【2014揭阳一模】广东省揭阳市2014届高三第一次高考模拟考试数学文试卷纯Word版含答案
广东省揭阳市高三数学第一次模拟考试试题 理(揭阳一模)新人教A版

图(1)俯视图揭阳市2014年高中毕业班第一次高考模拟考试数学(理科) 2014.3.22本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足:34iz i =+,则=zA .1B .2C .5D .5 2.设函数()f x =M ,函数()lg(1)g x x =+的定义域为N ,则 A.(1,1]MN =- B.M N R = C.[1,)R C M =+∞ D.(,1)R C N =-∞-3.设平面α、β,直线a 、b ,,a b αα⊂⊂,则“//,//a b ββ” 是“//αβ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.下列函数是偶函数,且在[0,1]上单调递增的是 A.sin()2y x π=+B. 212cos 2y x =-C.2y x =- D. |sin()|y x π=+5.一简单组合体的三视图如图(1)所示,则该组合体的 体积为A.16π-B.124π-C.122π-D.12π- 6.如图(2)所示的程序框图,能使输入的x 值与输出的y 值 相等的x 值个数为A.1B.2C.3D.4 7.设点P是函数y =图象上的任意一点, 点(2,3)Q a a - (a R ∈),则||PQ 的最小值为2-22图(3)0.0150频率/组距0.0100(km/h )0.00508.定义一个集合A 的所有子集组成的集合叫做集合A 的幂集,记为()P A ,用()n A 表示有限集A 的元素个数,给出下列命题:①对于任意集合A ,都有()A P A ∈;②存在集合A ,使得[()]3n P A =;③用∅表示空集,若,A B ⋂=∅则()()P A P B ⋂=∅;④若,A B ⊆则()()P A P B ⊆;⑤若()()1,n A n B -=则[()]2[()].n P A n P B =⨯其中正确的命题个数为A .4B .3C .2D .1二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9-13题)9.若点(,27)a 在函数3xy =的图象上,则tan aπ的值为 .10.根据某固定测速点测得的某时段内过往的100辆机 动车的行驶速度(单位:km/h)绘制的频率分布直方图如图(3)所示.该路段限速标志牌提示机动车辆正常行驶速 度为60 km/h~120 km/h ,则该时段内过往的这100辆机 动车中属非正常行驶的有 辆,图中的x 值为 . 11.已知向量a 、b 满足||1,||3a b ==,且(32)a b a -⊥,则a 与b 的夹角为 .12.已知首项为正数的等差数列{}n a 中,122a a =-.则当3a 取最大值时,数列{}n a 的公差d = .13.从[0,10]中任取一个数x ,从[0,6]中任取一个数y ,则使|5||3|4x y -+-≤的概率为 .(二)选做题(14-15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知直线l :132x ty t =+⎧⎨=-⎩(t 为参数且t R ∈)与曲线C :22x cos y cos αα=⎧⎨=+⎩(α是参数且[)02,απ∈),则直线l 与曲线C 的交点坐标为 .15.(几何证明选讲选做)如图(4),AB 是半圆的直径,C 是AB 延长线上一点,CD 切半圆于点D ,CD =2,DE ⊥AB ,垂足为E , 且E 是OB 的中点,则BC 的长为 .三.解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数sin 2()2sin .sin xf x x x=+ (1)求函数()f x 的定义域和最小正周期; (2)若()2,[0,],f ααπ=∈求()12f πα+的值.17. (本小题满分12分)图(5)是某市2月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择2月1日至2月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气质量重度污染的概率; (2)设ξ是此人停留期间空气重度污染的天数,求ξ的分布列与数学期望. 18.(本小题满分14分)如图(6),四棱锥S —ABCD 的底面是正方形,侧棱SA⊥底面ABCD , 过A 作AE 垂直SB 交SB 于E 点,作AH 垂直SD 交SD 于H 点,平面 AEH 交SC 于K 点,且AB=1,SA=2.(1)设点P 是SA 上任一点,试求PB PH +的最小值; (2)求证:E 、H 在以AK 为直径的圆上;(3)求平面AEKH 与平面ABCD 所成的锐二面角的余弦值. 19.(本小题满分14分)已知正项数列{}n a 满足:222(1)()0()n n a n n a n n n N +-+--+=∈,数列{}n b 的前n项和为n S ,且满足11b =,21n n S b =+()n N +∈.(1) 求数列{}n a 和{}n b 的通项公式; (2)设(21)nn nn b c a +=,数列{}n c 的前n 项和为n T ,求证:21n T <.20.(本小题满分14分)如图(7)所示,已知A 、B 、C 是长轴长为4的椭圆E 上的三点,点A 是长轴的一个端点,BC 过椭圆中心O , 且0=⋅BC AC ,|BC |=2|AC |. (1)求椭圆E 的方程;(2) 在椭圆E 上是否存点Q ,使得222|QB ||QA|-=? 若存在,有几个(不必求出Q 点的坐标),若不存在,请说明理由. (3)过椭圆E 上异于其顶点的任一点P ,作2243O :x y +=的两条 切线,切点分别为M 、N ,若直线MN 在x 轴、y 轴上的截距分别为m 、n ,证明:22113m n +为定值.21.(本小题满分14分)已知函数()ln 1(0).f x a x a =+> (1)当1a =且1x >时,证明:4()31f x x >-+; (2)若对(1,)x e ∀∈,()f x x >恒成立,求实数a 的取值范围;(3)当12a =时,证明:12()2(11)n i f i n n +=>++∑.揭阳市2014年高中毕业班高考第一次模拟考 数学(理科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.一、选择题:DCBD DCCB解析:5.由三视图知,此组合体为一个长为4,宽为3,高为1的长方体、中心去除一个半径为1的圆柱,故其体积为23411112ππ⨯⨯-⨯⨯=-6.由框图知,x 与y 的函数关系为2,(2)23,(25)1.(5)x x y x x x x⎧⎪≤⎪=-<≤⎨⎪⎪>⎩,由y x =得若2x ≤,则20x x x =⇒=或1x =,若25x <≤,则233x x x -=⇒=,若5x >,显然1x x≠,故满足题意的x 值有0,1,3,故选C. 7.如图示,点P 在半圆C 上,点Q 在直线260x y --=上,过圆心C 作直线的垂线,垂足为A ,则min ||||22PQ CA =-=,故选C.8.由()P A 的定义可知①、④正确,又若,A B ⋂=∅则()(){}P A P B ⋂=∅,设(),n A n =则(())2,nn P A =所以②错误,⑤正确,故选B 。
【2014揭阳一模】广东省揭阳市2014届高三第一次高考模拟考试物理试题纯Word版含答案

揭阳市2014年高中毕业班高考第一次模拟考试物理本试卷分单项选择题、双项选择题和非选择题三个部分。
满分300分。
考试时间150分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔在答题卡上填写自己的准考证号、姓名、 试室号和座位号。
用2B 型铅笔把答题卡上试室号、座位号对应的信息点涂黑。
2.选择题每小题选出答案后,用2B 型铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的 相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡整洁。
考试结束后,将试卷和答题卡一并交回。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 S 32 Cl 35.5 Mg 24 Cu 64一、单项选择题(本题包括16小题,每小题4分,共64分。
每小题给出的四个选项中,只有一个选项符合题目要求)13.下列叙述中,正确的是A .物体温度越高,内能增加,每个分子的动能也越大B .布朗运动就是液体分子的运动C .空气容易被压缩说明分子间存在分子力D .热量不可能自发地从低温物体传递给高温物体14.如图所示,a ,b ,c 三根绳子完全相同,b 绳水平,c 绳下挂一重物。
若增加重物的重量,则最先断的绳子是A .a 绳B .b 绳C .c 绳D .无法确定 15.核反应方程式 23592U + 10n →14156Ba + 9236Kr +k X ,式子中A .X 为质子,k =3B .X 为质子,k =4C .X 为中子,k =3D .X 为中子,k=416.如图所示,容积一定的测温泡,上端有感知气体压强的压力传感器。
待测物体温度升高时,泡内封闭气体 A .内能不变,压强变大 B .体积不变,压强变大 C .温度不变,压强变小 D .温度降低,压强变小二、双项选择题(本题包括9小题,每小题6分,共54分。
高三数学月考试题及答案-揭阳市第一中学、金山中学2014届高三模拟联考

