复变函数与积分变换课件 1-3章 暮燕飘零

合集下载

复变函数 第三章 复变函数的积分

复变函数 第三章 复变函数的积分
C

{ u [ x ( t ), y ( t )] i [ v [ x ( t ), y ( t )]]}( x ' ( t ) iy ' ( t )) dt
i v x t,y () t) xt ' () u (()() x ty t) yt ' () } d t {(()


f[ z ( t)] z '( t) dt fz ( ) d z f [ z ( t ) ] zt ' ( ) d t
C

( 3 . 6 )
用(3.6)式计算复变函数的积分,是从积分路径的 参数方程着手,称为参数方程法.
例3.1 计算 z d z ,C : 从原点到点 3 4 i 的直线 . C y x3 t, 0t 1 , 解 直线方程为 A y 4 t ,
C C
u ( x , y ) d x v ( x , y ) d y iv ( x , y ) d x u ( x , y ) d y
C C


C
f ( z )d z
结 论 1 : 当是 fz () 连 续 函 数 , C 是 光 滑 曲 线 时 , () d z 一 定 存 在 。 fz 结 论 2 : () d z 可 以 通 过 两 个 二 元 实 函 数 的 fz
k k
证明 令 z x iy x x x y y y k k k k k k 1 k k k 1
n
k n k k k k k k
n
u (k, x v(k, y k) k k) k
k 1 k 1 n n
k 1 n

复变函数与积分变换

复变函数与积分变换

C f ( z )dz lim 1 f ( k ) zk . n k
n
3.积分的性质
g 设 f ( z ) , ( z ) 在曲线 C 上可积,则 C 1) C f ( z )dz C f ( z )dz , 与 C 反向; 2) C Kf ( z )dz K C f ( z )dz,K 为常数;
习题:
1.设C是正向圆周z 1, 计算下列各积分的值。 dz dz dz 1 ) ; 2) ; 3) ; i z2 cos z c c c ( z )( z 2) 2 解:
dz 1) 0; z2 c dz 2) 0; cos z c 4i 3) 2i ; i i c ( z )( z 2) 2 i4 2 2 dz 1
z re i
z x iy
(5)代数表示:
5.运算 1)相等; 2)四则运算,及运算规律; 3)共轭运算,及运算规律; 4) z z r r [cos( ) i sin( )]
1 2 1 2 1 2 1 2
5)
z1 r 1 [cos(1 2 ) i sin(1 2 )] z2 r2 r i (1 2 ) 1e . r2
2i
3.沿指定曲线计算下列各积分.
ez 1 ) z 2 dz, C : z 2 1; c ez 3) C ( z 1)( z 2) dz, C : z 3; eiz 3 2) 2 dz, C : z 2i ; z 1 2 c ez 4) 3 dz, C : z 2; C z
2 2
在区域x 0内连续,且 u v v u , 在区域x 0上成立时, 1, 2a x y x y 1 即,当a 时,函数f ( z )在区域x 0内是解析的。 2

复变函数课件-第三章复变函数的积分解读

复变函数课件-第三章复变函数的积分解读

1、复变函数积分的定义
设在复平面 C 上有一条连接 z 0 及 Z 两点的简单曲 线 C 。设 f(z)=u(x,y)+iv(x,y) 是在 C 上的连续函数。其中 u(x,y)及v(x,y)是f(z)的实部及虚部。 把曲线C用分点 z0 , z1 , z2 ..., zn 1 , zn Z

C
f ( z )dz 0 f ( z )dz f ( z )dz 0 f ( z )dz f ( z )dz
C1 C2 C1 C2
b
a
C1
结论2: 周线C : f ( z )dz 0 C 函数f(z)的积分与路径无关,
目的
研究复积分与路径的无关性:
k
zk
C
z1
z0
复变函数的积分
分实部与虚部,有 n 1
[u (
k 1
k
k
, k ) iv( k , k )][( xk 1 xk ) i ( yk 1 yk )]
n 1
或者
u (
k 1 n 1 k 1
n 1
, k )( xk 1 xk ) v( k , k )( yk 1 yk )
max{| zk 1 zk | ( xk 1 xk ) ( yk 1 yk )
2 2
0 | k 0,1,2,..., n 1} 0
时,上面的四个式子分别有极限:
u( x, y)dx, v( x, y)dy, v( x, y)dx, u( x, y)dy,
C f ( z)dz C f ( z)dz, (4) 积分是在相反的方向上取的。

