高一数学必修1和必修2第一章综合测试题
高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。
2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。
4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。
5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。
高一数学必修2综合测试题含答案

高一数学必修2综合测试题一.选择题:(每题5分,满分60分) 1x -y+1=0的倾斜角为 ( )A ,150ºB ,120ºC ,60ºD ,30º 2、四面体ABCD 中,棱AB 、AC 、AD 两两互相垂直,则顶点A 在底面BCD 上的正投影H 为△BCD 的( )A .垂心B .重心C .外心D .内心3、设r >0,两圆()()22231r y x =++-与1622=+y x 可能( )A .相离B .相交C .内切或内含或相交D .外切或外离4、函数()sin ([,0])f x x x x π=∈-的单调递增区间是( ) A .5[,]6ππ--B .5[,]66ππ--C .[,0]3π-D .[,0]6π-5、直线 l 与直线 071=--=y x y 和分别交于P 、Q 两点,线段PQ 的中点坐标为(1,-1),那么直线 l 的斜率是( )A .32 B .32- C .23 D .23- 6、设b a ,是异面直线,则以下四个命题:①存在分别经过直线a 和b 的两个互相垂直的平面;②存在分别经过直线a 和b 的两个平行平面;③经过直线a 有且只有一个平面垂直于直线b ;④经过直线a 有且只有一个平面平行于直线b 。
其中正确的个数有( ) A . 1 B . 2 C . 3 D . 4 7、在三棱锥ABC S -中,SBC AC 平面⊥,已知a SB a BC a SC 2,3,===,则二面角B AC S --的平面角是( )A .︒30B .︒45C . ︒60D . ︒908、要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( A ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位D .向左平移π6个单位9、圆台上、下底面半径和母线的比为1:4:5,高为8,那么它的侧面积为( ) A .50π B .100π C .150π D .200πSBCA10、经过点M (1,1)且在两轴上截距相等....的直线是( ) A .x+y=2 B .x+y=1 C .x=1或y=1 D .x+y=2或x=y11、已知A 、B 、C 、D 是空间不共面的四个点,且AB ⊥CD ,AD ⊥BC ,则直线BD 与AC ( )A.垂直B.平行C.相交D.位置关系不确定 12、若圆心坐标为(2,-1)的圆在直线01=--y x 上截得的弦长为22,则这个 圆的方程是( )A .()()01222=++-y x B .()()41222=++-y xC .()()81222=++-y x D .()()161222=++-y x二、填空题:(每题4分,满分16分)13、在四面体O ABC -中,OA OB OC D ===,,,a b c 为BC 的中点,E 为AD 的中点, 则OE = (用,,a b c 表示).14.棱长为a 的正四面体的全面积为___________,体积为_________;15、已知圆的方程()2211x y +-=,P 为圆上任意一点(不包括原点)。
范文高一数学必修2第一章测试题及答案解析

第一章综合检测题时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.如下图所示,观察四个几何体,其中判断正确的是( )A .①是棱台B .②是圆台C .③是棱锥D .④不是棱柱2.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的( )倍 B .2倍倍 倍3.(2012·湖南卷)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )4.已知某几何体的三视图如图所示,那么这个几何体是( )A .长方体B .圆柱C .四棱锥D .四棱台5.正方体的体积是64,则其表面积是( )A .64B .16C .96D .无法确定6.圆锥的高扩大到原来的2倍,底面半径缩短到原来的12,则圆锥的体积( )A .缩小到原来的一半B .扩大到原来的2倍C .不变D .缩小到原来的167.三个球的半径之比为1:2:3,那么最大球的表面积是其余两个球的表面积之和的( )A .1倍B .2倍倍 倍8.(2011~2012·浙江龙岩一模)有一个几何体的三视图及其尺寸如下图(单位:cm),则该几何体的表面积为( )A .12πcm 2B .15πcm 2C .24πcm 2D .36πcm 29.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C.5D.310.如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现.圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为() ,1 ,1,32,3211.(2011-2012·广东惠州一模)某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为5的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为5的等腰三角形.则该几何体的体积为()A.24B.80C.64D.24012.如果用表示1个立方体,用表示两个立方体叠加,用表示3个立方体叠加,那么图中由7个立方体摆成的几何体,从正前方观察,可画出平面图形是()二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.圆台的底半径为1和2,母线长为3,则此圆台的体积为________.14.(2011-2012·北京东城区高三第一学期期末检测)一个几何体的三视图如图所示,则这个几何体的体积为_____________________________________________________________________.15.圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为________.16.(2011-2012·安徽皖南八校联考)一个几何体的三视图及其尺寸如下图所示,其中主视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,则这个几何体的表面积是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)画出如图所示几何体的三视图.18.(本题满分12分)圆柱的高是8cm,表面积是130πcm2,求它的底面圆半径和体积.19.(本题满分12分)如下图所示是一个空间几何体的三视图,试用斜二测画法画出它的直观图(尺寸不限).20.(本题满分12分)如图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2m,高为7m,制造这个塔顶需要多少铁板?21.(本题满分12分)如下图,在底面半径为2、母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.22.