎤+∈⎢⎥⎣⎦Z ;(2)2ππ(sin cos )sin 2cos 244y x x x x ⎡⎤⎛⎫⎛⎫-+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣=⎦-π1sin 22sin(2)2x x =-+-1sin 22cos 2x x =--13sin(2+)x ϕ=-,其中tan 2ϕ= ,即13,13y ⎡⎤∈-+⎣⎦.21.(2021·江苏苏州·高一期末)已知2sin 4sin22αα=-.(1)求()()()cos 1sin 223sin sin 2παπαπαπα⎛⎫-++ ⎪⎝⎭⎛⎫-++ ⎪⎝⎭的值;(2)若()0,απ∈,0,2πβ⎛⎫∈ ⎪⎝⎭,2tan 6tan 10ββ+-=,求2αβ+的值.【答案】(1)65(2)34π 【分析】(1)先根据二倍角公式和诱导公式化简,再根据同角的平方关系构造“齐次分式”,即可求解.(2)根据题目条件,求出tan 2β,根据1tan 203β=>,精确2β的范围,再根据正切的和差公式,即可求解. (1)∵2sin 4sin22αα=-,∴1cos sin 422cos 2ααα-⎛⎫=-=-⎪⎝⎭,∴tan 2α,∴cos (1sin(2))sin (1sin 2)23sin cos sin()sin 2παπαααααπαπα⎛⎫-++ ⎪-⎝⎭=-⎛⎫-++ ⎪⎝⎭ 2sin (sin cos )sin (sin cos )sin cos αααααααα-==--22222sin sin cos tan tan 6sin cos tan 15αααααααα--===++.(2)∵2tan 6tan 10ββ+-=,∴22tan 1tan 21tan 3βββ==-, ∴152tan tan 233tan(2)1151tan tan 21(2)33αβαβαβ-+-++====----⨯, 又∵(0,)απ∈,0,2πβ⎛⎫∈ ⎪⎝⎭,1tan 203β=>,∴20,2πβ⎛⎫∈ ⎪⎝⎭,320,2παβ⎛⎫+∈ ⎪⎝⎭,∴324παβ+=. 22.(2020·重庆·巫山县官渡中学高一阶段练习)已知函数()6sin()62cos f x x x =-+.(1)求()f x 的最小正周期和单调增区间;(2)若函数()y f x a =-在π5π[,]1212x ∈存在零点,求实数a 的取值范围.【答案】(1)π,()πππ,πZ 63k k k ⎡⎤-++∈⎢⎥⎣⎦(2)[]0,3【分析】(1)化简函数()π3sin 26f x x ⎛⎫=- ⎪⎝⎭,结合三角函数的图象与性质,即可求解;(2)根据题意转化为方程πsin 263a x ⎛⎫-= ⎪⎝⎭在π5π,1212x ⎡⎤∈⎢⎥⎣⎦上有解,以π26x -为整体,结合正弦函数图象运算求解.【详解】(1)对于函数π3313()6cos sin 6cos sin cos 62222f x x x x x x ⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭()23331cos 2331π3sin cos 3cos sin 233sin 2cos 23sin 22222226x f x x x x x x x x ⎛⎫+⎛⎫=-+=-⨯+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 的最小正周期为2ππ2T ==,令πππ2π22π,Z 262k xk k ,则ππππ,Z 63k xk k ,∴函数()f x 的单调递增区间为()πππ,πZ 63k k k ⎡⎤-++∈⎢⎥⎣⎦.(2)令()0y f x a =-=,即π3sin 206x a ⎛⎫--= ⎪⎝⎭,则πsin 263a x ⎛⎫-= ⎪⎝⎭,∵()y f x a =-在π5π,1212x ⎡⎤∈⎢⎥⎣⎦存在零点,则方程πsin 263a x ⎛⎫-= ⎪⎝⎭在π5π,1212x ⎡⎤∈⎢⎥⎣⎦上有解,若π5π,1212x ⎡⎤∈⎢⎥⎣⎦时,则π2π20,63x ⎡⎤-∈⎢⎥⎣⎦,可得πsin 2[0,1]6x ⎛⎫-∈ ⎪⎝⎭, ∴013a≤≤,得03a ≤≤ 故实数a 的取值范围是[].。
2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。
2023年高考数学复习满分训练必做题(新高考专用)专题4-2 三角函数的图像与性质(练习版)

专题4.2 三角函数的图像与性质【647】.(2022·全国·高考真题·★★★)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .【648】.(2020·全国·高考真题·★★★)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【649】.(2019·全国·高考真题·★★★)函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .【650】.(2019·全国·高考真题·★★★★) 关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③【651】.(2007·海南·高考真题·★★)函数sin(2)3y x π=-在区间[,]2ππ-的简图是A .B .C .D .【652】.(2015·全国·高考真题·★★)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为A .13(,),44k k k Z ππ-+∈B .13(2,2),44k k k Z ππ-+∈C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【653】.(2012·浙江·高考真题·★★★)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是( )A .B .C .D .【654】.(2011·全国·高考真题·★★) 设函数,则()A .函数()f x 在(0,)2π上单调递增,其图象关于直线对称; B .函数()f x 在(0,)2π上单调递增,其图象关于直线对称; C .函数()f x 在(0,)2π上单调递减,其图象关于直线对称; D .函数()f x 在(0,)2π上单调递减,其图象关于直线对称;【655】.(2018·全国·高考真题·★★★)若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是 A .4πB .2π C .34π D .