复变函数积分的性质:

第三章,复变函数的积分(1)

第三章,复变函数的积分(1)

(4) 设曲线C的长度为L, 函数f (z)在C上满足
f (z) M , 则

C
f ( z )dz f ( z ) ds ML.
C
19
估值不等式
事实上,
f (
k 1
n k 1
n
k
)zk f ( k ) zk
k 1
n
n
f ( k ) sk M sk ML,
C C
10
定 理 2 设光滑曲线C由参数方程给出: C : z z ( t ) x( t ) iy( t ) ( t ),
z ( ) 是起点, z ( ) 是终点,f ( z ) u( x , y ) iv ( x , y )
在包含C的区域D内连续,则

C
f ( z )dz

C
f ( z )dz 存在,
C f ( z )dz C udx vdy iC vdx udy
8
证 设 ζ ξ iη k k k 明
,则
zk zk zk 1 ( xk iyk ) ( xk 1 iyk 1 ) ( x k x k 1 ) i ( y k y k 1 ) x k i y k
β α
12
i v[ x( t ), y( t )] x( t ) u[ x( t ), y( t )] y ( t )dt .


f z ( t ) z ( t )dt
如果C是由C1, C2, …, Cn年等光滑曲线段依 次相互连接所组成的按段光滑曲线,那么定义
o
3 2
x
27
§3 基本定理的推广—复合闭路定理

复变函数课件第一章1-3节

复变函数课件第一章1-3节

2. 复球面的定义 球面上的点, 除去北极 N 外, 与复平面内的 点之间存在着一一对应的关系. 我们可以用球 面上的点来表示复数. 我们规定: 复数中有一个唯一的“无穷大”与复 平面上的无穷远点相对应, 记作∞. 因而球面上 的北极 N 就是复数无穷大∞的几何表示. 球面上的每一个点都有唯一的复数与之对 应, 这样的球面称为复球面.
L z1 z z2
(j=1,2)的直线;
(2)中心在点(0, -1), 半径为2的圆。 o x 解 (1) z=z1+t (z2-z1) (-∞<t <+∞)
( 2)
z − (− i ) = 2
y
例2 方程 Re(i z) = 3 表示 什么图形? 解 设 z = x + iy
(z)
Re(iz ) = 3
例4.试用复数表示圆的方程 a( x 2 + y 2 ) + bx + cy + d = 0 (a ≠ 0, bc不全为0)
例5.证明 : z1 + z 2 + z1 − z 2 = 2 z1 + z 2
2 2 2
(
2
)
§2 复数的表示方法
1. 点的表示 2. 向量表示法 3. 三角表示法 4. 指数表示法
z1
z2 - z1
(三角不等式 )
o
z2
x
3. 三角表示法
⎧ x = r cosθ 由⎨ 得 ⎩ y = r sin θ
4. 指数表示法
再由Euler公式 : e iθ = cosθ + i sin θ得
z = r (cos θ + i sin θ )
z = re

复变函数ppt第三章

复变函数ppt第三章

移向得
∫C0 f ( z)dz = ∫C1 f ( z)dz + ∫C2 f ( z)dz + L+ ∫Cn f ( z)dz

27
例3 设C为一简单闭光滑曲线, a∈C.计算积分 ∫ C
page47
dz . z−a
参考解答 a
C
r
a
C
Cr
(1)
(2)

28
dz 例4 计算积分 ∫ C 2 . 积分按逆时针方向,沿曲线 逆 z −z C进行,C是包含单位圆周|z|=1的任意一条光
31
定理3 定理3 设w=f(z) 在单连通区域D内解析,则由
F(z) = ∫ f (ξ )dξ
z0
z
z ∈ D (Th3-1)
定义的函数F(z)在D内解析,且
F ′( z ) = f ( z )
参考证明