(本题满分12分)如图所示(单位:cm),四边形ABCD 是直角梯形,求图中阴影部分绕AB 旋转一周所成几何体的表面积和体积.详解答案1[答案] C[解析] 图①不是由棱锥截来的,所以①不是棱台;图②上、下两个面不平行,所以②不是圆台;图④前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以④是棱柱;很明显③是棱锥.2[答案] C[解析] 设△ABC 的边AB 上的高为CD ,以D 为原点,DA 为x 轴建系,由斜二测画法规则作出直观图△A ′B ′C ′,则A ′B ′=AB ,C ′D ′=12CD .S △A ′B ′C ′=12A ′B ′·C ′D ′sin45° =24(12AB ·CD )=24S △ABC .3[答案] D[解析] 本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A ,B ,C 都可能是该几何体的俯视图,D 不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.[点评] 本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型.4[答案] A[解析] 该几何体是长方体,如图所示.5[答案] C[解析] 由于正方体的体积是64,则其棱长为4,所以其表面积为6×42=96.6[答案] A[解析] V =13π⎝ ⎛⎭⎪⎫12r 2×2h =16πr 2h ,故选A. [答案] C7[解析] 设最小球的半径为r ,则另两个球的半径分别为2r 、3r ,所以各球的表面积分别为4πr 2,16πr 2,36πr 2,所以36πr 24πr 2+16πr2=95.8[答案] C[解析] 由三视图可知该几何体是圆锥,S 表=S 侧+S 底=πrl +πr 2=π×3×5+π×32=24π(cm 2),故选C.9[答案] A[解析] 设圆台较小底面圆的半径为r ,由题意,另一底面圆的半径R =3r .∴S 侧=π(r +R )l =π(r +3r )×3=84π,解得r =7.10[答案] C[解析] 设球的半径为R ,则圆柱的底面半径为R ,高为2R ,∴V 圆柱=πR 2×2R =2πR 3,V 球=43πR 3.∴V 圆柱V 球=2πR 343πR 3=32, S 圆柱=2πR ×2R +2×πR 2=6πR 2,S 球=4πR 2.∴S 圆柱S 球=6πR 24πR 2=32. 11[答案] B[解析] 该几何体的四棱锥,高等于5,底面是长、宽分别为8、6的矩形,则底面积S =6×8=48,则该几何体的体积V =13Sh =13×48×5=80.12[答案] B[解析] 画出该几何体的正视图为,其上层有两个立方体,下层中间有三个立方体,两侧各一个立方体,故B 项满足条件.13[答案] 1423π[解析] 圆台高h =32-?2-1?2=22, ∴体积V =π3(r 2+R 2+Rr )h =1423π.14[答案] 36[解析] 该几何体是底面是直角梯形的直四棱柱,如图所示,底面是梯形ABCD ,高h =6,则其体积V =Sh =⎣⎢⎡⎦⎥⎤12?2+4?×2×6=36. [答案] 24π2+8π或24π2+18π15[解析] 圆柱的侧面积S 侧=6π×4π=24π2.(1)以边长为6π的边为轴时,4π为圆柱底面圆周长,所以2πr =4π,即r =2.所以S 底=4π,所以S 表=24π2+8π.(2)以4π所在边为轴时,6π为圆柱底面圆周长,所以2πr =6,即r =3.所以S 底=9π,所以S 表=24π2+18π.16[答案] 2(1+3)π+4 2[解析] 此几何体是半个圆锥,直观图如下图所示,先求出圆锥的侧面积S 圆锥侧=πrl =π×2×23=43π,S 底=π×22=4π,S △SAB =12×4×22=42,所以S 表=43π2+4π2+4 2=2(1+3)π+4 2.17[解析] 该几何体的上面是一个圆柱,下面是一个四棱柱,其三视图如图所示.18[解析] 设圆柱的底面圆半径为r cm ,∴S 圆柱表=2π·r ·8+2πr 2=130π.∴r =5(cm),即圆柱的底面圆半径为5cm.则圆柱的体积V =πr 2h =π×52×8=200π(cm 3).19[解析] 由三视图可知该几何体是一个正三棱台.画法:(1)如图①所示,作出两个同心的正三角形,并在一个水 平放置的平面内画出它们的直观图;(2)建立z ′轴,把里面的正三角形向上平移高的大小;(3)连接两正三角形相应顶点,并擦去辅助线,被遮的线段用虚线表示,如图②所示,即得到要画的正三棱台.20[解析]如图所示,连接AC 和BD 交于O ,连接SO .作SP ⊥AB ,连接OP .在Rt △SOP 中,SO =7(m),OP =12BC =1(m),所以SP =22(m),则△SAB 的面积是12×2×22=22(m 2).所以四棱锥的侧面积是4×22=82(m 2),即制造这个塔顶需要82m 2铁板.21[解析] 设圆柱的底面半径为r ,高为h ′.圆锥的高h =42-22=23,又∵h ′=3,∴h ′=12h .∴r 2=23-323,∴r =1. ∴S 表面积=2S 底+S 侧=2πr 2+2πrh ′=2π+2π×3=2(1+3)π.22[解析] 由题意,知所成几何体的表面积等于圆台下底面积+圆台的侧面积+半球面面积.又S 半球面=12×4π×22=8π(cm 2),S 圆台侧=π(2+5)?5-2?2+42=35π(cm 2),S 圆台下底=π×52=25π(cm 2),即该几何全的表面积为8π+35π+25π=68π(cm 2).又V 圆台=π3×(22+2×5+52)×4=52π(cm 3),V 半球=12×4π3×23=16π3(cm 3).所以该几何体的体积为V 圆台-V 半球=52π-16π3=140π3(cm 3).第一课件网系列资料。
人教版高一数学必修一第一章测试题含答案

人教版高一数学必修一第一章测试题含答案一、选择题1.下列数中,是正数且有理数的是____。
A.根号2B.根号3C.-0.8D.- 3/4答案:D2.在数轴上,数-3,-2,0,2所在的点的次序是____。
A.-2 < -3 < 0 < 2B.-3 < -2 < 2 < 0C.-3 < -2 < 0 < 2D.-2 < -3 < 2 < 0答案:C3.下列各数中,最小的是____。
A.-0.8B.-1/2C.-1D.-0.9999答案:C4.已知-3<x<5,则-2x的取值范围是____。
A.6<x<30B.15<x<30C.-30<x<-6D.-30<x<15答案:D二、填空题1.将-0.25用分数表示为________。
答案:-1/42.-13的绝对值是________。
答案:133.已知-5<x<4,那么|x+7|的取值范围是________。
答案:2<|x+7|<124.如果a>b>0,那么a²和b²的大小关系是________。
答案:a²>b²三、解答题1.已知x<2y,2y≤4z,z≤5,求满足以上条件的x的取值范围。
解:由条件可得:x<2y≤4z≤20故x<20。
2.已知-2<x<3,求满足0<2x-1<5的x的取值范围。
解:0<2x-1<51<2x<6由x的取值范围-2<x<3得1/2<x<3,故满足条件的x的取值范围为1/2<x<3。
3.小明的体重是58kg,如果减轻了1/8,减轻后的体重是多少?解:减轻了1/8,体重减轻的量为1/8×58=7.25kg。
减轻后的体重为58-7.25=50.75kg。
2023-2024学年高一上数学必修一综合测试卷(附答案解析)

解析:当 c=0 时,A 不成立;当 a=-1,b=-2 时,B 不成立;
由不等式的性质知 C 不成立;若 a> b,则一定能推出 a>b,故 D 成
立.