2013—2014学年度两校三模联考数学科试题(文科)命题人:揭阳第一中学文科数学备课组本试卷共4页,21题,满分150分.考试时间为l20分钟. 注意事项:1.答卷前,考生务必将自己的姓名、班级、座号写在答题卷密封线内. 2.非选择题必须用黑色字迹钢笔或签字笔作答.3. 答案一律写在答题区域内,不准使用铅笔和涂改液,不按以上要求作答的答案无效. 一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( ) A. 1 B. 2 C. 1或2 D. -12.设集合{|A x y ==,{|2}xB y y ==,则AB =( )A .02)(,B .[02],C .(1,2]D .02](, 3. 某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( ) A. 8,8 B. 10,6 C. 9,7D. 12,44.已知()1,2=→a ,52=→b ,且→a ∥→b ,则b →为( ) A.()2,4-B.()2,4C.()2,4-或()2,4-D.()2,4--或()2,45.“1k =”是“直线0x y k -+=与圆221x y +=相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.一个算法的程序框图如图所示,该程序输出的结果为( ) A .89 B .910 C .1011 D .11127.已知3x ≥,则11y x x=--的最小值为( )A.2B. 72C. 38.数列{}n a 的前n 项和为n S ,首项为a ,且21()n n n S a a n N +=-+∈.若实数x y ,满足3正视图侧视图10x yx yx a⎧-+⎪+⎨⎪⎩,,,≥≥≤则2z x y=+的最小值是()A.-1 B.12C.5 D.19.已知函数()f x是定义在R上的奇函数,且当(],0x∈-∞时,2()xf x e ex a-=-+,则函数()f x在1x=处的切线方程为( )A.0x y+= B.10ex y e-+-= C.10ex y e+--=D.0x y-=10.对于函数(),y f x x D=∈,若存在常数C,对任意1x D∈,存在唯一的2x D∈,使得C=,则称函数()f x在D上的几何平均数为 C.已知(),[2,f x x D==,则函数()f x在D上的几何平均数为()A..3 C.2 D二.填空题:本大题共6小题,每小题5分,共30分,把答案填在答题卡相应横线上.(一)必做题(第11至13题为必做题,每道题目考生都必须作答.)11.在ABC∆中,a、b、c分别是角A、B、C所对的边,,13A a cπ===,则ABC∆的面积S= ______.12.椭圆2221(1)xy aa+=>上存在一点P,使得它对两个焦点1F,2F张角122F PFπ∠=,则该椭圆的离心率的取值范围是13.已知某几何体的三视图如图所示,则该几何体的全面积为 .(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程)在极坐标中,已知点P为方程()cos sin1ρθθ+=所表示的曲线上一动点⎪⎭⎫⎝⎛3,2πQ,则PQ 的最小值为____________.15.(几何证明选讲)如图,以4AB=为直径的圆与△ABC的两边分别交于,E F两点,60ACB∠=,则EF= .CAEF第15题三、解答题:本大题共6小题,共80分. 解答应写出必要的文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的最小正周期为π,且函数()f x 的图象过点,12π⎛⎫-⎪⎝⎭. (1)求ω和ϕ的值; (2)设()()()4g x f x f x π=+-,求函数()g x 的单调递增区间.17.(本小题满分12分)某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[)50,40,[)60,50…[]100,90后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在[)70,80内的频率,并补全这个频率分布直方图; (2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)用分层抽样的方法在分数段为[)80,60的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[)80,70的概率.18.(本小题满分14分)如图,在三棱柱111ABC A B C -中,AB AC ⊥,顶点1A 在底面ABC 上的射影恰为点B , 且12AB AC A B ===.(1)求证:11AC ⊥平面11AA B B ;第17(2)若P 为线段11B C 的中点,求四棱锥11P AA B B -的体积.19.(本小题满分14分)在等比数列{a n }中,)(0*N n a n ∈>,公比)1,0(∈q ,且252825351=++a a a a a a ,又a 3与a 5的等比中项为2.(1)求数列{a n }的通项公式;(2)设n n a b 2log =,求数列{b n }的前n 项和S n. (3)是否存在*,k N ∈使得1212nS S S k n+++<对任意*n N ∈恒成立,若存在,求出k 的最小值,若不存在,请说明理由. 20.(本小题满分14分)如图,抛物线21:8C y x=与双曲线22222:1(0,0)x y C a b a b-=>>有公共焦点2F ,点A 是曲线12,C C 在第一象限的交点,且25AF =. (1)求双曲线2C 的方程;(2)以1F 为圆心的圆M 与双曲线的一条渐近线相切,圆N :22(2)1x y -+=.已知点(1P ,过点P 作互相垂 直且分别与圆M 、圆N 相交的直线1l 和2l ,设1l 被圆M 截 得的弦长为s ,2l 被圆N 截得的弦长为t . st是否为定值? 请说明理由.21.(本小题满分14分)已知函数x x a x x f --+=2)ln()(在点0=x 处取得极值. (1)求实数a 的值;(2)若关于x 的方程b x x f +-=25)(在区间[0,2]上有两个不等实根,求b 的取值范围;(3)证明:对于任意的正整数n ,不等式211ln nn n n +<+.2013—2014学年度两校三模联考数学科 (文科)参考答案及评分说明一.选择题:BDCDA BBABA二.填空题:12. 2,13.,三.解答题:16.解:(1)由图可知222T ππωπ===, ……………………………………………2分 又由()12f π=-得,sin(2)12πϕ⋅+=-,得sin 1ϕ=0ϕπ<<2πϕ∴=, …………4分(2)由(1)知:()sin(2)cos 22f x x x π=+= ……………………6分因为()cos 2cos(2)cos 2sin 22g x x x x x π=+-=+)4x π=+ …………9分 所以,222242k x k πππππ-≤+≤+,即3 (Z)88k x k k ππππ-≤≤+∈. ………11分故函数()g x 的单调增区间为3, (Z)88k k k ππππ⎡⎤-+∈⎢⎥⎣⎦. ………………………12分 17. 解:(1)分数在[)70,80内的频率为:1(0.0100.0150.0150.0250.005)10-++++⨯10.70.3=-=,故0.30.0310=,……2分 如图所示: ----4分(求频率2分,作图2分) (2)平均分为:450.1550.15650.15750.3850.25950.0571x =⨯+⨯+⨯+⨯+⨯+⨯=.------------6分(3)由题意,[)60,70分数段的人数为:0.15609⨯=人; ----------------7分[)70,80分数段的人数为:0.36018⨯=人; ----------------8分∵在[)80,60的学生中抽取一个容量为6的样本,∴[)60,70分数段抽取2人,分别记为,m n ;[)70,80分数段抽取4人,分别记为,,,a b c d ; 设从样本中任取2人,至多有1人在分数段[)80,70为事件A ,则基本事件空间包含的基本事件有:(,)m n 、(,)m a 、(,)m b 、(,)m c 、(,)m d 、……、(,)c d 共15种, 则事件A 包含的基本事件有:(,)m n 、(,)m a 、(,)m b 、(,)m c 、(,)m d 、(,)n a 、(,)n b 、(,)n c 、(,)n d 共9种11分∴93()155P A ==. …………………………………………………12分18.(1) 证明:1A B ⊥平面ABC , …………………1分AC ⊂平面ABC ,1AC A B ∴⊥ …………………2分又AC AB ⊥, ………………3分 AB ⊂平面11AA B B , 1A B ⊂平面11AA B B ,1A BAB B = AC ∴⊥平面11AA B B …………5分又在三棱柱111ABC A B C -中,11AC AC // 11AC ∴⊥平面11AA B B …………6分(2)解:111224AA B B S AB AB =⨯=⨯=平行四边形………………8分取11A B 的中点R ,连结PR , 则11PR AC //,111PR A C 1==2………………10分 又11AC ⊥平面11AA B B ,PR ∴⊥平面11AA B B……………12分 故点P 到平面11AA B B 的距离1d =,11111433P AA B B AA B B V S d -∴=⨯⨯=平行四边形…………………14分19. 解:(1)252,252255323825151=++∴=++a a a a a a a a a a ,又5,053=+∴>a a a n , ………………………………2分 又53a a 与的等比中项为2,453=∴a a , 而1,4,),1,0(5353==∴>∴∈a a a a q ,………3分n n n a a q --=⨯=∴==∴5112)21(16,16,21 , ………………………5分 (2)n a b n n -==5log 2, 11-=-∴+n n b b ,4}{1=∴b b n 是以为首项,-1为公差的等差数列. …………… 7分 (9)2n n n S -∴=, ……………9分 (3)由(2)知(9)9,22n n S n n n S n --=∴= 0,8>≤∴n S n n 时当;当0,9==n S n n 时;当0,9<>nSn n 时,.……………11分 31289,18123nS S S S n n∴=++++=当或时最大. …………13分 故存在*,k N ∈使得1212nS S Sk n+++<对任意*n N ∈恒成立,k 的最小值为19.…14分20. 解:(1)∵抛物线21:8C y x =的焦点为2(2,0)F , ………………………… 1分 ∴双曲线2C 的焦点为1(2,0)F -、2(2,0)F , ……………………… 2分 设00(,)A x y 在抛物线21:8C y x =上,且25AF =,由抛物线的定义得,025x +=,∴03x =, …………………………3分∴2083y =⨯,∴0y =±, ………………… 4分∴1||7AF ==, …………………… 5分又∵点A 在双曲线上,由双曲线定义得,2|75|2a =-=,∴1a =, ……… 6分∴双曲线的方程为:2213y x -=. …………………………… 7分 (2)s t为定值.下面给出说明. ………………… 8分设圆M 的方程为:222(2)x y r ++=,双曲线的渐近线方程为:y =,∵圆M 与渐近线y =相切,∴圆M 的半径为2r == ………… 9分故圆M :22(2)3x y ++=, ………………………… 10分设1l 的方程为(1)y k x =-,即0kx y k -=,设2l 的方程为1(1)y x k=--,即10x ky +-=,∴点M 到直线1l 的距离为1d =N 到直线2l 的距离为2d =11分∴直线1l 被圆M 截得的弦长s == ……… 12分直线2l 被圆N 截得的弦长t = ………… 13分∴s t ===s t …………… 14分21. 