32
牛顿-莱布尼兹公式
定理4 定理4 设w=f(z) 在单连通区域 单连通区域D内解析, Φ ( z )是f(z) 单连通区域 的任一原函数,那么
都含在C0内部,这n+1条曲线围成了一个多连通区域 多连通区域 D,D的边界 ∂D 称为复闭路 复闭路. 复闭路 左手法则定正向: 左手法则定正向 沿着D的边界走, 区域D的点总在 左手边.
C0
C3
C2 C1
∴当C0取逆时针, C1 , C2 ,L , Cn都取顺时针.
24
∂D = C 0 + C1 + C 2 +
第三章 复变函数的积分 复变函数
引言 复变函数积分的概念 柯西—古萨定理 柯西 古萨定理 柯西积分公式、 柯西积分公式、 解析函数的高阶导数公式 解析函数与调和函数的关系

《复变函数》第3章


§1 复变函数积分的概念
一、定义 1. 有向曲线: C : z z (t ) x(t ) iy(t ) 选定正方向: 起点 终点 C + 简单闭曲线正方向: P 沿正向前进, 曲线 内部在左方. 2. 复变函数的积分:(P70定义)
f ( z )dz
c
2014-10-20
( n ) k 1
复 变 函 数(第四版)
第三章 复变函数的积分
§1 §2 §3 §4 §5 §6 §7 复变函数积分的概念 柯西-古萨(Cauchy-Goursat)基本定理 基本定理的推广-复合闭路定理 原函数与不定积分 柯西积分公式 解析函数的高阶导数 解析函数与调和函数的关系
《复变函数》(第四版) 第1 页
2014-10-20
2014-10-20 《复变函数》(第四版) 第16页
条件放宽, C 为解析域 D 的边界. f (z)在D C D上连续 , 则 c f ( z )dz 0 例: 对任意 C .
c z
2
dz 0
c e dz 0 c sin z dz 0
2014-10-20 《复变函数》(第四版) 第17页
dz ire d i 2 dz ire c 0 n1 i ( n1) d n 1 ( z z0 ) r e i 2 i 0 n in d n r r e
2014-10-20 《复变函数》(第四版)
i

2 0
e in d
第7 页
( 接上页例 )
i [v( k ,k )xk u( k ,k )yk ] .
k 1
《复变函数》(第四版) 第3 页
n
2014-10-20

复变函数与积分变换第一章z专选课件

欢迎交流
复变函数与积分变换及应用背景
(莫里斯克莱恩 )(1908-1992)
(《古今数学思想》(Mathematical Thought
from Ancient to Modern Times)的作者, 美国 数学史家) 指出: 从技术观点来看,十九世纪最 独特的创造是单复变函数的理论.这个新的数学 分支统治了十九世纪,几乎象微积分的直接扩展 统治了十八世纪那样.这一丰饶的数学分支,一直 被称为这个世纪的数学享受.它也被欢呼为抽象 科学中最和谐的理论之一.
“眼过十遍不如手过一遍”
“好记性不如烂笔头”。
学习方法之五部曲
做作业:
做作业是检验自己对听课、复习收获大小的 一个重要标志。也是深化听课、复习的继续。更 是培养、提高运算能力、综合运用所学知识去分 析问题解决问题能力的重要手段。
学习方法之五部曲
答疑:
在学习上遇到疑问时及时去请教老师,答疑 是向老师学习、请教的良好时机,请同学们利 用好它。 俗话说:“学问、学问,有学有问” 培根说过:“多问的人将多闻”。
是科学上的文化人,将来谁不知道 义的方法, 它开辟了Fourier分析这样一个近代数学 的重要分支. Fourier分析在物理、数学和工程技术上都有广 泛的应用. 对自然界的深刻研究是数学最富饶的源泉.
分形概念,也不能称为有知识。”
——物理学家 惠勒
常微分学常没分,
7.zz2Re(z),zz2iIm(z).
映射。
y 0.
y 0.
积分变换 的内容包括:傅里叶变换和拉普拉斯变换。
其中,课堂讲授的内容必须掌握,其余根据需要自学。
学习方法之五部曲
预习:
预习的目的是: 1、 使听课时心中有底,不至于被动地只

