DES加密算法课程设计 毕业设计

DES加密算法课程设计  毕业设计
DES加密算法课程设计  毕业设计

摘要

随着计算机的应用和网络技术的不断发展,网络间的通讯量不断的加大,人们的个人信息、网络间的文件传递、电子商务等方面都需要大力的保护,文件加密技术也就随之产生。文件的加密主要是由加密算法实现,加密算法有多种,常见的有RSA、DES、MD5等。本程序设计对文件的加密使用的是DES加密算法。

DES是分块加密的。DES用软件进行解码需要用很长时间,而用硬件解码速度非常快,1977年,人们估计要耗资两千万美元才能建成一个专门计算机用于DES的解密,而且需要12个小时的破解才能得到结果。所以,当时DES被认为是一种十分强壮的加密方法。但今天,只需二十万美元就可以制造一台破译DES的特殊的计算机,所以现在 DES 对要求“强壮”加密的场合已经不再适用了。

Java语言具有简单、安全、可移植、面向对象、健壮、多线程、体系结构中立、解释执行、高性能、分布式和动态等主要特点。利用Java语言中秘密密钥工厂对DES算法的支持,使程序实现文件加密、解密两大功能更简单。

本程序设计所采用的就是DES算法。同时利用Java的GUI编程,生成文本对话框,对文件的路径进行选择、提供密钥框、加密和解密按钮。

使用本程序可以对txt,word等多种文件进行加密解密,使用便捷实用,功能完善,满足了用户对文件安全性的需求。

关键词:JA V A ,DES,加密,解密。

目录

1题目分析 (1)

1.1课程设计的要求和内容 (1)

1.2 DES算法描述 (1)

2概要设计 (3)

2.1抽象数据类型的定义 (3)

2.1.1 程序所需要引入的包 (3)

2.1.2 其他定义 (3)

2.2主程序流程图 (4)

2.3各程序模块之间的层次(调用)关系 (4)

3详细设计 (6)

3.1 窗体的设计与实现 (6)

3.2文件导入模块 (8)

4测试分析与结果 (9)

4.1. 测试结果 (9)

4.1.1运行程序 (9)

4.1.2加密 (9)

4.1.3解密 (11)

总结 (13)

参考文献 (14)

附录 (15)

1题目分析

1.1课程设计的要求和内容

基本要求:

1.利用某种加密算法对指定的文本文件进行加密(应判断其是否已经加密,若已加密则结束该步骤,否则提示输入加密口令,对文件进行加密);

2.加密解密方法:本设计采用DES加密算法。

3.还应该提供解密功能。

1.2 DES算法描述

DES ( data encryption Standard) 是一种世界标准的加密形式,已经15 年历史了,虽然有些老,可还算是比较可靠的算法。在七十的初期, 随着计算机之间的通信发展,需要有一种标准密码算法为了限制不同算法的激增使它们之间不能互相对话。为解决这个问题, 美国国家安全局(N.S.A ) 进行招标。I.B.M 公司开发了一种算法,称为:Lucifer。经过几年的研讨和修改, 这种算法, 成为了今天的D.E.S,1976年11月23日,终于被美国国家安全局采用。

DES是一种分组加密算法,他以64位为分组对数据加密。64位一组的明文从算法的一端输入,64位的密文从另一端输出。DES是一个对称算法:加密和解密用的是同一个算法(除密钥编排不同以外)。

密钥的长度为56位(密钥通常表示为64位的数,但每个第8位都用作奇偶检验,可以忽略)。密钥可以是任意的56位数,且可以在任意的时候改变。

DES算法的入口参数有3个:Key,Data,Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或解密的数据:Mode为DES的工作方式,有两种:加密或解密。

DES算法的工作过程:若Mode为加密,则用Key对数据Data进行加密,生成Data的密码形式(64位)作为DES的输出结果;若Mode为解密,则用

Key对密码形式的数据Data解密,还原为Data的明码形式(64位)作为DES 的输出结果。

在通信网络的两端,双方约定了一致的Key,在通信的源点用Key对核心数据进行DES加密,然后以密码形式通过公共通信网(如电话网)传输到通信网络的终点,数据达到目的地后,用同样的Key对密码数据进行解密,便再现了明码形式的核心数据。这样便保证了核心数据(如PIN,MAC等)在公共通信网中传输的安全性和可靠性。通过定期在通信网络的源端和目的端同时改用新的Key,便能更进一步提高数据的保密性,这正是现在金融界交易网络的流行作法。

随着计算机网络的发展,加密技术也在迅速的发展中,加密解密技术的实现主要靠性能好的加密算法,而DES就是在实践中被证明的很好的算法,目前此算法已被广泛运用,且在使用中有了一些改进,DES算法给网络文件带来了可靠的安全性保证。