π【656】.(2018·天津·高考真题·★★★)将函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数A .在区间,44ππ⎡⎤-⎢⎥⎣⎦ 上单调递增B .在区间,04π⎡⎤-⎢⎥⎣⎦上单调递减C .在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增D .在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减【657】.(2016·全国·高考真题·★★★) 函数sin()y A x ωϕ=+的部分图象如图所示,则A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(+)6y x π=D .2sin(+)3y x π=【658】.(2013·全国·高考真题·★★)若函数()()sin 0y x ωϕω=+>的部分图象如图,则=ω( )A .5B .4C .3D .2【659】.(2020·海南·高考真题·★★)(多选题)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x - 2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.【660】.(2022·全国·高考真题·★★★★)(多选题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则( ) A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线y x =-是曲线()y f x =的切线 【661】.(2021·全国·高考真题·★★)已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.【662】.(2021·全国·高考真题·★★★)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.【663】.(2020·全国·高考真题·★★★★)关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【664】.(2011·江苏·高考真题·★★★)函数()sin()(,,f x A x A ωϕωϕ=+是常数,0,0A ω>>)的部分图象如图所示,则_____________【665】.(2022·全国·模拟预测·★★★★)(多选题)已知函数()()sin cos sin f x x x x =-,则下列说法正确的是( )A .函数()f x 的最小正周期为2πB .()f xC .()f x 的图像关于直线8x π=-对称D .将()f x 的图像向右平移8π个单位长度,再向上平移12个单位长度后所得图像对应的函数为奇函数 【666】.(2022·全国·模拟预测·★★★)(多选题)已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是( )A .()3cos 26f x x π⎛⎫=- ⎪⎝⎭B .()f x 在()3,4ππ上单调递增C .()32f x >的解集为()4,43k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z .D .()f x 的图象的对称轴方程为()3x k k ππ=-∈Z【667】.(2022·全国·模拟预测·★★★)(多选题)函数()()()cos 02f x x ωϕϕπ=+≤<的部分图像如图所示,则( )A .3ω=B .65ϕπ=C .函数()f x 在314,55ππ⎡⎤⎢⎥⎣⎦上单调递增D .函数()f x 图像的对称轴方程为()315k x k ππ=-∈Z 【668】.(2022·山东师范大学附中模拟预测·★★★★)(多选题)已知函数()()sin 0,R f x x x x ωωω=>∈的图象与x 轴交点的横坐标构成一个公差为π2的等差数列,把函数()f x 的图象沿x 轴向左平移π3个单位,横坐标伸长到原来的2倍得到函数()g x 的图象,则下列关于函数()g x 的结论正确的是( ) A .函数()g x 是偶函数 B .()g x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称C .()g x 在ππ,33⎡⎤-⎢⎥⎣⎦上是增函数D .当ππ,66x ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的值域是[1,2]【669】.(2022·湖南·长沙县第一中学模拟预测·★★★)(多选题) 已知函数()cos 2sin f x x x =+,则下列说法正确的是( ) A .直线2x π=为函数f (x )图像的一条对称轴B .函数f (x )图像横坐标缩短为原来的一半,再向左平移2π后得到()cos22sin 2g x x x =+ C .函数f (x )在[-2π,2π]上单调递增D .函数()f x 的值域为[-2 【670】.(2022·内蒙古包头·二模·★★★)已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则满足条件()54f x f π⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭()703f x f π⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎭<⎝的最小正偶数x 为___________.【671】.(2022·天津河西·一模·★★★)函数()()sin f x A x ωϕ=+(其中0>ω,0A >,π2ϕ<)的图象如图所示,则()f x 在点,66f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程为______. 【672】.(2022·四川·成都七中三模·★★★★)已知函数()[]()()sin ,0,212,2,2x x f x f x x π∞⎧∈⎪=⎨-∈+⎪⎩,则函数()ln(1)y f x x =--的零点个数是______个.【673】.(2022·甘肃·武威第六中学模拟预测·★★★★)已知函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,则下列说法正确的是( ) A .6π=ϕ B .