解:(1)()()()12x x a x a f x x a-+-+'=+由题意, ()00f '= 解得1a = ………………………………2分 (2)构造函数()[]()25()ln 10,22h x x x x x b x ⎛⎫=+----+∈ ⎪⎝⎭,则 ()()224545()2121x x x x h x x x --++-'==-++()()()45121x x x +-=+ 令 ()0h x '= 得 5114x x x =-=-=或或 又知[]0,2x ∈ ∴ 当01x ≤<时,函数()h x 单调递增,当12x <≤函数()h x 单调递减方程5()2f x x b =-+在区间[]02,上有两个不同的实根,等价于函数()h x 在[]02,上有两个不同的零点,则只需()()()0031ln 21022ln 3430h b h b h b =-≤⎧⎪⎪=-+->⎨⎪⎪=-+-≤⎩ 即 01ln 22ln 31b b b ≥⎧⎪⎪<+⎨⎪≥-⎪⎩ ∴ 所求实数b 的取值范围是1ln 31ln 22b -≤<+…………………6分 (3)构造函数()2()ln 1g x x x x =+--,则 ()23()1x x g x x -+'=+ 令 ()0g x '= 解得 302x x ==-或 …………8分 当 10x -<< 时 ()0g x '>,()g x 是增函数当 0x > 时 ()0g x '<,()g x 是减函数 ……………………………10分 ∴ []()max ()00g x g == ∴ ()2ln 10x x x +--≤ 当0x ≠时,有 ()2ln 10x x x +--<取 1x n =,得 2111ln 10n n n⎛⎫⎛⎫+--< ⎪ ⎪⎝⎭⎝⎭ 即 211lnn n n n ++<.。
2014年广东省揭阳市高考数学一模试卷(文科)

2014年广东省揭阳市高考数学一模试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.若复数z满足:iz=3+4i,则z=( )A.-3-4iB.4+3iC.4-3iD.-4+3i【答案】C【解析】试题分析:由iz=2+4i,利用复数代数形式的除法运算可得结果.由iz=3+4i,得z===4-3i,故选:C.2.设函数f(x)=的定义域为M,则∁R M=( )A.(-∞,1)B.(1,+∞)C.(-∞,1]D.[1,+∞)【答案】D【解析】试题分析:根据函数成立的条件,求出函数的定义域,然后根据补集的定义即可得到结论.要使函数f(x)=有意义,则1-x>0,即x<1,∴函数的定义域M=(-∞,1),则∁R M=[1,+∞),故选:D.3.设平面α、β,直线a、b,a⊂α,b⊂α,则“a∥β,b∥β”是“α∥β”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】试题分析:根据面面平行的判断定理以及充分条件和必要条件的定义进行判断.根据面面平行的判定定理可知,当a,b不相交时,α∥β不成立,∴充分性不成立.若α∥β,则必有a∥β,b∥β,∴必要性成立.∴“a∥β,b∥β”是“α∥β”的必要不充分条件.故选:B.4.下列函数是偶函数,且在[0,1]上单调递增的是( )A.y=sin(x+)B.y=1-2cos22xC.y=-x2D.y=|sin(π+x)|【答案】D【解析】试题分析:利用正弦函数与余弦函数的单调性与奇偶性,对A、B、C、D四个选项逐一分析即可.A:∵y=f(x)=sin(x+)=cosx,满足f(-x)=f(x),是偶函数,且在区间[0,π]上单调递减,∵[0,1]⊂[0,π],∴y=sin(x+)在[0,1]上单调递减,故A错误;B:y=1-2cos22x=-cos4x,当x∈[0,1]时,4x∈[0,4],4>π,∴y=1-2cos22x在[0,1]上不单调,故B错误;C:y=-x2在[0,1]上单调递减,故C错误;D:y=g(x)=|sin(π+x)|=|-sinx|=|sinx|,g(-x)=|sin(-x)|=|sinx|=g(x),∴y=|sin(π+x)|为偶函数,且在[0,]上单调递增,∵[0,1]⊂[0,],∴y=|sin(π+x)|为偶函数,在[0,1]上单调递增,即D正确;故选:D.5.如图所示的程序框图,能使输入的x值与输出的y值相等的所有x值分别为( )A.1、2、3B.0、1C.0、1、3D.0、1、2、3、4【答案】C【解析】试题分析:算法的功能是求分段函数y=的值,分段求得输入的x值与输出的y值相等的x值,可得答案.由程序框图知,算法的功能是求分段函数y=的值,输入的x值与输出的y值相等,则当x≤2时,x=1或0;当2<x≤5时,2x-3=x⇒x=3;当x>5时,=x无解.综上x的值可能是0,1,3.故选:C.6.一简单组合体的三视图如图所示,则该组合体的体积为( )A.16-πB.12-4πC.12-2πD.12-π【答案】D【解析】试题分析:根据三视图可判断几何体是长方体中挖去一个半径为1的圆柱,由三视图的数据可得长方体的长、宽、高及圆柱的高,代入公式计算.由三视图知:几何体是长方体中挖去一个半径为1的圆柱,且圆柱与长方体的高都是1,长方体的长为2+1+1=4,宽为0.5+2+0.5=3,∴几何体的体积V=V长方体-V圆柱=4×3×1-π×12×1=12-π.故选:D.7.已知向量、满足||=1,||=,且(3-2),则与的夹角为( )A. B. C. D.【答案】A【解析】试题分析:通过向量的垂直转化为向量的数量积的运算,求出角的大小即可.(3-2),可得(3-2),即=0,⇒==,cos==,∴=.故选:A.8.若x、y满足约束条件,则z=x+2y的取值范围是( )A.[0,4]B.[4,6]C.[2,4]D.[2,6]【答案】D【解析】试题分析:作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.作出不等式组对应的平面区域如图:由z=x+2y得y=,平移直线y=,由图象可知当直线y=,经过点(2,0)时,直线y=的截距最小,此时z最小,最小值为z=2,经过点(2,2)时,直线y=的截距最大,此时z最大,最大值为z=6,即z的取值范围是[2,6].故选:D9.以双曲线的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为120°,则双曲线的离心率为()A. B. C. D.【答案】D【解析】试题分析:先根据双曲线对称性可推断出四边形为菱形利用一个内角为120°推断出=,进而利用a,b和c关系求得a和c的关系式,即双曲线的离心率.根据双曲线对称性可推断出四边形为菱形,∵内角为120°,∴=平方得:=又∵c2=a2+b2,所以1-=求得=,故选D10.从[0,10]中任取一个数x,从[0,6]中任取一个数y,则使|x-5|+|y-3|≤4的概率为( )A. B. C. D.【答案】A【解析】试题分析:作出不等式对应的平面区域,利用几何概型的概率公式即可得到结论结论.不等式|x-5|+|y-3|≤4对应的平面区域是图中阴影部分:∵0≤x≤10,0≤y≤6,∴根据几何概型的概率公式可得所求的概率为阴影,故选:A二、填空题(本大题共5小题,共25.0分)11.若点(a,27)在函数y=3x的图象上,则tan的值为.【答案】【解析】试题分析:根据点与曲线的关系求出a的值,然后代入即可得到三角值.∵点(a,27)在函数y=3x的图象上,∴3a=27=33,即a=3.则tan=tan,故答案为:12.根据某固定测速点测得的某时段内过往的100辆机动车的行驶速度(单位:km/h)绘制的频率分布直方图如图所示.该路段限速标志牌提示机动车辆正常行驶速度为60km/h~120km/h,则该时段内过往的这100辆机动车中属非正常行驶的有辆,图中的x值为.【答案】15;0.0175【解析】试题分析:利用频率等于纵坐标乘以组距求出正常行驶的频率;利用所有的频率和为1,求出非正常行驶的频率;利用频数等于频率乘以样本容量求出这100辆汽车中非正常行驶的汽车的辆数.利用频数除组距得到x的值.由直方图可知,x的值=[1-(0.0025+0.0100+0.0050+0.0150)×20]÷20=0.0175,因此正常行驶在60km/h~120km/h的频率为20×(0.0100+0.0150+0.0175)=0.85,非正常行驶的频率有1-0.85=0.15;所以这100辆汽车中非正常行驶的汽车有100×0.15=15(辆),故答案为:15;0.0175.13.设曲线y=x n+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为x n,令a n=lgx n,则a1+a2+…+a99的值为.【答案】-2【解析】试题分析:由曲线y=x n+1(n∈N*),知y′=(n+1)x n,故f′(1)=n+1,所以曲线y=x n+1(n∈N*)在(1,1)处的切线方程为y-1=(n+1)(x-1),该切线与x轴的交点的横坐标为x n=,故a n=lgn-lg(n+1),由此能求出a1+a2+…+a99.∵曲线y=x n+1(n∈N*),∴y′=(n+1)x n,∴f′(1)=n+1,∴曲线y=x n+1(n∈N*)在(1,1)处的切线方程为y-1=(n+1)(x-1),该切线与x轴的交点的横坐标为x n=,∵a n=lgx n,∴a n=lgn-lg(n+1),∴a1+a2+…+a99=(lg1-lg2)+(lg2-lg3)+(lg3-lg4)+(lg4-lg5)+(lg5-lg6)+…+(lg99-lg100 )=lg1-lg100=-2.故答案为:-2.14.已知直线l:(t为参数且t∈R)与曲线C:(α是参数且α∈[0,2π)),则直线l与曲线C的交点坐标为.【答案】(1,3)【解析】15.如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,则BC的长为.【答案】【解析】试题分析:连接OD、BD,由题目中条件:“DE⊥AB,垂足为E,且E是OB的中点”可得三角形BOD是等边三角形,再在直角三角形OCD中,可得OD的长,最后根据题中圆的切线条件再依据切割线定理求得BC的长.连接OD、BD,.三、解答题(本大题共6小题,共75.0分)16.已知函数f(x)=+2sinx.(1)求函数f(x)的定义域和最小正周期;(2)若f(α)=2,α∈[0,π],求f(α+)的值.【答案】(1)∵sinx≠0解得x≠kπ(k∈Z),∴函数f(x)的定义域为{x|x≠kπ(k∈Z)}∵f(x)=+2sinx=2cosx+2sinx=2sin(+x)∴f(x)的最小正周期T==2π(2)∵f(α)=2,∴cosα+sinα=1,∴(cosα+sinα)2=1,即2sinαcosα=0,∵α∈[0,π],且sinα≠0,∴α=∴f(α+)=2sin(+α+)=2sin=【解析】(1)由sinx≠0,即可求得f(x)的定义域,利用三角恒等变换可求得f(x)=2sin(+x),从而可求其最小正周期;(2)由f(α)=2,α∈[0,π],可求得α=,于是可求得f(α+)的值.17.