2概要设计

2.1抽象数据类型的定义

2.1.1 程序所需要引入的包

import java.awt.*; //包含用于创建用户界面和绘制图形图像的所有类。

import java.awt.event.*; //提供处理由 AWT 组件所激发的各类事件的接口和类。

import javax.swing.*; //提供一组“轻量级”(全部是 Java 语言)组件,尽量让这些组件在所有平台上的工作方式都相同。

import java.io.*; //通过数据流、序列化和文件系统提供系统输入和输出。

2.1.2 其他定义

new BorderLayout()对文件加密器对话框采用BorderLayout管理器。new ActionListener()对文件的加密和解密设置事件监听器。

new ButtonGroup()定义一个按钮组。

new JRadioButton()将此按钮设置为属于一个按钮组的成员。

new FileInputStream()建立文件输入流以便进行文件的读操作,取其数据new FileOutputStream()建立文件输出流以便将数据写入文件

shu1 用整形数据保存该密钥。

2.2主程序流程图

图2 主程序流程图

2.3各程序模块之间的层次(调用)关系

模块定义

(1)主函数模块:

生成加密器框体;获取数据的输入;调用加密或解密函数。

(2)加密模块:

判断密钥是否合法和文件是否已加密,启动加密操作,显示操作结果,并在与

源文件同一文件夹下生成密文。

(3)加密操作模块:

用DES方法加密输入的字节并返回。

(4)解密模块:

判断密钥是否合法,启动解密操作,显示操作结果,并在指定的文件路径下生成明文。

(5)解密操作模块:

用DES方法解密输入的字节并返回。

3详细设计

3.1 窗体的设计与实现

窗体的总体布局包含按钮、画布、文本框、标签等,合理分布达到视觉的美感。

代码实现:

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import javax.swing.*;

public class key加密extends JFrame {

int shu1;

JLabel jl1,jl2;

String cc;

JButton queding, xuanz, jiami, jiemi;

JTextField lujin,key;

JTextArea nr;

JRadioButton qu,xie;

ButtonGroup fz;

File f;

public key加密(){

Container c = getContentPane();

JPanel jp1 = new JPanel();

jl1 = new JLabel("输入路径");

lujin = new JTextField(15);

xuanz = new JButton("选择");

jp1.add(jl1);

jp1.add(lujin);

jp1.add(xuanz);

c.add(jp1, BorderLayout.NORTH);

nr = new JTextArea();

c.add(new JScrollPane(nr), BorderLayout.CENTER); qu = new JRadioButton("写入");

xie = new JRadioButton("取出", true);

fz = new ButtonGroup();

fz.add(qu);

fz.add(xie);

jl2 = new JLabel("密钥");

key = new JTextField(15);

jiami = new JButton("加密");

jiemi = new JButton("解密");

JPanel jp4 = new JPanel();

jp4.setLayout(new GridLayout(2, 1, 5, 5));

JPanel jp2 = new JPanel();

jp2.add(jl2);

jp2.add(key);

jp2.add(jiami);

jp2.add(jiemi);

jp4.add(jp2);

JPanel jp3 = new JPanel();

queding = new JButton("确定");

jp3.add(qu);

jp3.add(xie);

jp3.add(queding);

jp4.add(jp3);

c.add(jp4, BorderLayout.SOUTH);

queding.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent event) {

jian();

if (qu.isSelected())

shuchu();

if (xie.isSelected())

qu();

}

});

3.2文件导入模块

实现目标文件的导入,通过选择按钮导入加密或解密的文件。

xuanz.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent event) {

JFileChooser fileChooser = new JFileChooser(); // 实例化文件选择器fileChooser.setFileSelectionMode(JFileChooser.FILES_AND_DIRECTORIES); // 设置文件选择模式,此处为文件和目录均可

if(fileChooser.showOpenDialog

(key加密.this)==JFileChooser.APPROVE_OPTION) { // 弹出文件选择器,并判断是否点击了打开按钮

String fileName=fileChooser.getSelectedFile().getAbsolutePath(); // 得到选择文件或目录的绝对路径

lujin.setText(fileName);

}

}

});

4测试分析与结果

4.1. 测试结果

4.1.1运行程序

首先在我机器E盘文件夹名为java1的文件夹离创建一个名为Example.doc 文档用做测试。

图4-1-1运行程序

运行程序弹出如图4-1-1对话框,然后进行文件选择

4.1.2加密

图 4-1-2选择加密文件

根据需求,选择所要加密文件的路径,并打开选取文件

图4-1-3 选取文件,在文本区中写入要加密的内容并单击加密按钮

图4-1-4 该文件已被

4.1.3解密

解密操作中对文件选择,密码输入和加密操作是一样的。

图4-1-5 选择要解密的文件

图4-1-6 输入密码进行文件解密

图4-1-7点击解密按钮,得到明文

总结

在本次课程设计过程中,本人主要是负责窗体设计与实现和目标文件的导入模块设计。通过本组三个人的分工协作,完成了课程设计。在完成设计期间,我通过不断网上搜集和查找有关书集和相关加密算法的介绍,进行认真而细致的学习,进而完成了此次课程设计模块的完成。通过本次设计我们也较深入的了解了DES这个加密算法的原理与作用。

通过本次设计,我意识到了无论身在何处,团队的事情远远大于个人的事情。学会团队合作才是未来在工作中实现自身价值的必备条件。我想课程设计的目的,并不仅仅让我们能把任务完成吧。大概也有让我们积极合作,团结奋进的意思吧。不管怎么说,我是在意识上还是在知识上都有了不小的提高。懂得了,只有细心的做好每一个步骤,才能酝酿一个完美的结局。

本次课程设计得到了韩芳老师的精心指导,在老师的指点下和小组成员的共同努力下,一一克服细节上的所有问题,并让它成为合格的设计。让本次任务顺顺利利的完成,在此谢谢韩老师的教导。

参考文献

[1] 谢希仁.计算机网络教程.北京: 人民邮电出版社,2006.