3.命题“∃x∈R,x3-x2+1>0”的否定是( A )
A.∀x∈R,x3-x2+1≤0 B.∀x∈R,x3-x2+1>0
C.∃x∈R,x3-x2+1≤0 D.不存在 x∈R,x3-x2+1≤0
的取值范围是( A )
A.[2,6)
B.(2,6)
C.(-∞,2]∪(6,+∞)
D.(-∞,2)∪(6,+∞)
解析:①当 a=2 时,1>0 成立,故 a=2 符合条件;②当 a≠2 时,
a-2>0,
必须满足 Δ=a-22-4a-2<0,
解得 2<a<6.由①②可知,a∈
[2,6).故选 A.
二、多项选择题(本题共 4 小题,每小题 5 分,共 20 分.在每小
2
4
sinx
在
1π,3π 22
上单调递减,故
y=
π,3π 2sin2x 在 4 4 上单调递减,故
题给出的四个选项中,有多个选项符合题目要求.全部选对的得 5 分,
部分选对的得 3 分,有选错的得 0 分)
9.下列函数是偶函数的是( CD )
A.f(x)=tanx B.f(x)=sinx C.f(x)=cosx D.f(x)=lg|x|
解析:根据题意,依次分析选项:对于 A,f(x)=tanx,是正切函
解析:存在量词命题“∃x∈M,p(x)”的否定为全称量词命题“∀
x∈M,綈 p(x)”,故选 A.
4. 22cos375°+ 22sin375°的值为( A )
高一数学必修2第一章测试题及答案

第一章综合检测题时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.如下图所示,观察四个几何体,其中判断正确的是( )A .①是棱台B .②是圆台C .③是棱锥D .④不是棱柱2.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的( ) A.12倍 B .2倍 C.24倍 D.22倍 3.(2012·湖南卷)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )4.已知某几何体的三视图如图所示,那么这个几何体是( )A .长方体B .圆柱C .四棱锥D .四棱台5.正方体的体积是64,则其表面积是( ) A .64 B .16 C .96D .无法确定6.圆锥的高扩大到原来的2倍,底面半径缩短到原来的12,则圆锥的体积( )A .缩小到原来的一半B .扩大到原来的2倍C .不变D .缩小到原来的167.三个球的半径之比为1:2:3,那么最大球的表面积是其余两个球的表面积之和的( )A.1倍B.2倍C.95倍 D.74倍8.(2011~2012·浙江龙岩一模)有一个几何体的三视图及其尺寸如下图(单位:cm),则该几何体的表面积为( )A.12πcm2B.15πcm2C.24πc m2D.36πcm29.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A.7 B.6C.5 D.310.如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现.圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( )A.32,1 B.23,1C.32,32D.23,3211.(2011-2012·广东惠州一模)某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为5的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为5的等腰三角形.则该几何体的体积为( )A.24 B.80C.64 D.24012.如果用表示1个立方体,用表示两个立方体叠加,用表示3个立方体叠加,那么图中由7个立方体摆成的几何体,从正前方观察,可画出平面图形是( )二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.圆台的底半径为1和2,母线长为3,则此圆台的体积为________.14.(2011-2012·北京东城区高三第一学期期末检测)一个几何体的三视图如图所示,则这个几何体的体积为___________________.15.圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为________.16.(2011-2012·安徽皖南八校联考)一个几何体的三视图及其尺寸如下图所示,其中主视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,则这个几何体的表面积是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分计算如图所示几何体的体积和表面积.18.(本题满分12分)圆柱的高是8cm,表面积是130πcm2,求它的底面圆半径和体积.19.(本题满分12分)如下图所示是一个空间几何体的三视图,计算其表面积和体积.20.(本题满分12分)如图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2m,高为7m,制造这个塔顶需要多少铁板?21.(本题满分12分)如下图,在底面半径为2、母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.22.(本题满分12分)如图所示(单位:cm),四边形ABCD是直角梯形,求图中阴影部分绕AB旋转一周所成几何体的表面积和体积.详解答案1[答案] C[解析] 图①不是由棱锥截来的,所以①不是棱台;图②上、下两个面不平行,所以②不是圆台;图④前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以④是棱柱;很明显③是棱锥.2[答案] C[解析] 设△ABC 的边AB 上的高为CD ,以D 为原点,DA 为x 轴建系,由斜二测画法规则作出直观图△A ′B ′C ′,则A ′B ′=AB ,C ′D ′=12CD .S △A ′B ′C ′=12A ′B ′·C ′D ′sin45°=24(12AB ·CD )=24S △ABC . 3[答案] D[解析] 本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A ,B ,C 都可能是该几何体的俯视图,D 不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.[点评] 本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型. 4[答案] A 5[答案] C[解析] 由于正方体的体积是64,则其棱长为4,所以其表面积为6×42=96. 