如图是某市2月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择2月1日至2月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气质量优良的概率;(2)求此人停留期间至多有1天空气重度污染的概率.【答案】(1)在2月1日至2月12日这12天中,只有5日、8日共2天的空气质量优良,∴此人到达当日空气质量优良的概率.(2)根据题意,事件“此人在该市停留期间至多有1天空气重度污染”,即“此人到达该市停留期间0天空气重度污染或仅有1天空气重度污染”.“此人在该市停留期间0天空气重度污染”等价于“此人到达该市的日期是4日或8日或9日”.其概率为,“此人在该市停留期间仅有1天空气重度污染”等价于“此人到达该市的日期是3日或5日或6日或7日或10日”.其概率为,∴此人停留期间至多有1天空气重度污染的概率为.P=.【解析】(1)由图查出13天内空气质量指数小于100的天数,直接利用古典概型概率计算公式得到答案;(2)用列举法写出此人在该市停留两天的空气质量指数的所有情况,查出仅有一天是重度污染的情况,然后直接利用古典概型概率计算公式得到答案.18.如图,四棱锥S-ABCD的底面是正方形,侧棱SA⊥底面ABCD,过A作AE垂直SB 交SB于E点,作AH垂直SD交SD于H点,平面AEH交SC于K点,P是SA上的动点,且AB=1,SA=2.(1)试证明不论点P在何位置,都有DB⊥PC;(2)求PB+PH的最小值;(3)设平面AEKH与平面ABCD的交线为l,求证:BD∥l.【答案】(1)证明:∵底面ABCD是正方形∴DB⊥AC,∵SA⊥底面ABCD,BD⊂面ABCD,∴DB⊥SA,又SA∩AC=A∴BD⊥平面SAC,∵不论点P在何位置都有PC⊂平面SAC,∴DB⊥PC.(2)将侧面SAB绕侧棱SA旋转到与侧面SAD在同一平面内,如图示,则当B、P、H三点共线时,PB+PH取最小值,这时,PB+PH的最小值即线段BH的长,设∠HAD=α,则∠BAH=π-α,在rt△AHD中,∵,∴,在三角形BAH中,有余弦定理得:BH2=AB2+AH2-2AB•AH cos(π-α)=,∴(.(3)连结EH,∵AB=AD,SA=SA,∴R t△SAB≌R t△SAD,∴SB=SD,又∵AE⊥SB,AH⊥SD,∴AE=AH,∴R t△SEA≌R t△SAH,∴SE=SH,∴,∴EH∥BD又∵EH⊂面AEKH,BD⊈面AEKH,∴BD∥面AEKH.∵平面AEKH∩平面ABCD=l,∴BD∥l【解析】对于(1)既然不论点P在SA上何位置,都有DB⊥PC,那应该有BD⊥面SAC;对于(2)需要将PB+PH的表达式用函数表示出来对于(3)利用线面平行的性质定理和判定定理19.已知曲线C的方程为:ax2+ay2-2a2x-4y=0(a≠0,a为常数).(1)判断曲线C的形状;(2)设曲线C分别与x轴、y轴交于点A、B(A、B不同于原点O),试判断△AOB的面积S是否为定值?并证明你的判断;(3)设直线l:y=-2x+4与曲线C交于不同的两点M、N,且|OM|=|ON|,求曲线C的方程.【答案】(1)将曲线C的方程化为可知曲线C是以点(a,)为圆心,以为半径的圆.(2)△AOB的面积S为定值.证明如下:在曲线C的方程中令y=0得ax(x-2a)=0,得点A(2a,0),在曲线C的方程中令x=0得y(ay-4)=0,得点B(0,),∴S=|OA||OB|=|2a|||=4(为定值)(3)∵圆C过坐标原点,且|OM|=|ON|,∴圆心(a,)在MN的垂直平分线上,∴=,∴a=±2,当a=-2时,圆心坐标为(-2,-1),圆的半径为,圆心到直线l:y=-2x+4的距离d==>,直线l与圆C相离,不合题意舍去,∴a=2,这时曲线C的方程为x2+y2-4x-2y=0.【解析】(1)把方程化为圆的标准方程,可得结论;(2)求出A,B的坐标,即可得出△AOB的面积S为定值;(3)由圆C过坐标原点,且|OM|=|ON|,可得圆心(a,)在MN的垂直平分线上,从而求出a,再判断a=-2不合题意即可.20.已知正项数列{a n}满足:a n2-(n2+n-1)a n-(n2+n)=0(n∈N+),数列{b n}的前n项和为S n,且满足b1=1,2S n=1+b n(n∈N+).(1)求数列{a n}和{b n}的通项公式;(2)设c n=,数列{c n}的前n项和为T n,求证:T2n<1.【答案】(1)∵a n2-(n2+n-1)a n-(n2+n)=0,∴[a n-(n2+n)](a n+1)=0.∵{a n}是正项数列,∴.∵2S n=1+b n,∴当n≥2时,2S n-1=1+b n-1,两式相减得b n=-b n-1,∴数列{b n}是首项为1,公比-1的等比数列,∴,(2)证明:∵c n==(-1)n-1•,∴c2n-1+c2n====,∴T2n=(c1+c2)+(c3+c4)+…+(c2n-1+c2n)==1-<1.【解析】(1)由已知条件推导出[a n-(n2+n)](a n+1)=0,由此能求出;由2S n=1+b n,得b n=-b n-1,由此能求出.(2)由c n=(-1)n-1•,推导出c2n-1+c2n=,由此利用裂项求和法能证明T2n=1-<1.21.已知函数f(x)=alnx+1,g(x)=x2+-1,(a,b∈R).(1)若曲线y=g(x)在点(1,g(1))处的切线平行于x轴,求b的值;(2)当a>0时,若对∀x∈R(1,e),f(x)>x恒成立,求实数a的取值范围;(3)设p(x)=f(x)+g(x),在(1)的条件下,证明当a≤0时,对任意两个不相等的正数x1,x2,有>p().【答案】(1)∵g'(x)=2x-,由曲线y=g(x)在点(1,g(1))处的切线平行于x轴,得g'(1)=2-b=0,解得b=2;(2)令h(x)=f(x)-x=alnx+1-x,则h'(x)=,当a≥e时,h'(x)>0,函数h(x)在(1,e)上是增函数,有h(x)>h(1)=0,即f(x)>x;当1<a<e时,∵函数h(x)在(1,a)上递增,在(a,e)上递减,对∀x∈(1,e),f(x)>x恒成立,只需h(e)≥0,即a≥e-1,∴e-1≤a<e.当a≤1时,函数h(x)在(1,e)上递减,对∀x∈(1,e),要使f(x)>x恒成立,只需h(e)≥0,而h(e)=a+1-e<0,不合题意;综上得对∀x∈(1,e),f(x)>x恒成立,a≥e-1.(3)由p(x)=x2++alnx,得=+()+=++aln,p()=++aln,由得2>⇒>①,又+2x1x2>4x1x2,∴>,②∵,∴ln<ln,∵a≤0,∴aln≥aln,③由①、②、③得++aln>++aln,即>p().【解析】(1)由曲线y=g(x)在点(1,g(1))处的切线平行于x轴,得g'(1)=2,可得b的方程,解出即可;(2)令h(x)=f(x)-x=alnx+1-x,则对∀x∈R(1,e),f(x)>x恒成立,有h(x)min>0,求导数h'(x)=,分a≥e,1<a<e,a≤1三种情况进行讨论,结合单调性可得最小值,从而得a的不等式,解出可得;(3)易得p(x)=x2++alnx,表示出=++aln,p()=++aln,分别利用不等式可证明>①,>,②aln≥aln,③由三式可得结论;。
广东省揭阳市2014届下学期高三年级第一次高考模拟考试语文试卷(有答案)

广东省揭阳市2014届下学期高三年级第一次高考模拟考试语文试卷本试卷共8页,满分为150分。
考试时间150分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卡上。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔或涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
一、本大题4小题,每小题3分,共12分。
1.下列词语中加点的字,每对读音都不相同的一组是A.愆.期/悭.吝矜.持/吟.诵露.骨/露.面B.箴.言/缄.默肄.业/酒肆.开拓./拓.片C.悲怆./疮.痍贪婪./褴.褛咽.喉/哽咽.D.蜡烛./污浊.惩.办/骋.怀.与.会/参与.2.下列各句中加点的熟语,使用恰当的一句是A.近半年以来,肉价未能随着生猪价格的涨幅同步上升,使东莞肉品经营商按下葫芦浮.....起瓢..,销量越大意味着亏损越多。
B.今年春晚除了宋祖英的独唱无伴舞外,其他的歌舞节目都是群体性的,服装尽显华丽,演员个个长袖善舞....,把人看得眼花缭乱。
C.他办起案来, 目光如炬....,机智敏锐,方法多变,腐败分子见到他,在精神上总是先输掉了三分。
D.呼伦贝尔大草原尺幅千里....,未受污染,被称为“绿色净土”,也被人誉为“北国碧玉”。
3.下列各句没有语病的一项是A.由于自身特殊情况,美术、体育等特长生在专业上多投入一点时间和精力本是无可非议的,但是是否就可以因此而忽视文化课的学习呢?从长远的观点看,我们认为这样做是不恰当的。
B.2012年两会期间,代表们提出,只有走最有效地利用资源和保护环境为基础的循环经济之路,才能实现可持续发展的最终目标。
揭阳一模广东省揭阳市届高三第一次高考模拟考试数学文试题 纯Word版含答案

(一)必做题(11-13 题)
11.
为
若点 (a, 27) 在函数
.
y
12.根据某固定测速点测得的某时段内过往的 100 辆机 动车的行驶速度(单位:km/h)绘制的频率分布直方图如
3x
的图象上,则
图(3)所示.该路段限速标志牌提示机动车辆正常行驶速 0.0050
度为 60 km/h~120 km/h,则该时段内过往的这 100 辆机 0.0025
动车中属非正常行驶的有
辆,图中的 x 值为
13.对于每一个正整数 n ,设曲线 y xn1 在点(1,1)处的切线与 x 轴的交点的横坐标为
xn ,令 an lg xn ,则 a1 a2 a99 =
(二)选做题(14-15 题,考生只能从中选做一题)
14.(坐标系与参数方程选做题)[来已知直线
绝密★启用前
揭阳市 2014 年高中毕业班第一次高考模拟考试
数学(文科) 2014.3.22
本试卷共 4 页,21 小题,满分 150 分.考试用时 120 分钟.
注意事项: 1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座
位号填写在答题卡上. 2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,
3.设平面 、 ,直线 a 、 b , a ,b ,则“ a / / ,b / / ” 是“ / / ”的
A.充分不必要条件
C.充要条件
4.下列函数是偶函数,且在[0,1] 上单调递增的是
A. y sin(x ) 2
C. y x2
5.如图(1)所示的程序框图,能使输入的 x 值与输出的 y 值
广东省揭阳一中等2014届高三上学期开学摸底联考数学文试题

