分式与分式方程知识点
2024八年级数学上册第二章分式与分式方程4分式方程第2课时解分式方程课件鲁教版五四制

A.a=5或a=0
B.a≠0
C.a≠5
D.a≠5且a≠0
2x a
3. 若关于x的分式方程 x 2
1
2 的解为非负数,则a
的取值范围是( C )
A.a≥1
B.a>1
C.a≥1且a≠4
D.a>1且a≠4
a
4.
关于x的分式方程 x 3
A.方程的解是x=a-3
1,下列说法正确的是( B )
B.当a>3时,方程的解是正数
(2)∵原分式方程有增根,∴x(x-1)=0.∴x=0或1.
又∵整式方程(a+2)x=3有根,∴x=1.
∴原分式方程的增根为1.∴(a+2)×1=3.∴a=1.
(3)去分母并整理得:(a+2)x=3.
①当a+2=0时,该整式方程无解,此时a=-2.
②当a+2≠0时,要使原分式方程无解,
则x(x-1)=0,得x=0或1.
是原分式方程的解,此时原分式方程无解.
2ax
例3 已知关于x的方程
a x
2
3 的根是x=1,求a的值.
导引:根据方程的解使方程两边的值相等,可构造关于a
的分式方程,解所得分式方程即可得a的值.
2ax
2
2a
2
, 得
解:把x=1代入方程
,
a x 3
a 1 3
1
解得a= 2
1
2a
2
经检验,a=
是分式方程
的解.
2
a 1 3
1
.
∴a的值为
2
归纳
根据方程的解构造方程,
由于所构造的方程是分式方程,
因此验根的步骤不可缺少.
kx
2k-1
-
八年级数学上册第二章分式与分式方程1认识分式第2课时分式的基本性质pptx课件鲁教版五四制

y
y
错解解析:上述解法出错的原因是把分子、分母首项的
符号当成了分子、分母的符号.
x
正确解析:
x
y
y
x
y
x
y
x
x
y
.
y
归纳
当分式的分子、分母是多项式时,
若分子、分母的首项系数是负数,应先
提取“-”并添加括号,再利用分式的
基本性质化成题目要求的结果;变形时
要注意不要把分子、分母的第一项的符
号误认为是分子、分母的符号.
b
(1)
2x
by
y
2 xy
≠
0 ;
b
解:(1)因为y≠0,所以
2x
ax
(2)因为x≠0,所以
bx
ax
(2)
bx
a
.
b
b y
by
;
2 x y 2 xy
ax x a
.
bx x b
归纳
应用分式的基本性质时,一定要确定分式
在有意义的情况下才能应用.应用时要注
意是否符合两个“同”:一是要同时作
“乘法”或“除法”运算;二是“乘(或除
定义 把分式分子、分母的公因式约去,这种变形叫
分式的约分.
约分的步骤:
(1)约去系数的最大公约数;
(2)约去分子分母相同因式的最低次幂.
特别解读
1. 约分的依据是分式的基本性质,关键是确定分子和
分母的公因式;
2. 约分是针对分式的分子和分母整体进行的,而不是
针对其中的某些项,因此约分前一定要确认分子和
1
D.缩小到原来的
20
5.
x 2- y 2
当x=6,y=-2时,则式子 ( x- y ) 2
第1章分式知识点汇总

1.什么叫分式?设f、g都是整式,且g中含有,我们把f除以g所得的商记作,把叫做分式。
若要使分式fg有意义,则必须;若要使分式fg的值为0,则必须;2.分式基本性质:设h≠0,则fg=. (f hg h⋅=⋅)即:分式的分子与分母同时乘以一个非零的多项式,所得分式与原分式相等;分式的分子分母同时约去公因式,所得分式与原分式相等。
3.分式的符号变换法则是:fg-=-;fg==-4.分式的运算法则:①分式的乘法:f ug v ⋅=注意:可以先把分子、分母分别相乘再约分,也可以先约分再分子、分母分别相乘。
②分式的除法:f ug v÷==.即:分式除以分式,把被除式的分子分母颠倒位置后,与被除式相乘.③分式加减法:同分母分式加减法:f hg g±=.即分母不变,分子相加减。
异分母分式加减法:先通分,化为同分母的分式然后相加减。
找最简公分母:①找:取各分母的系数的最小公倍数;②找:取所有的字母或式;③找:取最高的。
5.整数指数幂的运算法则:特别的:1a-=;10n-=.m na a⋅=;()n m a=;()nab=;m na a÷=;0a=;na-=.6.分式的运算顺序:先算,再算,最后算,如果有括号的,先算的.需要特别注意的是:最后结果要化为的形式.7.分式方程的解法:①:方程两边都乘各个分式的,把分式方程化为整式方程。
②:解整式方程,得x=a.③:把整式方程的解x=a代入最简公分母,若使,则x=a是方程的增根,原方程无解。
若使最简公分母的值不等于0,x=a是原方程的根。
8.分式方程的应用:列分式方程解应用题的一般步骤如下①:分析题意,找出数量关系和相等关系. 工程问题:②:选择恰当的未知数,注意单位和语言完整. 行程问题:③:根据数量和相等关系,正确列出代数式和方程. 数量问题:④:要认真仔细的计算.⑤:有两个目的. 一是否是所列方程的解;二是否满足实际意义.⑥:注意单位和语言完整,且答案要生活化.1.什么叫分式?――设f 、g 都是整式,且g 中含有 字母 ,我们把f 除以g 所得的商记作f g ,把 f g 叫做分式。
分式与分式方程知识点总结