()f x 在区间,2ππ⎡⎤--⎢⎥⎣⎦单调递减C .()f x 在区间[],ππ-上的最大值为2D .()f x θ+为偶函数,则()23k k Z θππ=+∈【674】.(2022·上海青浦·二模·★★★)已知函数()sin cos f x x x =+的定义域为[],a b ,值域为⎡-⎣,则b a -的取值范围是( ) A .3ππ,42⎡⎤⎢⎥⎣⎦B .π3π,24⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .3π3π,42⎡⎤⎢⎥⎣⎦【675】.(2022·青海·海东市第一中学模拟预测·★★★)将函数()πsin(2)6f x x =+的图象向右平移6π个单位长度,然后将所得图象上所有点的横坐标缩小到原来的12(纵坐标不变),得到函数()y g x =的图象,则下列说法正确的是( ) A .π()sin 46g x x ⎛⎫=+ ⎪⎝⎭B .()g x 在ππ,123⎡⎤⎢⎥⎣⎦上单调C .()g x 的图象关于直线π2x =对称D .当π0,4x ⎡⎤∈⎢⎥⎣⎦时,函数()g x 的值域为1,12⎡⎤-⎢⎥⎣⎦【676】.(2022·青海·海东市第一中学模拟预测·★★★) 函数sin cos yx x x 在[]π,π-上的图像大致是( )A .B .C .D .【677】.(2022·广东茂名·二模·★★★)已知函数π())(||)2f x x ϕϕ+< 的部分图象如图所示.将函数()f x 的图象向左平移 π12个单位得到()g x 的图象,则( )A . ()3sin(2)6g x x π=+) B .()3sin(2)12g x x 5π=+C .()2g x x =D .()2g x x =【678】.(2022·河南·开封市东信学校模拟预测·★★★)若函数()f x 过点,其导函数()cos(2)0,02f x A x A πϕϕ⎛⎫'=+><< ⎪⎝⎭的部分图象如图所示,则()f π=( )A .0B .12C .22D .2 【679】.(2022·黑龙江·哈九中三模·★★★★)已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,且13π23f ⎛⎫= ⎪⎝⎭.将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()g x 的图象.若()()129g x g x =,1x ,[]20,4πx ∈,则21x x -的最大值为( )A .πB .2πC .3πD .4π【680】.(2022·河南·平顶山市第一高级中学模拟预测·★★)函数sin 22cos x x y x=-的部分图像大致为( ) A . B .C .D .【681】.(2022·贵州·贵阳一中模拟预测·★★)如图是函数()()sin (0,0,0)2f x A x A πωϕωϕ=+>><<的图像的一部分,则要得到该函数的图像,只需要将函数()2cos2g x x x =-的图像( )A .向左平移4π个单位长度B .向右平移4π个单位长度 C .向左平移2π个单位长度 D .向右平移2π个单位长度 【682】.(2022·浙江·湖州市菱湖中学模拟预测·★★★)函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭的大致图象为( ) A . B . C . D .【683】.(2022·山东潍坊·模拟预测·★★★)函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,现将()f x 的图像向左平移6π个单位长度,得到函数()g x 的图像,则()g x 的表达式可以为( )A .2sin 2g x xB .()2cos 23g x x π=-⎛⎫ ⎪⎝⎭ C .()2sin 6g x x π⎛⎫=- ⎪⎝⎭ D .()2cos 3g x x π⎛⎫=+ ⎪⎝⎭ 【684】.(2022·全国·模拟预测·★★★)已知函数()|sin()|0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图像如图,则()f x 的解析式为( )A .()2sin 213f x x π⎛⎫=++ ⎪⎝⎭ B .()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭ C .()3sin 213f x x π⎛⎫=++ ⎪⎝⎭ D .()3sin 213f x x π⎛⎫=-+ ⎪⎝⎭ 【685】.(2022·上海金山·二模·★★)已知向量()()sin2,2cos ,3,cos a x x b x ==,则函数()1,,22f x a b x ππ⎡⎤=⋅-∈-⎢⎥⎣⎦的单调递增区间为__________. 【686】.(2022·上海闵行·二模·★★)若函数cos y x x +的图像向右平移ϕ个单位后是一个奇函数的图像,则正数ϕ的最小值为___________;【687】.(2022·山东日照·三模·★★)已知函数()()(2sin 0,||)f x x ωϕωϕπ=+><的部分图像如图所示,则ϕ=________.【688】.(2022·上海·模拟预测·★★★)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条7π4π()()043f x f f x f ⎡⎤⎡⎤⎛⎫⎛⎫---< ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦的最大负整数x 为_________.【689】.(2022·北京工业大学附属中学三模·★★★) 已知函数ππ()sin()sin()44f x x x =+-给出下列四个结论: ①f (x )的值域是[1,1]-;②f (x )在π[0,]2上单调递减: ③f (x )是周期为π的周期函数④将f (x )的图象向左平移π2个单位长度后,可得一个奇函数的图象 其中所有正确结论的序号是___________.【690】.(2022·四川·模拟预测·★★★★)已知函数()cos 22cos 2f x x x π=+-⎛⎫ ⎪⎝⎭,则下列结论正确的是________.(写出所有正确结论的序号) ①()f x 的最小正周期为2π;②()f x 是奇函数;③()f x 的值域为33,2⎡⎤-⎢⎥⎣⎦;④()f x 在,26ππ⎡⎤-⎢⎥⎣⎦上单调递增. 【691】.