2013--2014学年度高三摸底考联考文科数学试题命题人:潮州金山中学本试卷共4页,21题,满分150分。
考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、班级、座号写在答题卷密封线内。
2.非选择题必须用黑色字迹的钢笔或签字笔作答。
3.答案一律写在答题区域内,不准使用铅笔和涂改液,不按以上要求作答的答案无效。
一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U R =,集合{|2},{|05},A x x B x x =≥=≤<则集合()U C A B =A .{|02}x x <<B .{|02}x x ≤<C .{|02}x x <≤D .{|02}x x ≤≤2.设复数z 满足2z i i ⋅=-,i 为虚数单位,则=zA .2i -B .12i +C .12i -+D .12i --3.函数1()lg(1)1f x x x=++-的定义域是 A .(,1)-∞- B.(1,)+∞ C.(1,1)(1,)-+∞ D. (,)-∞+∞ 4. 如图是某几何体的三视图,则此几何体的体积是 A .36 B .108C .72D .1805. 在ABC ∆中,若60,45,A B BC ︒︒∠=∠==AC =A.B.6.阅读右图所示的程序框图,运行相应的程序,输出的结果是 A .123 B.38 C .11 D .37. 在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于,A B 两点,则弦AB 的长等于( )A.B.D.1第4题 图 第6题 图8.已知实数4,,9m 构成一个等比数列,则圆锥曲线221x y m+=的离心率为630.A 7.B 7630.或C 765.或D9.在下列条件下,可判断平面α与平面β平行的是 A. α、β都垂直于平面γ B. α内不共线的三个点到β的距离相等 C. l,m 是α内两条直线且l ∥β,m ∥β D. l,m 是异面直线,且l ∥α,m ∥α,l ∥β,m ∥β10.对任意两个非零的平面向量,αβ ,定义αβαβββ⋅=⋅.若平面向量,a b满足0a b ≥> ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,则b a = A .12 B .1 C .32 D .52二、填空题:本大题共5小题,每小题5分,满分20分.其中14、15题为选做题。
广东省揭阳市2014届高三学业水平考试数学文试卷Word版含答案

绝密★启用前揭阳市2013-2014学年度高中三年级学业水平考试数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:棱锥的体积公式:13V Sh =.其中S 表示棱锥的底面积,h 表示棱锥的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在复平面内,复数(1)i i -对应的点位于A.第一象限B. 第二象限C.第三象限D. 第四象限 2. 已知集合{|lg(3)},{|2}A x y x B x x ==+=≥,则下列结论正确的是 A.3A -∈ B.3B ∉ C.AB B = D.A B B =3. “φπ=”是“函数sin(2)y x φ=+为奇函数的” A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件4. 向量(1,2),(3,4),BA BC =-=则AC =A.(4,2)B.(4,2)--C.(2,6)D.(4,2)- 5. 某商场有四类食品,食品类别和种数见右表:现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 A. 7 B. 6 C. 5 D. 4 6. 方程125x x -+=的解所在的区间图(1)侧视图正视图俯视图A .(0,1)B .(1,2)C .(2,3)D .(3,4)7. 若双曲线22221x y a b-=,则其渐近线的斜率为A.2±B. C.12±D.8. 已知x 、y 满足约束条件5315,10,5 3.x y x y x y +≤⎧⎪-+≥⎨⎪-≤⎩则35z x y =+的最小值为A.17B. -11C.11D.-17 9. 图(1)中的网格纸是边长为1的小正方形,在其上用粗线画 出了一四棱锥的三视图,则该四棱锥的体积为.A.4B.8C.16D.2010. 已知函数221,(0)()3,(0)ax x x f x ax x ⎧++≤=⎨->⎩有3个零点,则实数a 的取值范围是A. 1a <B.0a >C.1a ≥D. 01a << 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11-13题) 11. 计算:33log 18log 2-= .12. 图(2)是甲、乙两人在5次综合测评中的成绩的茎叶图,其中一个数字被污损;则甲的平均成绩超过乙的平均成绩的概率为 .13.对于正整数n ,若(,,)n pq p q p q N *=≥∈,当p q -最小时,则称pq 为n 的“最佳分解”,规定()q f n p=.关于()f n 有下列四个判断:①(4)1f =;②1(13)13f =;③3(24)8f =; ④1(2013)2013f =.其中正确的序号是 . (二)选做题(14—15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标中,已知点P 为方程()cos sin 2ρθθ-=所表示的曲线上一动点,4,3Q π⎛⎫⎪⎝⎭,则PQ 的最小值为 . 15.(几何证明选讲选做题) 如图(3),已知AB 是圆O 的直径,C 是AB 延长线上一点,CD 切圆O 于D ,CD=4,AB=3BC ,则 圆O 的半径长是 .图(4)六级五级四级三级二级一级空气质量级别2天数64810三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)设数列{}n a 是公比为正数的等比数列,12a =,3212a a -=. (1)求数列{}n a 的通项公式;(2)设数列{}n b 是首项为1,公差为2的等差数列,求数列{}n n a b +的前n 项和n S . 17. (本小题满分12分)根据空气质量指数AQI (为整数)的不同,可将空气质量分级如下表:某市2013年10月1日—10月30日,对空气质量指数AQI 进行监测,获得数据后得到如图(4)的条形图(1)估计该城市本月(按30天计)空气质量类别为中 度污染的概率;(2)在空气质量类别颜色为紫色和褐红色的数据中 任取2个,求至少有一个数据反映的空气质量类别颜色为褐 红色的概率.18.(本小题满分14分)在△ABC 中,角A 、B 、C 所对应的边为c b a ,, (1)若cos()2cos ,3A A π-= 求A 的值;(2)若1cos ,3A =且△ABC 的面积22S c =,求C sin 的值. 19.(本小题满分14分)如图(5),已知,,A B C 为不在同一直线上的三点,且111////AA BB CC ,111AA BB CC ==.(1)求证:平面ABC //平面111A B C ;(2)若1AA ⊥平面ABC ,且14AC AA ==,3,5BC AB ==,图(6)y xBOEFD求证:A 1C 丄平面AB 1C 1(3)在(2)的条件下,设点P 为1CC 上的动点,求当1PA PB +取得最小值时PC 的长.20.(本小题满分14分)如图(6),已知(,0)F c 是椭圆2222:1(0)x y C ab a b+=>>的右焦点;222:()F x c y a -+=与x 轴交于,D E 两点,其中E 是椭圆C 的左焦点.(1)求椭圆C 的离心率;(2)设F 与y 轴的正半轴的交点为B ,点A 是点D 关于y 轴的对称点,试判断直线AB 与F 的位置关系;(3)设直线BF 与F 交于另一点G ,若BGD ∆的面积为求椭圆C 的标准方程.21.(本小题满分14分)设函数1()n n f x axbx c +=++(0)x >,其中0a b +=,n 为正整数,a ,b ,c 均为常数,曲线()y f x =在(1,(1))f 处的切线方程为10x y +-=. (1)求a ,b ,c 的值; (2)求函数()f x 的最大值;(3)证明:对任意的(0,)x ∈+∞都有1()nf x e<.(e 为自然对数的底)揭阳市2013-2014学年度高中三年级学业水平考试数学(文科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则. 二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数. 一.选择题CC A AB CBBCD解析:10.函数()f x 有3个零点,须满足0,20,012440.a a a a <⎧⎪⎪-<⇒<<⎨⎪->⎪⎩,故选D.二.填空题:11.2;12.45;13.①②;;15. 3. 解析:12.设被污损的数字为x (x N ∈),则由甲的平均成绩超过乙的平均成绩得,88899291908383879990x ++++>+++++,解得08x ≤<,即当x 取0,1,……,7时符合题意,故所求的概率84105P == 三.解答题:16.解:(1)设数列{}n a 的公比为q ,由12a =,3212a a -=,得222120q q --=,即260q q --=.------------------------------------------------------------3分解得3q =或2q =-,------------------------------------------------------------------------------------5分 ∵0q >∴2q =-不合舍去,∴123n n a -=⨯;---------------------------------------------------------6分(2)∵数列{}n b 是首项11,b =公差2d =的等差数列,∴n b =21n -,--------------------------------------------- -------------------------------8分 ∴n S 1212()()n n a a a b b b =+++++++2(31)(121)312n n n -+-=+-231n n =-+.--------------------------------------------------------12分 17.解:(1)由条形统计图可知,空气质量类别为中度污染的天数为6, -----------------------------1分所以该城市本月内空气质量类别为中度污染的概率61305P ==.