分式与分式方程知识点总结分式是一种特殊的代数表达式,有分子和分母组成,通常用斜杠“/”或者横线“-”表示分数线。
分式可以表示为a/b的形式,其中a为分子,b为分母。
分式的乘法和除法的法则:1.分式乘法法则:分式的乘法可以简化为分子相乘,分母相乘的运算。
即(a/b)*(c/d)=(a*c)/(b*d)。
2.分式除法法则:将除法转化为乘法后,取除数的倒数,然后按照分式乘法法则进行运算。
即(a/b)/(c/d)=(a*d)/(b*c)。
分式的加法和减法的法则:1.分式加法法则:要进行分式的加法,需要先找到两个分式的共同分母。
然后将分式的分子按照共同分母的比例进行加法运算。
即a/b+c/d=(a*d+b*c)/(b*d)。
2.分式减法法则:和分式加法法则类似,需要找到两个分式的共同分母。
然后将分式的分子按照共同分母的比例进行减法运算。
即a/b-c/d=(a*d-b*c)/(b*d)。
分式的化简:将分式化简为最简形式的步骤如下:1. 如果分子和分母有相同的公因子,可以约分掉。
即a/b =(a/gcd(a,b)) / (b/gcd(a,b))。
2.如果分数的分子和分母都是整数,并且分子能整除分母,可以化简为整数。
即a/b=a/b,其中a能整除b。
3.如果分式的分子和分母都是多项式,并且可以进行因式分解,可以使用因式分解后的形式来化简分式。
分式方程是包含一个或多个分式的方程。
求解分式方程的一般步骤如下:1.将方程两边的分式通过相乘分母的方法,化简为有理式。
2.对于有理式的方程,可以通过解方程的方法求出x的值。
3.检验所求得的x的值是否满足原方程,如果满足,即为解;如果不满足,则该方程无解。
在求解分式方程时,需要注意以下几个问题:1.分母不能为0,需要排除分母为0的解。
2.对于含有分式的方程,需要注意去除分式的分母后方程是否成立,避免出现无意义的解。
3.可能出现分母为0的情况,需要排除该解,以免引起除法运算错误。
分式及分式方程知识点总结

分式及分式方程知识点总结分式(Fraction)是由两个整数构成的比值,其中一个是分子(Numerator),另一个是分母(Denominator)。
分式可以表示为 a/b,其中 a 是分子,b 是分母。
分式可以是一个整数、一个小数、或者是两个整数的比值。
分式可以用于表示实际问题中的比例、率、百分比等。
在数学中,分式经常被用于代替除法运算,因为分式的形式更加简洁。
在处理分式时,有几个关键概念和知识点需要了解。
一、分式的简化与等价分式2.等价分式:如果两个分式的值相等,那么它们是等价的。
可以通过将一个分式的分子乘以另一个分式的分母,分母乘以另一个分式的分子,化简两个分式,然后判断它们的值是否相等,确定它们是否等价。
二、分式的加减乘除2.分式的乘除:两个分式的乘积等于它们的分子乘积作为新分子,分母乘积作为新分母;两个分式的除法等于第一个分式的分子乘以第二个分式的倒数作为新分子,第一个分式的分母乘以第二个分式的分子作为新分母。
三、分式方程分式方程(Fractional Equation)是包含一个或多个分式的方程。
解分式方程的关键是找到合适的方法将方程转化为整式方程。
1.方法一:通分2.方法二:消去如果分式方程中有一个分式,可以通过消去(Cancellation)或者消去因子(Cancellation Factor)的方式将分母消去,得到一个整式方程。
3.方法三:代入如果分式方程比较复杂,无法通过通分或者消去的方法解得,可以通过代入(Substitution)的方法,将一个变量用另一个变量的表达式代入,然后去掉分式,得到一个整式方程进行求解。
需要注意的是,在解分式方程时,需要验证得到的解是否满足原方程,因为有时候方程中的一些值可能导致分母为零,从而使分式无解。
四、常见的分式及分式方程1.比例和比例方程:比例是两个分式的等价形式,比例方程是一个或多个比例的方程。
2.百分比和百分比方程:百分比是分数的一种特殊形式,百分比方程是包含百分比的方程。
北师大版八年级下册数学 第五章 分式与分式方程(知识点)