6[答案] A[解析] V =13π⎝ ⎛⎭⎪⎫12r 2×2h =16πr 2h ,故选A.[答案] C7[解析] 设最小球的半径为r ,则另两个球的半径分别为2r 、3r ,所以各球的表面积分别为4πr 2,16πr 2,36πr 2,所以36πr 24πr 2+16πr 2=95.8[答案] C[解析] 由三视图可知该几何体是圆锥,S 表=S 侧+S 底=πrl +πr 2=π×3×5+π×32=24π(cm 2),故选C. 9[答案] A[解析] 设圆台较小底面圆的半径为r ,由题意,另一底面圆的半径R =3r . ∴S 侧=π(r +R )l =π(r +3r )×3=84π,解得r =7. 10[答案] C[解析] 设球的半径为R ,则圆柱的底面半径为R ,高为2R ,∴V 圆柱=πR 2×2R =2πR 3,V 球=43πR 3.∴V 圆柱V 球=2πR 343πR 3=32, S 圆柱=2πR ×2R +2×πR 2=6πR 2,S 球=4πR 2. ∴S 圆柱S 球=6πR 24πR 2=32. 11[答案] B[解析] 该几何体的四棱锥,高等于5,底面是长、宽分别为8、6的矩形,则底面积S =6×8=48,则该几何体的体积V =13Sh =13×48×5=80.12[答案] B[解析] 画出该几何体的正视图为,其上层有两个立方体,下层中间有三个立方体,两侧各一个立方体,故B 项满足条件.13[答案] 1423π[解析] 圆台高h =32-2-12=22,∴体积V =π3(r 2+R 2+Rr )h =1423π.14[答案] 36[解析] 该几何体是底面是直角梯形的直四棱柱,如图所示,底面是梯形ABCD ,高h =6,则其体积V =Sh =⎣⎢⎡⎦⎥⎤122+4×2×6=36.[答案] 24π2+8π或24π2+18π15[解析] 圆柱的侧面积S 侧=6π×4π=24π2.(1)以边长为6π的边为轴时,4π为圆柱底面圆周长,所以2πr =4π,即r =2.所以S 底=4π,所以S 表=24π2+8π.(2)以4π所在边为轴时,6π为圆柱底面圆周长,所以2πr =6,即r =3.所以S 底=9π,所以S 表=24π2+18π.16[答案] 2(1+3)π+4 2[解析] 此几何体是半个圆锥,直观图如下图所示,先求出圆锥的侧面积S 圆锥侧=πrl =π×2×23=43π,S 底=π×22=4π,S △SAB =12×4×22=42,所以S 表=43π2+4π2+4 2=2(1+3)π+4 2.1718[解析] 设圆柱的底面圆半径为r cm ,∴S 圆柱表=2π·r ·8+2πr 2=130π.∴r =5(cm),即圆柱的底面圆半径为5cm.则圆柱的体积V =πr 2h =π×52×8=200π(cm 3). 1920[解析]如图所示,连接AC 和BD 交于O ,连接SO .作SP ⊥AB ,连接OP .在Rt △SOP 中,SO =7(m),OP =12BC =1(m),所以SP =22(m),则△SAB 的面积是12×2×22=22(m 2).所以四棱锥的侧面积是4×22=82(m 2),即制造这个塔顶需要82m 2铁板.21[解析] 设圆柱的底面半径为r ,高为h ′.圆锥的高h =42-22=23, 又∵h ′=3,∴h ′=12h .∴r 2=23-323,∴r =1.∴S 表面积=2S 底+S 侧=2πr 2+2πrh ′=2π+2π×3=2(1+3)π.22[解析] 由题意,知所成几何体的表面积等于圆台下底面积+圆台的侧面积+半球面面积.又S 半球面=12×4π×22=8π(cm 2),S 圆台侧=π(2+5)5-22+42=35π(cm 2), S 圆台下底=π×52=25π(cm 2),即该几何全的表面积为8π+35π+25π=68π(cm 2).又V 圆台=π3×(22+2×5+52)×4=52π(cm 3),V 半球=12×4π3×23=16π3(cm 3).所以该几何体的体积为V 圆台-V 半球=52π-16π3=140π3(cm 3).。
高中数学必修1综合测试卷(三套+含答案)
高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3。
已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C 。
5D .6 4。
下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6。
设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A 。
2 B .3 C .9 D 。
187.函数1(0,1)x y a a a a=->≠的图象可能是( )8。
高中数学必修一和必修二综合测试及参考答案
2高中数学必修一和必修二综合测试 A考号 ______ 班级 _______ 姓名 ___________一、选择题(每小题5分,共10小题,共50分)1、设集合 A = :(x, y) y =ax 1 f , B = 乂x, y) y =x - b ,且 B -1(2,5) J 」y :()B . a=2,b=3C . a--3,b--2D . a--2,b-i3x 轴上的三角形,采用斜二测画法作出其直观图,其直观图的面积是原三角 )f (x)在(a,b)上是:( ) A.增函数B.减函数C.奇函数D.偶函数x7. 在x 轴上的截距为2且倾斜角为135°的直线方程为:( )A . y=—x + 2B .y=—x — 2C . y = x + 2D .y = x — 28. 设点M 是Z 轴上一点,且点 M 到A (1, 0, 2)与点B ( 1,— 3, 1)的距离相等,则点 M 的坐标是:()A . (— 3,— 3, 0)B . (0, 0, — 3)C . (0, — 3,— 3)D . (0, 0, 3) 9.如图所示,阴影部分的面积 S 是h (0^h^H)的函数.则该函数的图象是:()1 ,2 )内的函数f (X )=〔og sad -1)满足f(x) .0,则a 的取值范围13、已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x 年后的剩留量为 y ,2、对于一个底边在形面积的:(13.已知函数f ((的4A. 8D194.设 x y1,A. x^axxa :::D.-倍 2)D. lOg a x log a yA .( -1, 0) B. (0, 1)C. (1 , 2)D. (2, 3)6.函数f(x)的定义域为(a,b),且对其内任意实数 N,X 2 均有:(儿-X 2)[f (儿)- f (冷)]::0,则10.