[2] 耿祥义.Java2使用教程: 清华大学出版社,2006.

[3] 方敏,张彤.网络应用程序设计.西安:电子科技大学出版社,2005.

[4] 黄超.Windows下的网络编程.北京:人民邮电出版社,2003.

附录

程序实现Java源代码

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import javax.swing.*;

public class key加密extends JFrame {

int shu1;

JLabel jl1, jl2;

String cc;

JButton queding, xuanz, jiami, jiemi;

JTextField lujin, key;

JTextArea nr;

JRadioButton qu, xie;

ButtonGroup fz;

File f;

public key加密(){

Container c = getContentPane();

JPanel jp1 = new JPanel();

jl1 = new JLabel("输入路径");

lujin = new JTextField(15);

xuanz = new JButton("选择");

jp1.add(jl1);

jp1.add(lujin);

jp1.add(xuanz);

c.add(jp1, BorderLayout.NORTH);

nr = new JTextArea();

c.add(new JScrollPane(nr), BorderLayout.CENTER);

qu = new JRadioButton("写入");

xie = new JRadioButton("取出", true);

fz = new ButtonGroup();

fz.add(qu);

fz.add(xie);

jl2 = new JLabel("密钥");

key = new JTextField(15);

jiami = new JButton("加密");

jiemi = new JButton("解密");

JPanel jp4 = new JPanel();

jp4.setLayout(new GridLayout(2, 1, 5, 5));

JPanel jp2 = new JPanel();

jp2.add(jl2);

jp2.add(key);

jp2.add(jiami);

jp2.add(jiemi);

jp4.add(jp2);

JPanel jp3 = new JPanel();

queding = new JButton("确定");

jp3.add(qu);

jp3.add(xie);

jp3.add(queding);

jp4.add(jp3);

c.add(jp4, BorderLayout.SOUTH);

queding.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent event) {

jian();

if (qu.isSelected())

shuchu();

if (xie.isSelected())

qu();

}});

xuanz.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent event) {

JFileChooser fileChooser = new JFileChooser(); // 实例化文件选择器

fileChooser.setFileSelectionMode(JFileChooser.FILES_AND_DIRECTORIES); // 设置文件选择模式,此处为文件和目录均可

if(fileChooser.showOpenDialog

(key加密.this) == JFileChooser.APPROVE_OPTION) { // 弹出文件选择器,并判断是否点击了打开按钮

String fileName=fileChooser.getSelectedFile().getAbsolutePath(); // 得到选择文件或目录的绝对路径

lujin.setText(fileName);

}

}});

jiemi.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent event) {

ObjectInputStream input;

try {

input = new ObjectInputStream(new FileInputStream(lujin.getText()));

int mima = Integer.parseInt(key.getText());

AA ac = (AA) input.readObject();

if (ac.getShu() == mima) {

nr.setText(https://www.360docs.net/doc/af8874508.html,);

shuchu();

} else {

nr.setText("错误的key");

}

} catch (Exception e) {

// e.printStackTrace();

nr.setText("无法解密");

}}});

jiami.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent event) {

AA a = new AA(nr.getText());

key.setText(a.shu + "");

try {

ObjectOutputStream output = new ObjectOutputStream(

new FileOutputStream(lujin.getText()));

output.writeObject(a);

output.flush();

output.close();

qu();

baocun();

} catch (Exception e) {

// e.printStackTrace();

nr.setText("必须选择加密文件保存地址,文件不存在或者无法加密文件,加密文件不能含有换行");

}}});

setSize(380, 350);

setVisible(true);

}

public void jian() {

f = new File(lujin.getText());

try {

f.createNewFile();

} catch (IOException e) {

JOptionPane.showMessageDialog(null, "路径错误");

}}

public void shuchu() {

try {

FileOutputStream out = new FileOutputStream(f);

byte buf[] = nr.getText().getBytes();

try {

out.write(buf);

out.flush();

out.close();

} catch (IOException e) {

// e.printStackTrace();

}

} catch (FileNotFoundException e) {

// e.printStackTrace();

}}

public void qu() {

try {

FileInputStream in = new FileInputStream(f);

int a = (int) f.length();

byte buf[] = new byte[a];

try {

int len = in.read(buf);

if (len == -1)

System.out.println("文件为空");

else

nr.setText(new String(buf, 0, len));

} catch (IOException e) {

// e.printStackTrace();

}

} catch (FileNotFoundException e) {

// e.printStackTrace();

}}

public static void main(String arge[]) {

key加密s = new key加密();

s.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); }

public String mzi() {

String ccc = "";

int zu[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

for (int i = 0; i < 6; i++) {

int second = (int) (Math.random() * 9);

ccc += zu[second];