(2022·江西·新余市第一中学三模·★★★★)已知函数()()()cos 210,0πf x A x A ϕϕ=+-><<,若函数()y f x =的部分图象如图,函数()g x =()sin A Ax ϕ-,则下列结论正确的是___________.(填序号) ①函数()g x 的图象关于直线π12x =-对称; ②函数()g x 的图象关于点π,02⎛⎫ ⎪⎝⎭对称; ③将函数()1y f x =+的图象向左平移π12个单位长度可得到函数()g x 的图象;④函数()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的单调递减区间为06,π⎡⎤⎢⎥⎣⎦. 【692】.(2022·天津红桥·二模·★★★)已知函数()sin()f x A x ωϕ=+,0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,则ϕ=__________. 【693】.(2022·黑龙江·哈尔滨三中三模·★★★)函数()()()sin 0,0,0f x A x A ωφωφπ=+>><<的部分图象如图所示,则φ=___________.【694】.(2022·江西·模拟预测·★★★★) 如图是函数()sin(2)||,02f x A x A πθθ⎛⎫=+≤> ⎪⎝⎭的部分图像,()()0f a f b ==,且对不同的12,[,]x x a b ∈,若12()()f x f x =,有12()f x x +=θ=____________.【695】.(2022·河南·灵宝市第一高级中学模拟预测·★★★)已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移π4个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有______.(填序号)①方程()()3π60,2f x g x x ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭所有根的和为7π12;②不等式()()g x f x ≥ππ5ππ,3262k k ⎡⎫++⎪⎢⎣⎭,k ∈Z ③函数()y f x =与函数()y g x =图象关于7π24x =对称.。
2023年高考数学试题分项版——三角函数(解析版)

2023年高考数学试题分项版——三角函数(解析版)一、选择题1.(2023·新高考Ⅰ卷,8)已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=()A.79B.19 C.19-D.79-【答案】B【解析】因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=,则2sin()sin cos cos sin 3αβαβαβ+=+=,所以2221cos(22)cos 2()12sin ()12()39αβαβαβ+=+=-+=-⨯=.故选:B.2.(2023·新高考Ⅱ卷,7)已知α为锐角,15cos 4α+=,则sin 2α=()A.358- B.158- C.354D.14-+【答案】D【解析】因为215cos 12sin 24αα+=-=,而α为锐角,解得:sin 2α=14==.故选:D .3.(2023·全国甲卷理,7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件【答案】B 【解析】【分析】根据充分条件、必要条件的概念及同角三角函数的基本关系得解.【详解】当22sin sin 1αβ+=时,例如π,02αβ==但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,2222sin sin (cos )sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选:B4.(2023·全国甲卷理,10)已知()f x 为函数πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位所得函数,则() y f x =与1122y x =-的交点个数为()A.1B.2C.3D.4【答案】C 【解析】【分析】先利用三角函数平移的性质求得()sin 2f x x =-,再作出()f x 与1122y x =-的部分大致图像,考虑特殊点处()f x 与1122y x =-的大小关系,从而精确图像,由此得解.【详解】因为πcos 26y x ⎛⎫=+⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭;当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.故选:C.5.(2023·全国甲卷文,12)函数()y f x =的图象由cos 26y x π⎛⎫=+ ⎪⎝⎭的图象向左平移6π个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为()A.1B.2C.3D.4【答案】C 【解析】【分析】先利用三角函数平移的性质求得()sin 2f x x =-,再作出()f x 与1122y x =-的部分大致图像,考虑特殊点处()f x 与1122y x =-的大小关系,从而精确图像,由此得解.【详解】因为πcos 26y x ⎛⎫=+⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭;当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.故选:C.6.(2023·全国乙卷理,6)已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A.32B.12-C.12D.32【答案】D 【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入5π12x =-即可得到答案.【详解】因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,所以2πππ2362T =-=,且0ω>,则πT =,2π2w T==,当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=-,Z k ∈,则5π2π6k ϕ=-,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=- ⎪⎝⎭,则5π5π3sin 1232f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故选:D.7.