将直线I :x 2y -1=0向左平移3个单位,再向上平移 间的距离为:()2个单位得到直线l ,则直线l 与「之A .二5 二、填空题(每小题5B . 5 6分,共5个小题, 1C.—5 共30分)D . 11、如图,在多面体 ABCDEF 中,已知面 ABCD 是边长为3的正方形,3 EF= — , EF 与面AC 的距离为2,则该多面体的体积是 __________ 12、若定义在区间( 是A. 2倍 B.子倍 C.子倍 5.函数f(x) -2x -3的零点所在区间为:( )则y = f (x)的函数解析式为 _________________________ .14、已知I丄a, m二B ,则下面四个命题:①a//B则I丄m ②a ±3则I 〃m ③I // m则a丄B ④I丄m则a//B其中正确的是_ ________________2三、解答题16 ( 14分).⑴、求经过直线h:7x「8y「1 =0和l2:2x 17y *9=0的交点,且垂直于直线2x-y 7 =0的直线方程.(2)、直线I经过点P(5,5),且和圆C:x2 y^25相交,截得弦长为4 5,求I的方程.17 (14分).某飞机制造公司一年中最多可生产某种型号的飞机100架。
人教版高一数学必修二-第一章综合测评题(标准答案解析)
人教版高一数学必修二-第一章综合测评题(答案解析)————————————————————————————————作者:————————————————————————————————日期:第一章综合测评题时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的)1.下列命题中,正确的是( ) A .有两个侧面是矩形的棱柱是直棱柱 B .侧面都是等腰三角形的棱锥是正棱锥 C .侧面都是矩形的直四棱柱是长方体D .底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱2.一个圆柱的侧面展开图是一个正方形,这个圆柱的表面积与侧面积的比是( ) A.1+2π2π B.1+4π4π C.1+2ππD.1+4π2π3.有下列四种说法:①平行投影的投影线互相平行,中心投影的投影线相交于一点;②空间图形经过中心投影后,直线变成直线,但平行线可能变成相交的直线;③空间几何体在平行投影与中心投影下有不同的表现方式.其中正确的命题有( )A .1个B .2个C .3个D .0个4.长方体ABCD -A 1B 1C 1D 1中截去一角B 1-A 1BC 1,则它的体积是长方体体积的( ) A.14 B.16 C.112D.1185.底面是边长为4的正方形,侧棱长都为25的四棱锥的侧面积和体积依次为( ) A .24,643 B .8,3233 C .32,643 D .32,32336.若圆台两底面周长的比是14,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是( )A.12B.14C .1 D.391297.(2012·新课标全国卷)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A.6π B .43π C .46πD .63π8.如图所示,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图(斜二测),若A 1D 1∥O 1y 1,A 1B 1∥C 1D 1,A 1B 1=23C 1D 1=2,A 1D 1=1,则四边形ABCD 的面积是( )A .10B .5C .5 2D .10 29.若某空间几何体的三视图如图所示,则该几何体的体积是( )A.13B.23C .1D .210.一个棱锥的三视图如图,则该棱锥的表面积(单位:cm 2)为( )A .48+12 2B .48+24 2C .36+12 2D .36+24 211.等边三角形的边长为a ,它绕其一边所在的直线旋转一周,则所得旋转体的体积为( )A.14πa 3 B.18πa 3 C.12πa 3D.16πa 312.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是( )A .8 B.203 C.173D.143二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M ,若圆M 的面积为3π,则球O 的表面积等于________.14.把边长为1的正方形ABCD 沿对角线BD 折起形成三棱锥C -ABD ,其正视图与俯视图如图所示,则其侧视图的面积为________.15.一个母线长为2的圆锥侧面展开图为一个半圆,则此圆锥的体积为________.16.一个正四棱柱(底面是正方形,各个侧面均为矩形)的各个顶点都在一个直径为2cm 的球面上,如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为________cm 2.三、解答题(本大题共6小题,共70分,17题10分,18~22题,每题12分,解答应写出文字说明,证明过程或演算步骤)17.画出下图中三个图形的指定三视图之一.18.如图所示,为一建筑物的三视图,现需将其外壁用油漆刷一遍,已知每平方米用漆0.2 kg,问需要油漆多少千克?(尺寸如图所示,单位:m,π取3.14,结果精确到0.01 kg)19.已知四棱锥P-ABCD,其三视图和直观图如图,求该四棱锥的体积.20.一几何体按比例绘制的三视图如图所示(单位:m).(1)试画出它的直观图;(2)求它的表面积和体积.21.正三棱锥的高为1,底面边长为26,内有一个球与它的四个面都相切,求:(1)棱锥的表面积;(2)内切球的表面积与体积.22.如图,一个圆锥的底面半径为2cm,高为6cm,在其中有一个高为x cm的内接圆柱.(1)试用x表示圆柱的侧面积;(2)当x为何值时,圆柱的侧面积最大?第一章综合测评题(答案)1、解析:认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两方面去分析,故A ,C 都不够准确,B 中对等腰三角形的腰是否为侧棱未作说明,故也不正确.答案:D2、解析:利用侧面展开图与底面圆的联系解题.设底面圆半径为r ,母线即高为h ,则h =2πr ,所以S 表S 侧=2πr 2+2πrh 2πrh =r +h h =r +2πr 2πr =1+2π2π.故选A.答案:A3、解析:本题考查中心投影与平行投影的有关概念及性质.利用中心投影与平行投影的概念判断,①③正确;利用中心投影与平行投影的性质判断,②也正确.故正确的命题有3个.故选C.