----------------------------------4分 (2)由条形图知,空气质量类别颜色为紫色的数据有4个,分别设为a b c d 、、、,空气质量类别颜色为褐红色的数据有2个,分别设为e f 、.------------------------------------------------------6分设从以上6个数据任取2个,至少有一个数据反映的空气质量类别颜色为褐红色为事件A, 则基本事件有:(,),(,),(,),(,),(,),(,)a b a c a d b c b d c d ,(,),(,),(,),(,),(,),(,)a e a f b e b f c e c f , (,),(,),(,)d e d f e f 共15种可能,--------------------------------------------------------------------------8分 A 包含的基本事件有:(,),(,),(,),(,),(,),(,)a e a f b e b f c e c f ,(,),(,),(,)d e d f e f 9种可能,-------------------------10分 故所求的概率93()155P A ==.-------------------------------------------------------------------------------------------------12分18.解:(1)由cos()2cos ,3A A π-=得cos cossin sin2cos ,33A A A ππ+=------------------------- -----------------------------2分1cos 2cos ,2A A A ∴=3cos A A =,------------------------------------------------4分∴tan A =-----------------------------------------------------------------------------------------------------6分∵0A π<< ∴3A π=;-------------------------------------------------------------------------------------7分 (2)解法1:1cos ,3A = ∴02A π<<∴sin A ==------------------------------------------------------------------------------8分由21sin 2S bc A ===得3b c =,----------------------------------------------------------10分由余弦定理得:22222222cos 928a b c bc A c c c c =+-=+-=,∴a =----------------12分由正弦定理得:sin sin a cA C=sin c C = 1sin3C ∴==.------------------------------------------------------------------------------------------14分【解法2:1cos ,3A = ∴02A π<<∴sin A ==------------------------------- -----------------------------8分由21sin 2S bc A ===得3b c =,----------------------------------------------------------10分由余弦定理得:22222222cos 928a b c bc A c c c c =+-=+-=,∴a =----------------12分∵22222289a c c c c b +=+==,∴△ABC 是Rt △,角B 为直角,--------------------------------13分1sin 3c C b ∴==.---------------------------------------------------------------------------------------------14分】【:解法3:1cos ,3A = ∴02A π<<∴sin A ==------------------------------------------------------------------------------8分由21sin 2S bc A ===得3b c=,----------------------------------------------------------10分 由余弦定理得:22222222cos 928a b c bc A c c c c =+-=+-=,∴a =----------------12分又21sin 2S ab C ==,得213sin 2c C ⋅⋅⋅=,∴1sin 3C =.-----------------------14分】 【解法4:1cos ,3A = ∴02A π<<∴sin A ==------------------------------------------------------------------------------8分由21sin 2S bc A ===得3b c =,------------------- -------------------------10分由正弦定理得:sin sin b cB C=,则3sin sin sin[()]C B A C π==-+sin()A C =+,-------11分3sin sin()sin cos cos sin C A C A C A C =+=+,13sin sin 3C C C =+,整理得cos C C =,代入22sin cos 1C C +=,得21sin 9C =,------------------------------13分 由c b <知02C π<<,19.(1)证明:∵11//AA CC 且11AA CC =∴四边形11ACC A 是平行四边形,-------------------------------------------------------------------------------1分 ∴//AC 11A C ,∵AC ⊄面111A B C ,11A C ⊂面111A B C ∴//AC 平面111A B C ,-------------------------------------------------------------------------------------------3分 同理可得//BC 平面111A B C ,又AC CB C =,∴平面ABC //平面111A B C ----------------------------------------------------------------------------------------------------4分(2)∵1AA ⊥平面ABC ,1AA ⊂平面11ACC A ∴平面11ACC A ⊥平面ABC ,-------------------5分 平面11ACC A 平面ABC =AC ,∵4AC=,3BC =,5AB = ∴222AC BC AB += ∴BC AC ⊥---------------------------6分∴BC ⊥平面11ACC A ,----------------------------------------------------------------------------------------7分 ∴1BCAC ⊥,∵11//BC B C ∴111B C AC ⊥ 又1AA AC ⊥,1AC AA =得11ACC A 为正方形,∴11AC AC ⊥---------------------------------------8分 又1111AC B C C =,∴A 1C 丄平面AB 1C 1----------------------------------------------------------------------------------------------9分(3)将三棱柱ABC-A 1B 1C 1的侧面11ACC A 绕侧棱1CC 旋转到与侧面11BCC B 在同一平面内如右图示,连结1AB 交1CC 于点P ,则由平面几何的知识知,这时1PA PB +取得最小值,----------------------------------------------12分∵1//PC BB ∴11167AC BB PC ACPC BB AB AB ⋅=⇒==.------------------------------------------------------------------14分20.解:(1)∵圆F 过椭圆C 的左焦点,把(,0)c -代入圆F 的方程,得224c a =,故椭圆C 的离心率12c e a ==;---------------------------------------------------------------3分(2) 在方程222()x c y a -+=中令0x =得2222y a c b =-=,可知点B 为椭圆的上顶点, 由(1)知,12c a =,故2,a c b ===,故B ),-------------------------------5分在圆F 的方程中令y=0可得点D 坐标为(3,0)c ,则点A 为(3,0)c -,------------------------------6分4PABA 1B 1C 13于是可得直线AB 的斜率AB k ==---------------------------------------------------------------7分而直线FB 的斜率FB k ==,----------------------------------------------------------------------8分∵1AB FD k k ⋅=-, ∴直线AB 与F 相切。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前揭阳市2014年高中毕业班第一次高考模拟考试数学(文科) 2014.3.22本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足:34iz i =+,则z =A .34i --B .43i +C .43i -D .43i -+ 2.设函数()f x =M ,则R C M = A. (,1)-∞ B.(1,)+∞ C. (,1]-∞ D. [1,)+∞3.设平面α、β,直线a 、b ,,a b αα⊂⊂,则“//,//a b ββ” 是“//αβ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.