(2023·全国乙卷文,4)在ABC 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c -=,且5C π=,则B ∠=()A.10π B.5π C.310π D.25π【答案】C 【解析】【分析】首先利用正弦定理边化角,然后结合诱导公式和两角和的正弦公式求得A ∠的值,最后利用三角形内角和定理可得A ∠的值.【详解】由题意结合正弦定理可得sin cos sin cos sin A B B A C -=,即()sin cos sin cos sin sin cos sin cos A B B A A B A B B A -=+=+,整理可得sin cos 0B A =,由于()0,πB ∈,故sin 0B >,据此可得πcos 0,2A A ==,则ππ3πππ2510B AC =--=--=.故选:C.8.(2023·全国乙卷文,10)已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A. B.12-C.12D.2【答案】D【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入5π12x =-即可得到答案.【详解】因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,所以2πππ2362T =-=,且0ω>,则πT =,2π2w T ==,当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=-,Z k ∈,则5π2π6k ϕ=-,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=- ⎪⎝⎭,则5π5π3sin 1232f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故选:D.9.(2023·北京卷,7)在ABC 中,()(sin sin )(sin sin )a c A C b A B +-=-,则C ∠=()A.π6B.π3C.2π3D.5π6【答案】B 【解析】【分析】利用正弦定理的边角变换与余弦定理即可得解.【详解】因为()(sin sin )(sin sin )a c A C b A B +-=-,所以由正弦定理得()()()a c a c b a b +-=-,即222a c ab b -=-,则222a b c ab +-=,故2221cos 222a b c ab C ab ab +-===,又0πC <<,所以π3C =.故选:B.10.(2023·天津卷,5)已知函数()f x 的一条对称轴为直线2x =,一个周期为4,则()f x 的解析式可能为()A.sin 2x π⎛⎫⎪⎝⎭B.cos 2x π⎛⎫⎪⎝⎭C.sin 4x π⎛⎫⎪⎝⎭D.cos 4x π⎛⎫⎪⎝⎭【答案】B 【解析】【分析】由题意分别考查函数的最小正周期和函数在2x =处的函数值,排除不合题意的选项即可确定满足题意的函数解析式.【详解】由函数的解析式考查函数的最小周期性:A 选项中242T ππ==,B 选项中242T ππ==,C 选项中284T ππ==,D 选项中284T ππ==,排除选项CD ,对于A 选项,当2x =时,函数值sin 202π⎛⎫⨯= ⎪⎝⎭,故()2,0是函数的一个对称中心,排除选项A ,对于B 选项,当2x =时,函数值cos 212π⎛⎫⨯=- ⎪⎝⎭,故2x =是函数的一条对称轴,故选:B.二、填空题1.(2023·新高考Ⅰ卷,15)已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.【答案】[2,3)【解析】因为02πx ≤≤,所以02πx ωω≤≤,令()cos 10f x x ω=-=,则cos 1x ω=有3个根,令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈,结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<,故答案为:[2,3).2.(2023·新高考Ⅱ卷,16)已知函数()()sin f x x ωϕ=+,如图A ,B 是直线12y =与曲线()y f x =的两个交点,若π6AB =,则()πf =______.【答案】32【解析】设1211,,,22A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由π6AB =可得21π6x x -=,由1sin 2x =可知,π2π6x k =+或5π2π6x k =+,k ∈Z ,由图可知,()215π2ππ663x x ωϕωϕ+-+=-=,即()212π3x x ω-=,4ω∴=.因为28ππsin 033f ϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以8ππ3k ϕ+=,即8ππ3k ϕ=-+,k ∈Z .所以82()sin 4ππsin 4ππ33f x x k x k ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭,所以()2sin 4π3f x x ⎛⎫=-⎪⎝⎭或()2sin 4π3f x x ⎛⎫=-- ⎪⎝⎭,又因为()00f <,所以2()sin 4π3f x x ⎛⎫=- ⎪⎝⎭,()23πsin 4ππ32f ⎛⎫∴=-=- ⎪⎝⎭.故答案为:32.3.(2023·全国甲卷理,16)在ABC 中,2AB =,60,6BAC BC ∠=︒=,D 为BC 上一点,AD 为BAC ∠的平分线,则AD =_________.【答案】2【解析】【分析】方法一:利用余弦定理求出AC ,再根据等面积法求出AD ;方法二:利用余弦定理求出AC ,再根据正弦定理求出,B C ,即可根据三角形的特征求出.【详解】如图所示:记,,AB c AC b BC a ===,方法一:由余弦定理可得,22222cos 606b b +-⨯⨯⨯= ,因为0b >,解得:1b =+由ABC ABD ACD S S S =+ 可得,1112sin 602sin 30sin 30222b AD AD b ⨯⨯⨯=⨯⨯⨯+⨯⨯⨯ ,解得:1212AD b +==+.