答案:C4、解析:VB 1-A 1BC 1=VC 1-A 1B 1B =13·S △A 1B 1B ·B 1C 1=13×12S 四边形AA 1B 1B ×B 1C 1=16VABCD -A 1B 1C 1D 1.答案:B 5、解析:如图,O 为正方形ABCD 的中心,VO 为四棱锥的高,E 为边BC 中点,所以VE ⊥BC .由BC =AB =4,VB =VC =25可得VE =4,VO =23,∴S 侧=4S △VBC =32,V =13S 正方形ABCD ·VO =3233.答案:D 6、解析:圆台的轴截面如图,∵圆台的两底面周长之比为1:4,∴两底面半径之比1:4.设上底面半径为r ,则下底面半径为4r .∴经过高的中点与底面平行的截面半径为52r .∴圆台被分成两部分的体积比为 13πr 2+πr 2·π·254r 2+π·254r 213π·254r 2+π·254r 2·π·16r 2+π·16r 2=39129. 答案:D7、解析:设球O 的半径为R ,则R = 12+(2)2=3,故V 球=43πR 3=43π.答案:B 8、解析:四边形ABCD 是直角梯形,其中AD =2,AB =2,CD =3,所以四边形ABCD 的面积为12·(2+3)×2=5.答案:B9、解析:由三视图可知,该空间几何体是底面为直角三角形的直三棱柱,三棱柱的底面直角三角形的直角边长分别为1和2,三棱柱的高为2,所以该几何体的体积V =12×1×2×2=1.答案:C10、解析:由三视图知,该几何体可看做由两个全等的小三棱锥侧面重合放置而成.每个小三棱锥的高为4,底面是腰长为32、底边长为6的等腰三角形,斜高为5,所以每个三棱锥的底面积为12×3×6=9,侧面积为12×5×6=15或12×4×32=62,所以组合体的表面积为9×2+15×2+62×2=48+12 2.答案:A11、解析:所得的旋转体为以等边三角形的高为底面半径的两个相同底的圆锥,每个圆锥的高都为a2,∴V =2×13×π×⎝⎛⎭⎫32a 2·a 2=14πa 3.答案:A12、解析:几何体是正方体截去一个三棱台, V =23-13·⎝⎛⎭⎫12+2+ 2×12×2=173. 答案:C13、解析:设球半径为R ,圆M 的半径为r ,则πr 2=3π,即r 2=3, 由题得R 2-⎝⎛⎭⎫R 22=3,所以R 2=4⇒4πR 2=16π. 答案:16π14、解析:由题意可知,侧视图为等腰直角三角形,腰长为22,故其面积为12×⎝⎛⎭⎫222=14. 答案:1415、解析:由题意可知,圆锥的底面周长为2πr =12·2π×2,得r =1.∴圆锥的高h =22-12=3,∴圆锥的体积V =13×π×12×3=33π.答案:33π16、解析:设正四棱柱的高为a cm,则22=12+12+a2,∴a= 2.∴S表面积=1×1×2+4×1×2=(2+42)(cm2).答案:2+4 217、解:如图所示.18、解:由三视图知建筑物为一组合体,自上而下分别是圆锥和四棱柱,并且圆锥的底面半径为3 m,母线长5 m,四棱柱的高为4 m,底面是边长为3 m的正方形.∴圆锥的表面积为πr2+πrl=3.14×32+3.14×3×5=28.26+47.1=75.36(m2).四棱柱的一个底面积为32=9(m2),四棱柱的侧面积为4×4×3=48(m2).∴建筑物的外壁面积为75.36-9+48=114.36(m2).∴需要油漆114.36×0.2=22.872≈22.87(kg).19、解:由三视图知底面ABCD为矩形,AB=2,BC=4,顶点P在面ABCD内的射影为BC中点E,即棱锥的高为2,则体积V P -ABCD =13S 矩形ABCD ×PE =13×2×4×2=163.20、解:(1)直观图如图所示.(2)解法一:由三视图可知该几何体是长方体被截去一个角得到的,且该几何体的体积是以A 1A 、A 1D 1、A 1B 1为棱的长方体的体积的34.在直角梯形AA 1B 1B 中,作BE ⊥A 1B 1,则四边形AA 1EB 是正方形,∴AA 1=BE =1. 在Rt △BEB 1中,BE =1,EB 1=1,∴BB 1= 2. ∴几何体的表面积S =S 正方形AA1D 1D +2S 梯形AA 1B 1B +S 矩形BB 1C 1C +S 正方形ABCD +S 矩形A 1B 1C 1D 1=1+2×12(1+2)×1+1×2+1+1×2=(7+2)(m 2).∴几何体的体积V =34×1×2×1=32(m 3).∴该几何体的表面积为(7+2)m 2,体积为32m 3.解法二:几何体也可以看作是以AA 1B 1B 为底面的直四棱柱,其表面积求法同解法一, V 直四棱柱D1C 1CD -A 1B 1BA =Sh =32×1=32(m 3). 21、解:(1)底面正三角形中心到一边的距离为 13×32×26=2, 则正棱锥侧面的斜高为12+(2)2= 3.∴S 侧=3×12×26×3=9 2.∴S 表=S 侧+S 底=92+12×32×(26)2=92+6 3.(2)如图所示,设正三棱锥P -ABC 的内切球球心为O ,连接OP 、OA 、OB 、OC ,而O 点到三棱锥的四个面的距离都为球的半径r .∴V P -ABC =V O -P AB +V O -PBC +V O -P AC +V O -ABC =13·S 侧·r +13·S △ABC ·r=13·S 表·r =(32+23)r . 又V P -ABC =13×12×32×(26)2×1=23,∴(32+23)r =23,得r =2332+23=23(32-23)18-12=6-2.∴S 内切球=4π(6-2)2=(40-166)π. V 内切球=43π(6-2)3=83(96-22)π.22、解:设圆柱的底面半径为r .由题意知,r 2=6-x 6,∴r =2-13x .(1)S 圆柱侧=2πr ·x =2π·⎝⎛⎭⎫2-13x ·x=-2π3x 2+4πx =-2π3(x -3)2+6π(0<x <6).(2)当x =3时,圆柱的侧面积最大.。
高一数学必修1_必修2测试卷(附答案)