第五章分式与分式方程知识点1:分式的概念1、分式的定义:一般地,用A,B表示两个正式,A÷B可以表示成AB的形式。
如果B中含有字母,那么称AB为分式,其中A称为分式的分子,B称为分式的分母。
分式需要满足的三个条件:(1)是形如AB的式子;(2)A,B都整式;(3)分母B中必须含有字母。
分式有意义的条件:分母不能为0.分式无意义的条件:分母等于0.分式的值为0的条件:分子等于0且分母不等于0.知识点2:分式的性质2、分式的基本性质分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变。
字母表示:AB =A·CB·C,AB=A÷CB÷C(C≠0,其中A,B,C均是整式)运用条件:(1)分子和分母要同时做“乘法(或除法)”运算;(2)“乘(或除以)”的对象必须是同一个不等于0的整式。
3、分式的符号法则法则内容:分式的分子、分母与分式本身的符号同时改变其中两个,分式的值不变。
字母表示:AB =−A−B=−−AB=−A−B知识点3:分式的约分与通分4、分式的约分约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分,即A·CB·C =AB(C为整式且C≠0).约分的方法:如果分式的分子、分母都是单项式,那么直接约去分子、分母的公因式;如果分式的分子、分母中至少有一个多项式,那么先分解因式,再约去分子、分母的公因式。
最简分式:分子与分母没有公因式的分式,叫做最简分式。
5、分式的通分通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
用字母表示:将AB 和CD通分,AB=A·DB·D,CD=B·CB·D(分母都为B·D)。
通分的步骤:(1)将所有分式的分母化为乘积的形式,当分母为多项式时,应进行因式分解;(2)确定最简公分母,即各分母的所有因式的最高次幂的积;(3)将分子、分母同乘一个因式,使分母变为最简公分母。
分式知识点总结与分式方程的应用

分式知识点总结与分式方程的应用一、分式的定义和基本性质分式是指两个整数的比的形式,分子和分母都可以是整数。
分式的一般形式为a/b,其中a为分子,b为分母。
分式也可以是带有字母的表达式。
1.分式的定义:分式表示两个数的比。
分子表示比的被除数,分母表示比的除数。
2.分式的基本性质:①分式的值是确定的:分式的值只与分子和分母有关,而与分子和分母的选取方法无关。
②分式的约定:分式的分母不能为0,即b≠0。
③分式的约分:分式a/b可以约分为最简分式的条件是a和b都有因数c,这样a和b都可以被c整除。
④分式的最简形式:分式a/b的最简形式是分子分母互为质数⑤分式的倒数:若分式a/b不等于0,则它的倒数为b/a。
⑥分式的乘法:若a/c和b/d是两个非零分式,则a/c与b/d的乘积为(a·b)/(c·d)。
⑦分式的除法:分式a/b除以c/d可真分式以d/c乘,得(a·d)/(b·c)。
⑧分式的加法:根据通分的定义,可得a/c+b/d=(a·d+b·c)/(c·d)⑨分式的减法:根据通分的定义,可得a/c-b/d=(a·d-b·c)/(c·d)分式方程的一般形式为:分子中含有未知数的为分式方程。
例如:2/x=3/41.解分式方程的基本步骤:(1)去分母:将分式方程中的每个分式的分母去掉,得到一个整式方程。
(2)解整式方程:使用解整式方程的方法解方程。
(3)检验解:将求得的解代入原分式方程,检验是否满足。
2.分式方程的常见类型:(1)一次分式方程:分子和分母的最高次幂都是1(2)整式方程:分式方程中的分子和分母都是整式。
(3)二次分式方程:分子和分母的最高次幂都是2(4)退化分式方程:当方程中出现0/0的情况,方程可能退化为整式方程或无解。
3.分式方程的注意事项:(1)除法的解答有条件:可能有解,也可能无解。
(2)变量的取值范围:要满足约束条件。
分式与分式方程知识点