}

return ccc;

}

public void baocun() {

AA a = new AA();

shu1 = a.getShu();

a.shu = shu1;

}}

class AA implements Serializable {

String cc;

public int shu;

public AA() {

}

public int getShu() {

return shu;

}

public void setShu(int shu) {

this.shu = shu;

}

public AA(String a) {

cc = a;

int zu[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

for (int i = 0; i < 1000; i++) {

int second = (int) (Math.random() * 9);

shu += zu[second];

}

}}

毕业设计(论文)-数据库加密系统的设计与实现

1 引言 随着计算机信息技术的蓬勃发展,作为信息采集、存储、处理和传输的媒体,计算机及网络应用逐步延伸到社会生活的方方面面。当人类越来越感受到计算机系统功能的强大,不得不感叹于信息技术带来的方便快捷的同时,各种忧虑也渐渐产生:已经习惯性依赖于计算机的人们离开它还能生存吗?信息战将对国防安全、军事领域产生什么影响?信息诈骗和其他信息犯罪将如何改变人们的日常生活? 这些问题都属于计算机信息安全的范畴。 起初,计算机系统的安全主要是指硬件的安全保护。随着信息所发挥的价值日益为人们所了解,人们的目光转移到在计算机系统中存储、传输的信息的安全,包括防止信息泄漏和非法慕改等。数据库集中存放和管理大量信息,其安全性对于整个计算机信息系统至关重要。为了保证数据安全,人们在不同层面运用了各种安全措施,这些防范措施分别可以在一定程度上防止某种安全威胁。但是,在操作系统、数据库和网络的层层防护之下,仍然无法保证数据库数据的安全。因为通常数据库中的数据最终是以文件形式存储在计算机上的,这些文件大部分是多个用户可读可写的,一旦网上黑客通过某种途径进入系统就可以直接读取数据文件或存储介质,从中窃取数据或利用非法软件篡改数据库文件内容。近几年,类似案件在世界范围内频繁出现。因此计算机信息安全人员和数据库开发商们不得不求助于另外一种安全措施一一加密技术。 1.1 课题现状 密码学是一门古老而深奥的学科,对一般人来说是非常陌生的。长期以来,只在很小的范围内使用,如军事、外交、情报等部门。计算机密码学是研究计算机信息加密、解密及其变换的科学,是数学和计算机的交叉学科,也是一门新兴的学科。随着计算机网络和计算机通讯技术的发展,计算机密码学得到前所未有的重视并迅速普及和发展起来。在国外,它已成为计算机安全主要的研究方向。 数据库系统的安全问题是信息系统安全的一个大问题。由于数据库系统中集中存储了大量的信息,而且数据库的最大特点是实现数据的共享,其中必然带来数据库的安全性问题。数据库中放置了组织、企业、个人的大量数据,其中许多数据可能是非常关键的、机密的或者涉及隐私的。例如军事秘密、国家机密、科研数据、市场分析、营销策略、销售计划、客户档案、医疗档案、银行储蓄数据等。数据拥有者往往只容许一部分人访问这些数据,如果数据库管理系统不能严格的保护数据库中的数据的数

简单讲解加密技术

简单讲解加密技术 加密技术是最常用的安全保密手段,利用技术手段把重要的数据变为乱码(加密)传送,到达目的地后再用相同或不同的手段还原(解密)。 加密技术包括两个元素:算法和密钥。算法是将普通的信息或者可以理解的信息与一串数字(密钥)结合,产生不可理解的密文的步骤,密钥是用来对数据进行编码和解密的一种算法。在安全保密中,可通过适当的钥加密技术和管理机制来保证网络的信息通信安全。 什么是加密技术呢?加密技术是电子商务采取的主要安全保密措施,是最常用的安全保密手段,利用技术手段把重要的数据变为乱码(加密)传送,到达目的地后再用相同或不同的手段还原(解密)。加密技术包括两个元素:算法和密钥。算法是将普通的文本(或者可以理解的信息)与一窜数字(密钥)的结合,产生不可理解的密文的步骤,密钥是用来对数据进行编码和解码的一种算法。在安全保密中,可通过适当的密钥加密技术和管理机制来保证网络的信息通讯安全。密钥加密技术的密码体制分为对称密钥体制和非对称密钥体制两种。相应地,对数据加密的技术分为两类,即对称加密(私人密钥加密)和非对称加密(公开密钥加密)。对称加密以数据加密标准(DES,Data Enc ryption Standard)算法为典型代表,非对称加密通常以RSA(Rivest Shamir Ad 1eman)算法为代表。对称加密的加密密钥和解密密钥相同,而非对称加密的加密密钥和解密密钥不同,加密密钥可以公开而解密密钥需要保密。 加密技术的种类:对称加密(私人密钥加密),非对称加密(公开密钥加密),单项加密。 对称加密:对称加密采用了对称密码编码技术,它的特点是文件加密和解密使用相同的密钥,即加密密钥也可以用作解密密钥,这种方法在密码学中叫做对称加密算法,对称加密算法使用起来简单快捷,密钥较短,且破译困难,除了数据加密标准(DES),另一个对称密钥加密系统是国际数据加密算法(IDEA),它比DNS的加密性好,而且对计算机功能要求也没有那么高。IDEA加密标准由PGP(Pretty Good Privacy)系统使用。 对称加密的种类:DES(数据加密的标准)使用56位的密钥。AES:高级加密标准。3 DES:三圈加密标准它作为现在加密算法的标准。 非对称加密:即公钥加密,非对称加密算法需要两个密钥:公开密钥(publickey)和私有密(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对