故答案为:2.方法二:由余弦定理可得,22222cos 606b b +-⨯⨯⨯= ,因为0b >,解得:1b =+,由正弦定理可得,2sin 60sin sin b B C==,解得:sin 4B +=,sin 2C =,因为1+>>45C = ,180604575B =--= ,又30BAD ∠=o ,所以75ADB ∠= ,即2AD AB ==.故答案为:2.【点睛】本题压轴相对比较简单,既可以利用三角形的面积公式解决角平分线问题,也可以用角平分定义结合正弦定理、余弦定理求解,知识技能考查常规.4.(2023·全国乙卷文,14)若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ-=________.【答案】55-【解析】【分析】根据同角三角关系求sin θ,进而可得结果.【详解】因为π0,2θ⎛⎫∈ ⎪⎝⎭,则sin 0,cos 0θθ>>,又因为sin 1tan cos 2θθθ==,则cos 2sin θθ=,且22222cos sin 4sin sin 5sin 1+=+==θθθθθ,解得5sin 5θ=或sin 5θ=-(舍去),所以sin cos sin 2sin sin 5-=-=-=-θθθθθ.故答案为:55-.5.(2023·北京卷,13)已知命题:p 若,αβ为第一象限角,且αβ>,则tan tan αβ>.能说明p 为假命题的一组,αβ的值为α=__________,β=_________.【答案】①.9π4②.π3【解析】【分析】根据正切函数单调性以及任意角的定义分析求解.【详解】因为()tan f x x =在π0,2⎛⎫⎪⎝⎭上单调递增,若00π02<<<αβ,则00tan tan <αβ,取1020122π,2π,,k k k k =+=+∈Z ααββ,则()()100200tan tan 2πtan ,tan tan 2πtan k k =+==+=αααβββ,即tan tan αβ<,令12k k >,则()()()()102012002π2π2πk k k k -=+-+=-+-αβαβαβ,因为()1200π2π2π,02k k -≥-<-<αβ,则()()12003π2π02k k -=-+->>αβαβ,即12k k >,则αβ>.不妨取1200ππ1,0,,43k k ====αβ,即9ππ,43αβ==满足题意.故答案为:9ππ;43.三、解答题1.(2023·新高考Ⅰ卷,17)已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.解:(1)3A B C += ,π3C C ∴-=,即π4C =,又2sin()sin sin()A C B A C -==+,2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+,sin cos 3cos sin A C A C ∴=,sin 3cos A A ∴=,即tan 3A =,所以π02A <<,310sin 10A ∴==.(2)由(1)知,10cos 10A ==,由sin sin()B A C =+23101025sin cos cos sin (210105A C A C =+=+=,由正弦定理,sin sin c bC B=,可得255522b ⨯==,11sin 22AB h AB AC A ∴⋅=⋅⋅,310sin 610h b A ∴=⋅==.2.(2023·新高考Ⅱ卷,17)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABC 的面积D 为BC 中点,且1AD =.(1)若π3ADC ∠=,求tan B ;(2)若228b c +=,求,b c .解:(1)方法1:在ABC 中,因为D 为BC 中点,π3ADC ∠=,1AD =,则1113313sin 12222822ADC ABC S AD DC ADC a a S =⋅∠=⨯⨯==,解得4a =,在ABD △中,2π3ADB ∠=,由余弦定理得2222cos c BD AD BD AD ADB =+-⋅∠,即2141221()72c =+-⨯⨯⨯-=,解得c =,则cos 14B ==,21sin 14B ===,所以sin tan cos 5B B B ==.方法2:在ABC 中,因为D 为BC 中点,π3ADC ∠=,1AD =,则1113313sin 12222822ADC ABC S AD DC ADC a a S =⋅∠=⨯⨯==,解得4a =,在ACD 中,由余弦定理得2222cos b CD AD CD AD ADB =+-⋅∠,即214122132b =+-⨯⨯⨯=,解得b =,有2224AC AD CD +==,则π2CAD ∠=,π6C =,过A 作AE BC ⊥于E ,于是33cos ,sin 22CE AC C AE AC C ====,52BE =,所以tan 5AE B BE ==.(2)方法1:在ABD △与ACD 中,由余弦定理得222211121cos(π)4211121cos 42c a a ADC b a a ADC ⎧=+-⨯⨯⨯-∠⎪⎪⎨⎪=+-⨯⨯⨯∠⎪⎩,整理得222122a b c +=+,而228b c +=,则a =,又11sin 22ADC S ADC =⨯∠=,解得sin 1ADC ∠=,而0πADC <∠<,于是π2ADC ∠=,所以2b c ===.方法2:在ABC 中,因为D 为BC 中点,则2AD AB AC =+ ,又CB AB AC =-,于是2222224()()2()16AD CB AB AC AB AC b c +=++-=+= ,即2416a +=,解得a =,又131sin 22ADC S ADC =⨯∠=,解得sin 1ADC ∠=,而0πADC <∠<,于是π2ADC ∠=,所以2b c ===.3.(2023·全国甲卷文,17)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c a A+-=.(1)求bc ;(2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.【答案】(1)1(2)34【解析】【分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出sin A 即可得到三角形面积,对等式恒等变换,即可解出.