分式与分式方程知识点一、分式的定义1. 分式(Fraction):形如 A/B 的代数表达式,其中 A 是分子,B 是分母,B ≠ 0。
2. 有理表达式(Rational Expression):包含分式的代数表达式。
二、分式的基本性质1. 等值变换:分式可以通过乘以或除以相同的非零表达式进行等值变换。
例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/152. 分式的加减法:只有当分母相同时,才能直接进行加减运算。
例如:(2/5) + (3/5) = (2+3)/5 = 5/5 = 13. 分式的乘除法:分子乘分子,分母乘分母。
例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/154. 分式的化简:通过约分,将分子和分母中的公因数相除,得到最简分式。
例如:(12/16) -> (12÷4)/(16÷4) = 3/4三、分式方程1. 分式方程(Fractional Equation):含有分式的方程。
2. 解分式方程的基本原则:将分式方程转化为整式方程进行求解。
3. 去分母:通过将方程两边同时乘以所有分母的最简公分母,消除分母。
例如:(2/x) + (3/y) = 5 => 2y + 3x = 5xy (假设 x, y > 0) 4. 检验解:将求得的整式解代入最简公分母中,确保不会得到零。
四、特殊类型的分式方程1. 一元一次分式方程:只含有一个未知数,且未知数的最高次数为一的分式方程。
2. 二元一次分式方程:含有两个未知数,且每个未知数的最高次数为一的分式方程。
3. 高次分式方程:含有未知数的最高次数大于一的分式方程。
五、解分式方程的步骤1. 确定最简公分母。
2. 去分母,将分式方程转化为整式方程。
3. 解整式方程,求得未知数的值。
4. 检验解的有效性。
5. 写出最终解。
六、应用题1. 理解题意,找出等量关系。
2. 列出分式方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式与分式方程知识点
分式是数学中的一个重要概念,它是由两个整数的比构成的表达式。
在分数中,分子表示被分割的数量,分母表示将整体划分的份数。
掌
握好分式的相关知识,对于解决各种实际问题以及在后续数学学习中
起到至关重要的作用。
1. 分式的基本运算
在进行分式的基本运算时,需要掌握分式的相加、相减、相乘和相
除四种基本运算法则。
首先,当分式的分母相同的时候,可以直接将分子相加或相减。
例如,分式 1/4 + 2/4 = 3/4;分式 5/7 - 3/7 = 2/7。
其次,当分式的分母不同但可以化为相同分母的时候,可以通过找
到最小公倍数,将分数化为相同的分母之后再进行运算。
例如,分式 1/2 + 1/3 可以通过最小公倍数为6,将分式转化为 3/6 + 2/6 = 5/6。
另外,分式的相乘和相除运算需要分别将分子与分母相乘或相除。
例如,分式 2/3 * 4/5 = 8/15;分式 3/7 ÷ 1/4 = 12/7。
2. 分式方程的解
分式方程是由分式构成的方程,它的未知数通常出现在分数的分子
或分母中。
解分式方程的关键在于消除分母,使方程转化为一般方程,从而求解未知数。
解分式方程的基本步骤如下:
(1) 消去分母。
通过将方程两边同乘以分母的最小公倍数,可以将
方程中的分母消除,形成原方程的等效方程。
例如,对于分式方程 1/x + 1/(x+1) = 1/2,可以将方程两边同乘以
2x(x+1),得到 2(x+1) + 2x = x(x+1)。
(2) 解一元方程。
将经过一次化简后的方程转化为一般的方程形式,并进行进一步的求解。
对于上述的等效方程,按照一般方程的解法进行处理,得到 x = 2。
(3) 验证解的可行性。
将得到的解代入原方程进行验证,确保解的
可行性。
对于分式方程 1/x + 1/(x+1) = 1/2,将 x = 2 代入方程左侧得到 1/2 +
1/3 = 1/2,等式成立。
因此, x = 2 是原方程的解。
分式方程的解题过程中,一定要注意化简步骤的准确性以及解的可
行性的验证。
分式与分式方程是数学学习中的基础知识点,我们应该通过大量的
练习来巩固和完善自己的能力。
通过深入理解分式的运算规则和分式
方程的解题思路,我们可以更好地应用数学知识解决实际问题,并为后续学习打下坚实的基础。