下列函数是偶函数,且在[0,1]上单调递增的是 A.sin()2y x π=+B. 212cos 2y x =-C.2y x =- D. |sin()|y x π=+5.如图(1)所示的程序框图,能使输入的x 值与输出的y 值 相等的所有x 值分别为A.1、2、3B.0、1C.0、1、3D.0、1、2、3、4. 图(1)6.一简单组合体的三视图如图(2)所示,则该组合体的 体积为A.16π-B.124π-C.122π-D.12π- 7.已知向量a 、b 满足||1,||3a b ==,且(32)a b a -⊥,则a 与b 的夹角为 图(2)图(3)(km/h )A.6πB.4πC.3πD.2π8.若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则2z x y =+的取值范围是A.[0,4]B.[4,6]C.[2,4]D. [2,6]9.已知以双曲线C 的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为120,则双曲线C 的离心率为 A.32B.D.10.从[0,10]中任取一个数x ,从[0,6]中任取一个数y ,则使|5||3|4x y -+-≤的概率为 A .12B .59C .23 D .512二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11-13题)11.若点(,27)a 在函数3xy =的图象上,则tanaπ的值为 .12.根据某固定测速点测得的某时段内过往的100辆机动车的行驶速度(单位:km/h)绘制的频率分布直方图如图(3)所示.该路段限速标志牌提示机动车辆正常行驶速 度为60 km/h~120 km/h ,则该时段内过往的这100辆机动车中属非正常行驶的有 辆,图中的x 值为 .13.对于每一个正整数n ,设曲线1n y x +=在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则1299a a a +++= .(二)选做题(14-15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题) 已知直线l :132x t y t =+⎧⎨=-⎩(t 为参数且t R ∈)与曲线C :22x cos y cos αα=⎧⎨=+⎩(α是参数且[)02,απ∈),则直线l 与曲线C 的交点坐标为 .15.(几何证明选讲选做)如图(4),AB 是半圆的直径,C 是AB 延长线上一点,CD 切半圆于点D ,CD =2,DE ⊥AB ,垂足为E ,且E 是OB 的中点,则BC 的长为 .三.解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数sin 2()2sin .sin xf x x x=+ (1)求函数()f x 的定义域和最小正周期; (2)若()2,[0,],f ααπ=∈求()12f πα+的值.17. (本小题满分12分)图(5)是某市2月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择2月1日至2月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气质量优良的概率;(2)求此人停留期间至多有1天空气重度污染的概率. 18.(本小题满分14分)如图(6),四棱锥S —ABCD 的底面是正方形,侧棱SA ⊥底面ABCD , 过A 作AE 垂直SB 交SB 于E 点,作AH 垂直SD 交SD 于H 点,平面 AEH 交SC 于K 点,P 是SA 上的动点,且AB=1,SA=2. (1)试证明不论点P 在何位置,都有DB PC ⊥; (2)求PB PH +的最小值;(3)设平面AEKH 与平面ABCD 的交线为l ,求证://BD l . 19.(本小题满分14分).已知曲线C 的方程为:222240(0,ax ay a x y a a +--=≠为常数).(1)判断曲线C 的形状;(2)设曲线C 分别与x 轴、y 轴交于点A 、B (A 、B 不同于原点O ),试判断△AOB 的面积S 是否为定值?并证明你的判断;(3)设直线:24l y x =-+与曲线C 交于不同的两点M 、N ,且||||OM ON =,求曲线C 的方程. 20.(本小题满分14分)已知正项数列{}n a 满足:222(1)()0()n n a n n a n n n N +-+--+=∈,数列{}n b 的前n项和为n S ,且满足11b =,21n n S b =+()n N +∈.(1) 求数列{}n a 和{}n b 的通项公式; (2)设(21)nn nn b c a +=,数列{}n c 的前n 项和为n T ,求证:21n T <. 21.(本小题满分14分)已知函数2()ln 1,()1bf x a xg x x x=+=+-,(,a b R ∈). (1)若曲线()y g x =在点(1,(1))g 处的切线平行于x 轴,求b 的值; (2)当0a >时,若对(1,)x e ∀∈,()f x x >恒成立,求实数a 的取值范围;(3)设()()()p x f x g x =+,在(1)的条件下,证明当0a ≤时,对任意两个不相等的正数12,x x ,有()()121222p x p x x x p ++⎛⎫>⎪⎝⎭.揭阳市2014年高中毕业班高考第一次模拟考数学(文科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.一、选择题:CDBDC DADBA 解析:6.由三视图知,此组合体为一个长为4,宽为3,高为1的长方体、中心去除一个半径为1的圆柱,故其体积为23411112ππ⨯⨯-⨯⨯=-7.由(32)a b a -⊥得2(32)3||20a b a a a b -⋅=-⋅=233||||||cos ,22a b a a b a b ⇒⋅===⋅<>,33cos ,,6a b a b π<>==⇒<>=. 8. 如右图知,满足条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩的点为图中阴影部分,当2z x y =+过点(2,0)时,z 取得最小值2,当2z x y =+过点(2,2)时,z 取得最 大值6,故选D.9.不妨设双曲线的焦点在x 轴,因c b >,故30OFB ∠=,tan 30b c ==22222211()3bc a a c c c -⇒==-=23()2c e a ⇒=⇒=选B. 10.如右图,使|5||3|4x y -+-≤是图中阴影部分,故所求的概率141+412==60602S P ⨯⨯⨯=阴影()3.二、填空题:1112.15、0.0175; 13.-2; 14.(1,3); 15. . 解析:12.由直方图可知,这100辆机动车中属非正常行驶的有0.0025+0.00520100=15⨯⨯()(辆),x 的值=[1(0.00250.00500.01000.0150)20]200.0175-+++⨯÷=. 13.由1n y x +=得'(1)ny n x =+,则曲线在点(1,1)处的切线方程为1(1)(1)y n x -=+-,令y =得1n n x n =+,lg lg1n n n a x n ==+,12991299lg()23100a a a +++=⨯⨯⨯1lg 2100==- 14.把直线l 的参数方程化为普通方程得25x y +=,把曲线C 的参数方程化为普通方程得212(11)y x x =+-≤≤,由方程组212(11)25y x x x y ⎧=+-≤≤⎨+=⎩解得交点坐标为(1,3) 15.DE 为OB 的中垂线且OD=OB ,∴OBD ∆为等边三角形,060COD ∠=,OD BC OC OB ==-== 16.解:(1)由0sin x ,≠解得x k (k Z )π≠∈,所以函数f (x )的定义域为{x |x k (k Z )}π≠∈------------------------2分sin 2()2sin 2cos 2sin cos cos sin )).sin 444x f x x x x x x x x πππ=+=+=+=+---4分f (x )∴的最小正周期221T ππ==-----------------------------------6分 (2)解法1:由()2cos sin 12cos sin 0,f ααααα=⇒+=⇒=---------------------8分[0,]απ∈且sin 0α≠,.2πα∴=------------------------------------10分∴5()sin()124126f ππππαα+=++==------------------------------------12分 【解法2:由()2,[0,],f ααπ=∈得sin cos 1αα+=cos 1sin αα⇒=-, 代入22sin cos 1αα+=得22sin(1sin )1αα+-=2sin (sin 1)0αα⇒-=,-----8分P DABSHsin 0α≠ ∴sin 1α=,又[0,]απ∈,.2πα∴=---------------------------------10分∴5()sin()124126f ππππαα+=++==------------------------------------12分】 17.解:(1)在2月1日至2月12日这12天中,只有5日、8日共2天的空气质量优良,所以此人到达当日空气质量优良的概率21126P ==.-----------------------5分 (2)根据题意,事件“此人在该市停留期间至多有1天空气重度污染”,即“此人到达该市停留期间0天空气重度污染或仅有1天空气重度污染”.--------------------6分 “此人在该市停留期间0天空气重度污染”等价于“此人到达该市的日期是4日或8日或9日”.其概率为31124=,----------------------------------------------8分 “此人在该市停留期间仅有1天空气重度污染”等价于“此人到达该市的日期是3日或5日或6日或7日或10日”.其概率为512,-----------------------------------10分 所以此人停留期间至多有1天空气重度污染的概率为.P=1524123+=.-----------12分18.(1)证明:∵底面ABCD 是正方形∴DB AC ⊥,------------------------------1分 ∵SA ⊥底面ABCD,BD ⊂面ABCD ,∴DB SA ⊥,---------------------2分 又SAAC A =∴BD ⊥平面SAC ,∵不论点P 在何位置都有PC ⊂平面SAC ,∴DB PC ⊥.