【小问1详解】因为2222cos a b c bc A =+-,所以2222cos 22cos cos b c a bc A bc A A+-===,解得:1bc =.【小问2详解】由正弦定理可得cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A B a B b A c A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B B A B A B A B ---=-==+++,变形可得:()()sin sin sin A B A B B --+=,即2cos sin sin A B B -=,而0sin 1B <≤,所以1cos 2A =-,又0πA <<,所以3sin 2A =,故ABC 的面积为1133sin 12224ABC S bc A ==⨯⨯=△.4.(2023·全国乙卷理,18)在ABC 中,已知120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.【答案】(1)14;(2)310.【解析】【分析】(1)首先由余弦定理求得边长BC 的值为BC =,然后由余弦定理可得57cos 14B =,最后由同角三角函数基本关系可得21sin 14B =;(2)由题意可得4ABD ACD S S =△△,则15ACD ABC S S =△△,据此即可求得ADC △的面积.【小问1详解】由余弦定理可得:22222cos BC a b c bc A==+-41221cos1207=+-⨯⨯⨯= ,则BC =22257cos 214a c b B ac +-==,sin 14B ===.【小问2详解】由三角形面积公式可得1sin 90241sin 302ABD ACDAB AD S S AC AD ⨯⨯⨯==⨯⨯⨯ △△,则111321sin12055210ACD ABC S S ⎛⎫==⨯⨯⨯⨯=⎪⎝⎭ △△.5.(2023·北京卷,17)设函数π()sin cos cos sin 0,||2f x x x ωϕωϕωϕ⎛⎫=+><⎪⎝⎭.(1)若(0)2f =-,求ϕ的值.(2)已知()f x 在区间π2π,33-⎡⎤⎢⎥⎣⎦上单调递增,2π13f ⎛⎫= ⎪⎝⎭,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求,ωϕ的值.条件①:π3f ⎛⎫=⎪⎝⎭;条件②:π13f ⎛⎫-=- ⎪⎝⎭;条件③:()f x 在区间ππ,23⎡⎤--⎢⎥⎣⎦上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)π3ϕ=-.(2)条件①不能使函数()f x 存在;条件②或条件③可解得1ω=,π6ϕ=-.【解析】【分析】(1)把0x =代入()f x 的解析式求出sin ϕ,再由π||2ϕ<即可求出ϕ的值;(2)若选条件①不合题意;若选条件②,先把()f x 的解析式化简,根据() f x 在π2π,33-⎡⎤⎢⎥⎣⎦上的单调性及函数的最值可求出T ,从而求出ω的值;把ω的值代入()f x 的解析式,由π13f ⎛⎫-=- ⎪⎝⎭和π||2ϕ<即可求出ϕ的值;若选条件③:由() f x 的单调性可知() f x 在π3x =-处取得最小值1-,则与条件②所给的条件一样,解法与条件②相同.【小问1详解】因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><所以()()(0)sin 0cos cos 0sin sin 2f ωϕωϕϕ=⋅+⋅==-,因为π||2ϕ<,所以π3ϕ=-.【小问2详解】因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><,所以()π()sin ,0,||2f x x ωϕωϕ=+><,所以() f x 的最大值为1,最小值为1-.若选条件①:因为()()sin f x x ωϕ=+的最大值为1,最小值为1-,所以π3f ⎛⎫= ⎪⎝⎭无解,故条件①不能使函数()f x 存在;若选条件②:因为() f x 在π2π,33-⎡⎤⎢⎥⎣⎦上单调递增,且2π13f ⎛⎫= ⎪⎝⎭,π13f ⎛⎫-=- ⎪⎝⎭所以2πππ233T ⎛⎫=--= ⎪⎝⎭,所以2πT =,2π1Tω==,所以()()sin f x x ϕ=+,又因为π13f ⎛⎫-=- ⎪⎝⎭,所以πsin 13ϕ⎛⎫-+=- ⎪⎝⎭,所以ππ2π,Z 32k k ϕ-+=-+∈,所以π2π,Z 6k k ϕ=-+∈,因为||2ϕπ<,所以π6ϕ=-.所以1ω=,π6ϕ=-;若选条件③:因为() f x 在π2π,33-⎡⎤⎢⎥⎣⎦上单调递增,在ππ,23⎡⎤--⎢⎥⎣⎦上单调递减,所以() f x 在π3x =-处取得最小值1-,即π13f ⎛⎫-=- ⎪⎝⎭.以下与条件②相同.6.(2023·天津卷,16)在ABC 中,角,,A B C 所对的边分別是,,a b c .已知2,120a b A ==∠=.(1)求sin B 的值;(2)求c 的值;(3)求()sin B C -.【答案】(1)1313(2)5(3)26-【解析】【分析】(1)根据正弦定理即可解出;(2)根据余弦定理即可解出;(3)由正弦定理求出sin C ,再由平方关系求出cos ,cos B C ,即可由两角差的正弦公式求出.【小问1详解】由正弦定理可得,sin sin a b A B =,即2sin120sin B = ,解得:sin 13B =;【小问2详解】由余弦定理可得,2222sin a b c bc A =+-,即21394222c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,解得:5c =或7c =-(舍去).【小问3详解】由正弦定理可得,sin sin a c A C =,即5sin120sin C =,解得:sin 26C =,而120A =o ,所以,B C 都为锐角,因此cos 26C ==,cos 13B ==,故()sin sin cos cos sin 1326132626B C B C B C -=-=⨯-⨯=-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
银川市高考数学备考复习(理科)专题六:三角函数B卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共15题;共30分)
3. (2分)已知函数图像的一部分(如图所示),则w与的值分别为()
A .