高一数学测试题(必修1,必修2)第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合{0,1,2,4,5,7},{1,3,6,8,9},{3,7,8}X Y Z ===,那么集合()X Y Z 是( ) A. {0,1,2,6,8} B. {3,7,8} C. {1,3,7,8} D. {1,3,6,7,8}2. 设集合A 和集合B 都是自然数集N ,映射:f A B →把集合A 中的元素n 映射到集合B 中的元素2n n +,则在映射f 下,像20的原像是( )A. 2B. 3C. 4D. 5 3. 与函数y x =有相同的图像的函数是( )A. y =2x y x=C. log a xy a = 01)a a >≠(且 D.log x a y a = 01)a a >≠(且 4. 方程lg 3x x =-的解所在区间为( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)5. 设()f x 是(,)-∞+∞上的奇函数,且(2)()f x f x +=-,当01x ≤≤时,()f x x =, 则(7.5)f 等于 ( )A. 0.5B. 0.5-C. 1.5D. 1.5- 6. 下面直线中,与直线230x y --=相交的直线是( )A. 4260x y --=B. 2y x =C. 25y x =+D.23y x =-+ 7. 如果方程22220(40)x y Dx Ey F D E F ++++=+->所表示的曲线关于直线y x =对称,那么必有( )A. D E =B. D F =C. E F =D. D E F == 8. 如果直线//,//a b a α直线且平面,那么b α与的位置关系是( )A. 相交B. //b αC. b α⊂D. //b α或b α⊂ 9. 在空间直角坐标系中,点(3,2,1)P -关于x 轴的对称点坐标为( )A. (3,2,1)-B. (3,2,1)--C. (3,2,1)--D. (3,2,1)10. 一个封闭的立方体,它的六个表面各标出ABCDEF 这六个字母.现放成下面三中不同的位置,所看见的表面上字母已标明,则字母A 、B 、C 对面的字母分别为( )A. D 、E 、FB. E 、D 、FC. E 、F 、DD. F 、D 、E第二部分 非选择题(共100分)二、填空题:本大题共4小题, 每小题5分,满分20分.11. 幂函数()y f x =的图象过点(2,2,则()f x 的解析式为_______________12. 直线过点(5,6)P ,它在x 轴上的截距是在y 轴上的截距的2倍,则此直线方程为__________________________.13.集合22222{(,)|4},{(,)|(1)(1),0}M x y x y N x y x y r r =+≤=-+-≤>,若M N N =,则实数r 的取值范围为_____________14. 已知函数(),()f x g x 分别由下表给出,则[(2)]f g =_______,[(3)]g f =________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、演算步骤或推证过程.(其中15题和18题每题12分,其他每题14分)15. 已知函数2()2||1f x x x =--,作出函数的图象,并判断函数的奇偶性.16. 已知函数()log (1)(0,1)x a f x a a a =->≠. (1)求函数()f x 的定义域;(2)讨论函数()f x 的单调性.17. 正方体1111ABCD A BC D -中,求证:(1)11AC B D DB ⊥平面; (2)11BD ACB ⊥平面.18. 一个圆锥的底面半径为2cm ,高为6cm ,在其中有一个高为x cm 的内接圆柱. (1)试用x 表示圆柱的侧面积;(2)当x 为何值时,圆柱的侧面积最大?19. 求二次函数22()2(21)542f x x a x a a =--+-+在[0,1]上的最小值()g a 的解析式.20. 已知圆22:(1)(2)25C x y -+-=,直线:(21)(1)740l m x m y m +++--=.(1)求证:直线l 恒过定点;(2)判断直线l 被圆C 截得的弦何时最长,何时最短?并求截得的弦长最短时m 的值以及最短弦长.高一上学期期末复习题参考答案及评分标准11. 12()f x x -= 12. 650x y -=或2170x y +-= 13. (0,2 14. 2; 3 三、解答题:15. 本小题主要考查分段函数的图象,考查函数奇偶性的判断. 满分12分.解:2221,(0)()21,(0)x x x f x x x x ⎧--≥=⎨+-<⎩ ……2分函数()f x 的图象如右图 ……6分 函数()f x 的定义域为R ……8分 2()2||1f x x x =--22()2||12||1()f x x x x x f x -=----=--=()所以()f x 为偶函数. ……12分16. 本小题主要考查指数函数和对数函数的性质,考查函数的单调性. 满分14分. 解:(1)函数()f x 有意义,则10xa -> ……2分当1a >时,由10xa ->解得0x >;当01a <<时,由10xa ->解得0x <. 所以当1a >时,函数的定义域为(0,)+∞; ……4分当01a <<时,函数的定义域为(,0)-∞. ……6分 (2)当1a >时,任取12,(0,)x x ∈+∞,且12x x >,则12xxa a >1121222121()()log (1)log (1)log log (1)11x x x x x a a a a x x a a a f x f x a a a a ---=---==+--1212212,()()log (1)log 101x x x x a a x a a a a f x f x a ->∴-=+>=-,即12()()f x f x >由函数单调性定义知:当1a >时,()f x 在(0,)+∞上是单调递增的. ……10分当01a <<时,任取12,(,0)x x ∈-∞,且12x x >,则12x xa a <1121222121()()log (1)log (1)log log (1)11x x x x x a a a a x x a a a f x f x a a a a ---=---==+--1212212,()()log (1)log 101x x x x a a x a a a a f x f x a -<∴-=+>=-,即12()()f x f x >由函数单调性定义知:当01a <<时,()f x 在(,0)-∞上是单调递增的. ……14分17. 本小题主要考查空间线面关系,考查空间想象能力和推理证明能力. 满分14分. 证明:(1)正方体1111ABCD A BC D -中,1B B ⊥平面ABCD ,AC ⊂平面ABCD ,1AC B B ∴⊥ ……3分 又AC BD ⊥,1BD B B B =,∴11AC B D DB ⊥平面 ……7分(2)连接11,AD BC ,11D C ⊥平面11BCC B ,1B C ⊂平面11BCC B ,111B C DC ∴⊥,又11B C BC ⊥,1111BC D C C =,∴111B C ABC D ⊥平面 1BD ⊂ 11ABC D 平面,11BD B C ∴⊥ ……10分由(1)知11AC B D DB ⊥平面,1BD ⊂平面ABCD ,1BD AC ∴⊥ 1,AC B C C =∴11BD ACB ⊥平面 ……14分18. 