复变函数与积分变换讲义详细讲课文档


3.指数形式与三角形式
利用直角坐标与极坐标的关系: x = r cos, y = r sin,
可以将z表示成三角表示式: zr(co issin )
利用欧拉公式 e i = cos + i sin 得指数表示式:
z rei (rz,Arzg)
例1 将下列复数化为三角表示式与指数表示式.
pp
1 )z 1 2 2 i; 2 )z sin ic o s . 55
建立和发展。
复变函数的理论和方法在数学、自然科学和工程技术
第五页,共21页。
中有着广泛的应用,是解决诸如流体力学,电磁学,
热学弹性理论中平面问题的有力工具。
复变函数中的许多概念,理论和方法是实变函数在复
数领域的推广和发展。
第六页,共21页。
第一讲 复数的代数运算及几何表示
教学重点:1.复习复数的基本概念 2.计算有关复数的典型题
数之间的关系。然而一直到C.Wessel (挪威.17451818)和R.Argand (法国.1768-1822) 将复数用平面 向量或点来表示,以及 K. F.Gauss(德国1777-1855)
与W.R.Hamilton (爱尔兰1805-1865)定义复数 a ib
为一对有序实数后,才消除人们对复数真实性的长久 疑虑,“复变函数”这一数学分支到此才顺利地得到
yy 12
x 2
i
xy 21 x2
x y 12
x 2
(z 2
0)
2
1
2
1
2
复数运算满足交换律,结合律和分配律:
z1+z2=z2+z1 ; z1z2=z2z1 ; z1+(z2+z3)=(z1+z2)+z3

高等数学复变函数与积分变换第一章 复数与复变函数

第一章 复数与复变函数第一节 复数1.复数域每个复数z 具有x iy +的形状,其中x 和R y ∈,1-=i 是虚数单位;x 和y 分别称为z 的实部和虚部,分别记作z x Re =,z y Im =。

复数111iy x z +=和222iy x z +=相等是指它们的实部与虚部分别相等。

如果0Im =z ,则z 可以看成一个实数;如果0Im ≠z ,那么z 称为一个虚数;如果0Im ≠z ,而0Re =z ,则称z 为一个纯虚数。

复数的四则运算定义为:)21()21()22()11(b b i a a ib a ib a ±+±=+±+)1221()2121()22)(11(b a b a i b b a a ib a ib a ++-=++ ()()11121221122222()222222a ib a a b b a b a b i a ib a b a b ++-=++++ 复数在四则运算这个代数结构下,构成一个复数域,记为C 。

2.复平面C 也可以看成平面2R ,我们称为复平面。

作映射:),(:2y x iy x z R C +=→,则在复数集与平面2R 之建立了一个1-1对应。

横坐标轴称为实轴,纵坐标轴称为虚轴;复平面一般称为z -平面,w -平面等。

3.复数的模与辐角复数z x iy =+可以等同于平面中的向量。

向量的长度称为复数的模,定(,)x y义为:||z向量与正实轴之间的夹角称为复数的辐角,定义为:Arg arctan 2y z i xπ=+(k Z ∈)。

复数的共轭定义为:z x iy =-;复数的三角表示定义为:||(cos sin )z z Argz i Argz =+;复数加法的几何表示:设1z 、2z 是两个复数,它们的加法、减法几何意义是向量相加减,几何意义如下图:关于两个复数的和与差的模,有以下不等式:(1)、||||||1212z z z z +≤+;(2)、||||||||1212z z z z +≥-; (3)、||||||1212z z z z -≤+;(4)、||||||||1212z z z z -≥-; (5)、|Re |||,|Im |||z z z z ≤≤;(6)、2||z zz =;例1.1试用复数表示圆的方程:22()0a x y bx cy d ++++= (0a ≠)其中a,b,c,d 是实常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档