B .
C .
D .
4. (2分) (2016高一上·黄冈期末) 若函数f(x)=sin(x+φ)是偶函数,则φ可取一个值为()
A . ﹣π
B . ﹣
C .
D . 2π
5. (2分)对于函数,给出下列四个结论:①函数的最小正周期为;
②若则③的图象关于直线对称;④在上是减函数,其中正确结论的个数为()
A . 2
B . 4
C . 1
D . 3
6. (2分)(2017·芜湖模拟) 若﹣1<sinα+cosα<0,则()
A . sinα<0
B . cosα<0
C . tanα<0
D . cos2α<0
7. (2分) (2017高一上·新疆期末) 已知角α的终边经过点P0(﹣3,﹣4),则cosα的值为()
A . ﹣
B .
C .
D . ﹣
8. (2分)函数的部分图象如图所示,则的值等于()
A .
B .
C .
D .
9. (2分) (2016高三上·临沂期中) 已知f(x)=sin2(x+ ),若a=f(lg5),b=f(lg ),则()
A . a+b=0
B . a﹣b=0
C . a+b=1
D . a﹣b=1
12. (2分)已知,记,要得到函数的图象,只需将函数y=f(x)的图象()
A . 向左平移个单位长度
B . 向右平移个单位长度
C . 向左平移个单位长度
D . 向右平移个单位长度
13. (2分)已知为第二象限角,且,则的值是()
A .
B .
C .
D .
14. (2分)已知α∈(π,),tanα=2,则cosα=()
A .
B .
C .
D .
15. (2分)在已知ABC的内角A,B,C的对边a,b,c若a=csinA则的最大值为()
A .
B . 1
C .
D .
二、填空题 (共6题;共9分)
16. (1分)已知函数y=tanωx(ω>0)在(﹣,)上单调递增,则ω的最大值为________ .
17. (1分) (2017高一下·运城期末) 化简:sin40°(tan10°﹣)=________.
18. (3分)若角45°的终边上有一点(4,a),则a的值是________
19. (1分)已知函数y=Asin(ωx+φ)+b(A>0,ω>0,0≤φ<2π)在同一周期内有最高点(,1)和最低点(,﹣3),则此函数的解析式为________
20. (1分)已知sin(﹣α)=m,则cos(+α)=________.
21. (2分) (2017高二下·陕西期末) △ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,
则B=________.
三、综合题 (共5题;共50分)
22. (10分)已知角α终边上一点P(m,1),cosα=﹣.
(1)求实数m的值;
(2)求tanα的值.
23. (10分)在锐角△ABC中,内角A、B、C的对边分别是a、b、c,且cos(B+C)=﹣sin2A.
(1)求A;
(2)设a=7,b=5,求△ABC的面积.
24. (10分) (2016高一上·佛山期末) 某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0π2π
x
Asin(ωx+φ)02﹣20
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将函数y=f(x)的图象向左平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
25. (10分)(2020·宝山模拟) 已知函数 .
(1)求函数的最小正周期及对称中心;
(2)若在区间上有两个解、,求的取值范围及的值.
26. (10分)将函数y=lgx的图象向左平移一个单位长度,可得函数f(x)的图象;将函数y=cos(2x﹣)的图象向左平移个单位长度,可得函数g(x)的图象.
(1)在同一直角坐标系中画出函数f(x)和g(x)的图象.
(2)判断方程f(x)=g(x)解的个数.
参考答案一、单选题 (共15题;共30分)
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
12-1、
13-1、
14-1、
15-1、
二、填空题 (共6题;共9分)
16-1、
17-1、
18-1、
19-1、
20-1、
21-1、
三、综合题 (共5题;共50分) 22-1、
22-2、
23-1、
24-1、
24-2、25-1、25-2、26-1、
26-2、。