本小题主要考查空间想象能力,运算能力与函数知识的综合运用. 满分12分.解:(1)如图:POB 中,1DB OBD D PO=,即26DB x = ……2分 13D B x ∴=,123OD OB DB x =-=- ……4分 圆柱的侧面积1122(2)3S OD D D x x ππ=⋅⋅=-⋅∴2(6)3S x x π=-⋅ (06x <<) ……8分 (2)222(6)(3)633S x x x πππ=-⋅=--+ 3x ∴=时,圆柱的侧面积最大,最大侧面积为26cm π ……12分19. 本小题以二次函数在闭区间上的最值为载体,主要考查分类讨论的思想和数形结合的思想. 满分14分.解:22()2(21)542f x x a x a a =--+-+=22[(21)]1x a a --++ 所以二次函数的对称轴21x a =- ……3分当210a -≤,即12a ≤时,()f x 在[0,1]上单调递增, 2()(0)542g a f a a ∴==-+ ……6分 当211a -≥,即1a ≥时,()f x 在[0,1]上单调递减,2()(1)585g a f a a ∴==-+ ……9分当0211a <-<,即112a <<时,2()(21)1g a f a a =-=+ ……12分综上所述2221542,()21()1,(1)2542,(1)a a a g a a a a a a ⎧-+≤⎪⎪⎪=+<<⎨⎪-+≥⎪⎪⎩……14分 20. 本小题主要考查直线和圆的位置关系,考查综合运用数学知识分析和解决问题能力. 满分14分.(1)证明:直线l 的方程可化为(27)(4)0x y m x y +-++-=. ……2分联立27040x y x y +-=⎧⎨+-=⎩解得31x y =⎧⎨=⎩所以直线l 恒过定点(3,1)P . ……4分 (2)当直线l 过圆心C 时,直线l 被圆C 截得的弦何时最长. ……5分当直线l 与CP 垂直时,直线l 被圆C 截得的弦何时最短. ……6分 设此时直线与圆交与,A B 两点.直线l 的斜率211m k m +=-+,121312CP k -==--. 由 211()112m m +-⋅-=-+ 解得 34m =-. ……8分 此时直线l 的方程为 250x y --=.圆心(1,2)C 到250x y --=的距离d ==. ……10分||||AP BP ===所以最短弦长 ||2||AB AP == ……14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每题3分)
1、下列关系错误的是( )
A.φ {0} B.0∈{0} C.0∈φ D.0φ
2、若函数y=f(x)唯一的一个零点在区间(0,2),(1,2),(0,4),则下列命题
中正确的是:( )
A函数f(x)在区间(0,1)内有零点 B函数f(x)在区间(1,1.5)内有零点
C函数f(x)在区间(2,4)内无零点 D函数f(x)在区间(1,4)内无零点
3、下列函数中随x的增大,增长率最终最大的是( )
A y=1000x B y=x2 C y=lnx D y=(1.01)x
4、下面的图形经过折叠不能围成棱柱的是( )
5、函数y=logax, y=logbx, y=logcx, y=logdx的图像如下图所示,则a ,b,c ,d的大小
6、已知函数f(x)的图像是连续不断的,有如下x,f(x)对应值表:
X 1 2 3 4 5 6
f(x) 132.5 210.5 -7.56 11.5 -53.76 -126.8
函数f(x)在区间[1,6]上有零点至少有( )
A 2个 B 3个 C 4个 D 5个
7、在函数2221,2,,1yyxyxxyx中,幂函数的个数为( )
A 0 B 1 C 2 D 3
8、下列命题中正确的是 ( )
A 以直角三角形的一直角边所在的直线为轴旋转所得的旋转体是圆锥
A 1 1 y=logax, y=logbx, y=logcx, y=logdx, x 关系是( ) 9、圆台的上、下底面半径分别为1和4,母线长为32,则圆台的体积为( ) 10、某商场对顾客实行购物优惠活动,规定一次购物付款总额: 二、填空题(每题4分) 则f[g(1)]的值为__________;满足f[g(x)]>g[g(x)]的x的值是_________ 三、解答题(共50分) x 1 2 3 18、若函数f(x)=2(m+3)x2+4mx+2m-4的图像与x轴有两个交点,求m的取值 19、一家报刊摊点,从报社买进《梅州日报》的价格是每份0.3元,卖出是每份 20、已知定义域为R的函数f(x)=axx1221是奇函数。
y
B 以直角梯形的一腰所在的直线为轴旋转所得的旋转体是圆台
C 圆柱、圆锥、、圆台都有两个底面
D 有一个面是多边形,其余各面都是三角形的几何体叫棱锥。
A.15 B.21 C. 25 D. 212
①如果不超过200元,则不予优惠;
②如果超过200元,但不超过500元,则按标价给予9折优惠;
③如果超过500元,其中500元按第②条给予优惠,超过500元的部分给予
7折优惠。
某人两次去购物,分别付款168元和423元,假设他只去一次购买上述同样
的商品,则应付款额是( )
A、446.6元 B、513.7元 C、546.6元 D、548.7元
11、y=log2(2-x)的定义域为:____________
12、log26-log23=____________________
13、已知二次函数y=3x2+bx+3恰有一个零点,则实数b的值是___________
14、边长为3、4、5的直角三角形以它的斜边所在的直线为旋转轴旋转一周,则
所得的几何体的体积是 .
15、已知函数f(x),g(x)分别由下表给出:
x 1 2 3
f(x) 1 3 1
16、已知一个矩形的长为4cm,宽为3cm,以长所在的直线为旋转轴旋转得到一
个圆柱,求这个圆柱的体积(10分)。
g(x) 3 2 1
17、已知函数f(x)=x2+C
(1)用定义法证明f(x)在(,0)上是减函数。(6分)
(2)若f[f(x)]=f(x2+1),求f(x)的解析式;(4分)
范围。(8分)
0.4元,卖不掉的报纸以每份0.05元的价格退回报社。在一个月(30天)里,有
20天每天可卖出400份其余10天每天只能卖出250份,但每天从报社买进的份
数必须相同。这个摊主每天从报社买进多少份,才那能使每月所获利润最大?他
一个月最多可赚多少元?(12分)
(1)求a的值;(4分)
(2)若对任意的tR,不等式22(2)(2)0fttftk恒成立,求k的取值范
围;(6分)