文件加密与解密—Java课程设计报告

JAVA课程设计题目:文件的加密与解密 姓名: 学号: 班级: 日期:

目录 一、设计思路 (3) 二、具体实现 (3) 三、运行调试与分析讨论 (8) 四、设计体会与小结 (11) 五、参考文献 (12) 六、附录 (12)

一、设计思路 自从Java技术出现以业,有关Java平台的安全性用由Java技术发展所引发的安全性问题,引起了越来越多的关注。目前,Java已经大量应用于各个领域,研究Java的安全性对于更好地利用Java具有深远的意义。使用Java的安全机制设计和实现安全系统更具有重要的应用价值。 本课程设计,主要实践Java安全中的JCE模块,包括密钥生成,Cipher对象初始化、加密模式、填充模式、底层算法参数传递,也涉及文件读写与对象输入输出流。 二、具体实现 本系统通过用户界面接收三个参数:明文文件、密文文件、口令。采用DES加密算法,密码分组链(Cipher Block Chaining,CBC)加密模式,PKCS#5-Padding的分组填充算法。因为CBC涉及到底层算法参数的解密密钥的传递,所以将明文文件中的字节块以密封对象(Sealed Object)的方式加密后,用对象流输出到密文文件,这样就将密文、算法参数、解密密钥三都密封到一个对象中了。口令的hash值作为产生密钥的参数。设计流程图如下所示: 文件加密与解密设计流程图

本系统中,包含Default,Shares,SecretKey,EncAndDec四个包共6个类组成。定义的几个参数:MAX_BUF_SIZE为每次从文件中读取的字节数,也是内存缓冲区的大小;加密算法为DES;加密模式是密码分组链(CBC)模式;分组填充方式是PKCS#5Padding。包和类结构图如下所示: 本课程设计,包和类结构图: 以下为包中的类的方法实现说明 Package Shares类结构图

DES算法实验报告

DES算法实验报告 姓名:学号:班级: 一、实验环境 1.硬件配置:处理器(英特尔Pentium双核E5400 @ 2.70GHZ 内存:2G) 2.使用软件: ⑴操作系统:Windows XP 专业版32位SP3(DirectX 9.0C) ⑵软件工具:Microsoft Visual C++ 6.0 二、实验涉及的相关概念或基本原理 1、加密原理 DES 使用一个 56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用 16 个循环,使用异或,置换,代换,移位操作四种基本运算。 三、实验内容 1、关键代码 ⑴子密钥产生

⑵F函数以及加密16轮迭代 2、DES加密算法的描述及流程图 ⑴子密钥产生 在DES算法中,每一轮迭代都要使用一个子密钥,子密钥是从用户输入的初始密钥产生的。K是长度为64位的比特串,其中56位是密钥,8位是奇偶校验位,分布在8,16,24,32,40,48,56,64比特位上,可在8位中检查单个错误。在密钥编排计算中只用56位,不包括这8位。子密钥生成大致分为:置换选择1(PC-1)、循环左移、置换选择2(PC-2)等变换,分别产生16个子密钥。 DES解密算法与加密算法是相同的,只是子密钥的使用次序相反。 ⑵DES加密算法 DES密码算法采用Feistel密码的S-P网络结构,其特点是:加密和解密使用同一算法、

RSA加密解密的设计与实现

RSA加密解密的设计与实现

上海电力学院 《应用密码学》课程设计 题目: RSA加密解密的设计与实现 院系:计算机科学与技术学院 专业年级:级 学生姓名:李正熹学号: 3273 指导教师:田秀霞 1月 8日 目录

目录 1.设计要求 2.开发环境与工具 3.设计原理(算法工作原理) 4.系统功能描述与软件模块划分 5.设计核心代码 6.参考文献 7. 设计结果及验证 8. 软件使用说明 9. 设计体会 附录 1.设计要求

1 随机搜索大素数,随机生成公钥和私钥 2 用公钥对任意长度的明文加密 3 用私钥对密文解密 4 界面简洁、交互操作性强 2.开发环境与工具 Windows XP操作系统 Microsoft Visual C++ 6.0 1.创立rsa工程

2.在rsa工程中创立 3273 李正熹cpp文件 3.设计原理 RSA算法简介 公开密码算法与其它密码学完全不同,它是基于数学函数而不是基于替换或置换。与使用一个密钥的对称算法不同,公开密钥算法是非对称的,而且它使用的是两个密钥,包括用于加密的公钥和用于解密的私钥。公开密钥算法有RSA、Elgamal等。 RSA公钥密码算法是由美国麻省理工学院(MIT)的Rivest,Shamir和Adleman在1978年提出来的,并以她们的名字的有字母命名的。RSA是第一个安全、实用的公钥密码算法,已经成为公钥密码的国际标准,是当前应用广泛的公钥密码体制。