----------------------------------------------3分(2)解:将侧面SAB 绕侧棱SA 旋转到与侧面SAD 在同一平面内,如右图示, 则当B 、P 、H 三点共线时,PB PH +取最小值,这时,PB PH +的 最小值即线段BH 的长,--------------------------------------------4分 设HAD α∠=,则BAH πα∠=-, 在Rt AHD ∆中,∵SA AD AH SD ⋅==∴cos AH AD α==,--------------------6分 在三角形BAH 中,有余弦定理得:2222cos()BH AB AH AB AH πα=+-⋅-41712(55=+-=∴min ()PB PH BH +==------------------------------------------------------------8分 (3) 连结EH ,∵AB AD =,SA SA =,∴Rt SAB Rt SAD ∆≅∆, ∴SB SD =,---------------------------------------------------------------9分又∵,AE SB AH SD ⊥⊥,∴AE AH =,∴Rt SEA Rt SHA ∆≅∆, ∴SE SH =,-----------------------------------------------------------10分 ∴SE SHSB SD=, ∴//EH BD ,---------------------------------------12分 又∵EH ⊂面AEKH ,BD ⊄面AEKH , ∴//BD 面AEKH. ----------------------------13分 ∵平面AEKH ⋂平面ABCD=l , ∴//BD l -----------------------------------------------------14分 19.解:(1)将曲线C 的方程化为22420x y ax y a +--=⇒222224()()x a y a a a-+-=+--2分可知曲线C 是以点2(,)a a-----------------------------4分 (2)△AOB 的面积S 为定值.-------------------------------------------------------------------5分 证明如下:在曲线C 的方程中令y=0得(2)0ax x a -=,得点(2,0)A a ,---------------------------6分 在曲线C 的方程中令x=0得(4)0y ay -=,得点4(0,)B a,--------------------------7分∴114|||||2|||422S OA OB a a=⋅=⋅=(为定值).----------------------------------------9分 (3)∵圆C 过坐标原点,且||||OM ON = ∴圆心2(,)a a 在MN 的垂直平分线上,∴2212a =,2a =±,--------------------11分 当2a =-时,圆心坐标为(2,1)--, 圆心到直线:24l y x =-+的距离d ==>, 直线l 与圆C 相离,不合题意舍去,------------------------------------------------------------13分 ∴2a =,这时曲线C 的方程为22420x y x y +--=.-----------------------------------14分20.解:(1)由222(1)()0n n a n n a n n -+--+=,得2()(1)0n n a n n a ⎡⎤-++=⎣⎦. ---------2分由于{}n a 是正项数列,所以2n a n n =+.---------------------------------3分由21n n S b =+可得当2n ≥时,1121n n S b --=+,两式相减得1n n b b -=-,------------5分∴数列{}n b 是首项为1,公比1-的等比数列,1(1).n n b -∴=-----------------------------------7分 (2)方法一:∵1(21)21(1)(1)n n n n n b n c a n n -++==-⋅+---------------------------------8分∴2124141(41)(21)(41)(21)2(21)2(21)2(21)(21)n n n n n n n n c c n n n n n n n --+-+-+-+=-=-+-+ 211(21)(21)2121n n n n ==--+-+--------------------------------------------------------------11分 21234212111111()()()13352121n n n T c c c c c c n n -∴=++++++=-+-++--+11 1.21n =-<+---------------------------------------------------------------------------------------14分 【方法二:∵11(21)2111(1)(1)()(1)1n n n n n n b n c a n n n n --++==-⋅=-⋅+++-----------------------11分2123421211111111()()()()12233445n n n T c c c c c c -∴=++++++=+-+++-++11111()()1 1.21222121n n n n n ++-+=-<-++----------------------------------------------14分】21. 解:(1)∵2'()2bg x x x =-,由曲线()y g x =在点(1,(1))g 处的切线平行于x 轴得 '(1)20g b =-=,∴2b =------------------------------------------------2分 (2)解法一:令()ln 1h x a x x =+-,则'()1a a xh x x x-=-=,-------------------------3分 当a e >时,'()0h x >,函数()h x 在(1,)e 上是增函数,有()(1)0h x h >=,-----------4分 当1a e <≤时,∵函数()h x 在(1,)a 上递增,在(,)a e 上递减,对(1,)x e ∀∈,()f x x >恒成立,只需()0h e ≥,即1a e ≥-.----------------------------5分 当1a ≤时,函数()h x 在(1,)e 上递减,对(1,)x e ∀∈,()f x x >恒成立,只需()0h e ≥, 而()10h e a e =+-<,不合题意,----------------------------------------------------------------6分 综上得对(1,)x e ∀∈,()f x x >恒成立,1a e ≥-.------------------------------------------7分 【解法二:由()f x x >且(1,)x e ∈可得1ln ,1xa x <----------------3分 由于ln 1xx -表示两点(,ln ),(1,0)A x x B 的连线斜率, 由图象可知ln 1xy x =-在(1,)e 单调递减,-----------------5分故当(1,)x e ∈时,ln ln 1,111x e x e e >=-----------------------------------6分1101a e ∴<≤-即1a e ≥--------------------------------------------------7分】 (3)证法一:由()22ln p x x a x x=++得()()()()1222121212111ln ln 222p x p x ax x x x x x +⎛⎫=+++++ ⎪⎝⎭()2212121212x x x x a x x +=+++--------------------------------------8分 2121212124ln 222x x x x x x p a x x +++⎛⎫⎛⎫=++ ⎪ ⎪+⎝⎭⎝⎭----------------------------------------------9分由2212122x x x x +>得22212122+x x x x +>()()2221212+122x x x x ⇒+>()()-------①---10分 又()()2221212121224x x x x x xx x +=++>∴1212124x x x x x x +>+ ---------------------------------------------------②---------------11分122x x +<∴12ln ln 2x x +< ∵0a ≤∴12ln 2x x a a +≥ ------------------------------③---------------12分由①、②、③得()22212121212121422x x x x x x a a x x x x ++⎛⎫+++>++ ⎪+⎝⎭ 即()()121222p x p x x x p ++⎛⎫>⎪⎝⎭.--------------------------------------------------------------14分 【证法二:由()22ln p x x a x x=++ ()()121222p x p x x x p ++⎛⎫- ⎪⎝⎭()()2221212121212121114ln ln ln 2222x x x x a x x x x a x x x x ⎛⎫++⎛⎫=+++++--- ⎪ ⎪+⎝⎭⎝⎭-----9分221212121212()()(ln ln )4()2x x x x x x a x x x x --+=++-+---------------------------------------10分∵12,x x 是两个不相等的正数,122x x +<∴12ln ln 2x x +<-------------------------------------------------11分∴12(ln ln )02x x a +-≥,又 2212121212()()0,04()x x x x x x x x -->>+ ∴()()121222p x p x x x p ++⎛⎫- ⎪⎝⎭0>,即()()121222p x p x x x p ++⎛⎫> ⎪⎝⎭.----------------14分】。