RSA的基础是数论的Euler定理,其安全性基于二大整数因子分解问题的困难性,公私钥是一对大素数的函数。而且该算法已经经受住了多年深入的密码分析,虽然密码分析者既不能证明也不能否定RSA的安全性,但这不恰恰说明该算法有其一定的可信度。 4.系统功能描述与软件模块划分 功能:

AES密码学课程设计(C语言实现)

成都信息工程学院课程设计报告 AES加密解密软件的实现 课程名称:应用密码算法程序设计 学生姓名:樊培 学生学号:2010121058 专业班级:信息对抗技术101 任课教师:陈俊 2012 年6月7日

课程设计成绩评价表

目录 1、选题背景 (4) 2、设计的目标 (4) 2.1基本目标: (4) 2.2较高目标: (5) 3、功能需求分析 (5) 4、模块划分 (6) 4.1、密钥调度 (6) 4.2、加密 (8) 4.2.1、字节代替(SubBytes) (8) 4.2.2、行移位(ShiftRows) (10) 4.2.3、列混合(MixColumn) (11) 4.2.4、轮密钥加(AddRoundKey) (13) 4.2.5、加密主函数 (14) 4.3、解密 (16) 4.3.1、逆字节替代(InvSubBytes) (16) 4.3.2、逆行移位(InvShiftRows) (17) 4.3.3、逆列混合(InvMixCloumns) (17) 4.3.4、轮密钥加(AddRoundKey) (18) 4.3.5、解密主函数 (18) 5.测试报告 (20) 5.1主界面 (20) 5.2测试键盘输入明文和密钥加密 (20) 5.3测试键盘输入密文和密钥加密 (21) 5.3测试文件输入明文和密钥加密 (22) 5.4测试文件输入密文和密钥加密 (22) 5.5软件说明 (23) 6.课程设计报告总结 (23) 7.参考文献 (24)

1、选题背景 高级加密标准(Advanced Encryption Standard,AES),在密码学中又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。该算法为比利时密码学家Joan Daemen和Vincent Rijmen所设计,结合两位作者的名字,以Rijndael 之命名之,投稿高级加密标准的甄选流程。(Rijndael的发音近于 "Rhine doll") 严格地说,AES和Rijndael加密法并不完全一样(虽然在实际应用中二者可以互换),因为Rijndael加密法可以支援更大范围的区块和密钥长度:AES的区块长度固定为128 位元,密钥长度则可以是128,192或256位元;而Rijndael使用的密钥和区块长度可以是32位元的整数倍,以128位元为下限,256位元为上限。加密过程中使用的密钥是由Rijndael 密钥生成方案产生。大多数AES计算是在一个特别的有限域完成的。 截至2006年,针对AES唯一的成功攻击是旁道攻击 旁道攻击不攻击密码本身,而是攻击那些实作于不安全系统(会在不经意间泄漏资讯)上的加密系统。2005年4月,D.J. Bernstein公布了一种缓存时序攻击法,他以此破解了一个装载OpenSSL AES加密系统的客户服务器[6]。为了设计使该服务器公布所有的时序资讯,攻击算法使用了2亿多条筛选过的明码。有人认为[谁?],对于需要多个跳跃的国际互联网而言,这样的攻击方法并不实用[7]。 Bruce Schneier称此攻击为“好的时序攻击法”[8]。2005年10月,Eran Tromer和另外两个研究员发表了一篇论文,展示了数种针对AES的缓存时序攻击法。其中一种攻击法只需要800个写入动作,费时65毫秒,就能得到一把完整的AES密钥。但攻击者必须在执行加密的系统上拥有执行程式的权限,方能以此法破解该密码系统。 虽然高级加密标准也有不足的一面,但是,它仍是一个相对新的协议。因此,安全研究人员还没有那么多的时间对这种加密方法进行破解试验。我们可能会随时发现一种全新的攻击手段会攻破这种高级加密标准。至少在理论上存在这种可能性。 2、设计的目标 2.1基本目标: (1)在深入理解AES加密/解密算法理论的基础上,能够设计一个AES加密/解密软件系统,采用控制台模式,使用VS2010进行开发,所用语言为C语言进行编程,实现加密解密; (2)能够完成只有一个明文分组的加解密,明文和密钥是ASCII码,长度都为16个字符(也就是固定明文和密钥为128比特),输入明文和密钥,输出密文,进行加密后,能够进

计算机科学与技术专业毕业设计选题

计算机科学与技术专业毕业设计选题参考 一、毕业设计选题范围 计算机专业毕业设计选题范围包括:计算机应用(相当广泛的领域)、硬件与软件设计、程序设计理论和方法。具体范围包括: 1.数据通信技术与应用 2.多媒体技术与应用 3.计算机辅助教学软件 4.信息管理系统 5.数据库研究与应用 6.工业控制系统 7.网络实用软件 8.智能算法研究与应用 9.系统软件、工具分析及研究 10.程序设计理论及方法 11.计算机网络及应用、网络安全 12.智能仪器仪表设计 13.图像处理技术与应用 14.计算机仿真技术与应用 15.信息可视化技术与应用 16. 电子商务,电子政务 毕业设计地点可以在学校内、科学研究单位、公司、企业等,只要有研究、开发环境即可。时间一般要求在一个学期内完成。毕业设计原则上一人一题。 二、毕业设计选题参考 1.网络题库建立与考试系统的设计2.嵌入式计算机系统的设计 3.等级考试网上辅导系统4.网上自动答疑系统的实现 5.《***》课程自动组卷软件系统6.小局域网的组建方法 7.办公自动化系统的分析及编程实现8.利用汇编语言编写音乐程序 9.网络操作系统安全性能研究10.用户信息数据库加密 11.《***》课程远程学习网站12.机房自动计费系统 13.《***》网络课件设计与实现14.基于局域网的分布式数据采集系统 15.单片机多功能数字钟设计16.网站的设计、管理与维护 17.WWW浏览器软件设计18.路由器的配置仿真 19.教学质量自动评估系统的开发20.机房供电欠压过压自动断电系统 21.自动应答留言对讲式语音门铃22.基于单片机的智能电度表 23.利用Delphi设计人员管理系统数据库24.JA V A网络程序设计 25.电脑故障辅助诊断系统26.机房管理系统 27.数据采集系统设计28.单片机定时系统 29.网络通信程序的简单实现30.公司工资管理系统 31.远程信息采集监控系统32.学生成绩管理系统 33.基于PCI总线的温度测试系统34.虚拟电子商务系统 35.基于USB的图形扫描信息处理系统36.基于CAN的高性能MCU控制解决方案 37.基于ISA总线的采样控制卡38.单片机实验系统研究与开发 39.Windows环境下集散系统串行通信实验研究40.12位A/D、D/A采集控制显示卡 41.基于ACCEES数据库的个人信息管理系统42.科研信息管理系统 43.图书信息管理系统44.教学软件中的人工智能方法 45.单片机反汇编软件设计46.网络性能的实时监控 47.嵌入式实时操作系统设计48.数据、信息可视化方法与实现 49.算法实现过程可视化研究50.网络测试系统

数据加密实验报告

实验报告 课程:计算机保密_ _ 实验名称:数据的加密与解密_ _ 院系(部):计科院_ _ 专业班级:计科11001班_ _ 学号: 201003647_ _ 实验日期: 2013-4-25_ _ 姓名: _刘雄 _ 报告日期: _2013-5-1 _ 报告评分:教师签字:

一. 实验名称 数据加密与解密 二.运行环境 Windows XP系统 IE浏览器 三.实验目的 熟悉加密解密的处理过程,了解基本的加密解密算法。尝试编制基本的加密解密程序。掌握信息认证技术。 四.实验内容及步骤 1、安装运行常用的加解密软件。 2、掌握加解密软件的实际运用。 *3、编写凯撒密码实现、维吉尼亚表加密等置换和替换加解密程序。 4、掌握信息认证的方法及完整性认证。 (1)安装运行常用的加解密软件,掌握加解密软件的实际运用 任务一:通过安装运行加密解密软件(Apocalypso.exe;RSATool.exe;SWriter.exe等(参见:实验一指导))的实际运用,了解并掌握对称密码体系DES、IDEA、AES等算法,及非对称密码体制RSA等算法实施加密加密的原理及技术。 ?DES:加密解密是一种分组加密算法,输入的明文为64位,密钥为56位,生成的密文为64位。 ?BlowFish:算法用来加密64Bit长度的字符串或文件和文件夹加密软件。 ?Gost(Gosudarstvennyi Standard):算法是一种由前苏联设计的类似DES算法的分组密码算法。它是一个64位分组及256位密钥的采用32轮简单迭代型加密算法. ?IDEA:国际数据加密算法:使用128 位密钥提供非常强的安全性; ?Rijndael:是带有可变块长和可变密钥长度的迭代块密码(AES 算法)。块长和密钥长度可以分别指定成128、192 或256 位。 ?MISTY1:它用128位密钥对64位数据进行不确定轮回的加密。文档分为两部分:密钥产生部分和数据随机化部分。 ?Twofish:同Blowfish一样,Twofish使用分组加密机制。它使用任何长度为256比特的单个密钥,对如智能卡的微处理器和嵌入在硬件中运行的软件很有效。它允许使用者调节加密速度,密钥安装时间,和编码大小来平衡性能。 ?Cast-256:AES 算法的一种。 (同学们也可自己下载相应的加解密软件,应用并分析加解密过程) 任务二:下载带MD5验证码的软件(如:https://www.360docs.net/doc/af8874508.html,/downloads/installer/下载(MySQL):Windows (x86, 32-bit), MSI Installer 5.6.11、1.5M;MD5码: 20f788b009a7af437ff4abce8fb3a7d1),使用MD5Verify工具对刚下载的软件生成信息摘要,并与原来的MD5码比较以确定所下载软件的完整性。或用两款不同的MD5软件对同一文件提取信息摘要,而后比较是否一致,由此可进行文件的完整性认证。

微机原理课程设计加密解密算法

加密解密程序设计 1设计算法概述 本设计主要采用对密码符号的ASCII码进行变换和反变换来实现加密和解密。将ASCII码从33到126(除控制字符外)的字符分成2部分:ASCII码从33到63的字符为第一部分,ASCII码在64到128之间的字符为第二部分。每个字符加密后均变为2个字符。 第一部分通过查表法加密和解密,先建立62字节的密码表。加密时,因为一个字符加密后变为两个字符,所以ASCII码从33到63的31个字符密码对应62个字符,即62个字节的数据,计算待加密字符ASCII码对33的偏移量,在密码表中,以这个偏移量乘以2为偏移量的字节数据和下一字节数据就是对应密码;解密时,在表中找到相同字型数据时,计算它对表首的偏移,再加33,就是解密后的字符的ASCII码。 第二部分通过判断字符ASCII码的特性来加密和解密。先判断输入字符的ASCII码是否为3的倍数,若是则对应密码的高位字节为35 ('#'),低位字节为本身ASCII码减一;再判断输入字符的ASCII码是否为5的倍数,若是则对应密码的高位字节为37(‘%’),低位字节为本身ASCII码减3;最后判断输入字符的ASCII码是偶数还是寄数,偶数的密码高字节为38(‘&’),低字节为本身ASCII码加1,奇数的密码高字节为39(‘'’),低字节为本身ASCII码加3 。解密的时候先判断高字节数据,若高字节数据位35、37、38、39则舍去高位字节,低位字节分别进行相应的解密,就得到原码。 2主程序设计 2.1主程序的功能 主程序主要是人机交互部分,提示输入信息和功能选择。程序开始,提示用

户选择相应的功能:按E、e调用加密子程序,进入加密状态,按R、r调用解密子程序,进入解密状态,按Esc退出程序,若输入错误则再次提示输入功能选择。 2.2主程序流程图 主程序流程图如图1所示。 图1 主程序流程图

DES算法Java实现源代码

package des; /** * 加密过程: * 1.初始置换IP:将明文顺序打乱重新排列,置换输出为64位。 * 2.将置换输出的64位明文分成左右凉拌,左一半为L0,右一半称为R0,各32位。 * 3。计算函数的16轮迭代。 * a)第一轮加密迭代:左半边输入L0,右半边输入R0:由轮函数f实现子密钥K1对R0的加密, * 结果为32位数据组f(R0,K1), * b)第二轮加密迭代:左半边输入L1=R0,右半边输入R1=L0⊕f(R0,K1),由轮函数f实现子密钥 * K2对R1的加密,结果为32位数据组f(R1,K2),f(R1,K2)与L1模2相加,得到一个32为数据组L1⊕f(R1,K2). * c)第3到16轮迭代分别用密钥K3,K4……K16进行。4.再经过逆初始置换IP-1,将数据打乱重排,生成64位密文。 * * 子密钥生成过程: * 1.将64位的密钥经过PC-1置换生成56位密钥。 * 2.将56位的密钥分成左右两部分,分别进行移位操作(一共进行16轮),产生16个56位长度的子密钥。 * 3.将16个56位的子密钥分别进行PC-2置换生成16个48位的子密钥。 * * 轮函数f的工作过程: * 1.在第i次加密迭代过程中,扩展置换E对32位的Ri-1的各位通过置换表置换为48位的输出。 * 2.将该48位的输出与子密钥Ki进行异或操作,运算结果经过S盒代换运算,得到一个32位比特的输出。 * 3。该32位比特输出再经过P置换表进行P运算,将其各位打乱重排,生成32位的输出。 * * author Ouyang * */ public class Des { int[] byteKey; public Des(int[] byteKey) { this.byteKey = byteKey; } private static final int[] IP = { 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48,

转 常用加密算法介绍

转常用加密算法介绍 5.3.1古典密码算法 古典密码大都比较简单,这些加密方法是根据字母的统计特性和语言学知识加密的,在可用计算机进行密码分析的今天,很容易被破译。虽然现在很少采用,但研究这些密码算法的原理,对于理解、构造和分析现代密码是十分有益的。表5-1给出了英文字母在书报中出现的频率统计。 表5-1英文字母在书报中出现的频率 字母 A B C D E F G H I J K L M 频率 13.05 9.02 8.21 7.81 7.28 6.77 6.64 6.64 5.58 4.11 3.60 2.93 2.88 字母 N O P Q

R S T U V W X Y Z 频率 2.77 2.62 2.15 1.51 1.49 1.39 1.28 1.00 0.42 0.30 0.23 0.14 0.09 古典密码算法主要有代码加密、替换加密、变位加密、一次性密码簿加密 等几种算法。 1.代码加密 代码加密是一种比较简单的加密方法,它使用通信双方预先设定的一组有 确切含义的如日常词汇、专有名词、特殊用语等的代码来发送消息,一般只能 用于传送一组预先约定的消息。 密文:飞机已烧熟。 明文:房子已经过安全检查。 代码加密的优点是简单好用,但多次使用后容易丧失安全性。 2.替换加密 将明文字母表M中的每个字母替换成密文字母表C中的字母。这一类密码 包括移位密码、替换密码、仿射密码、乘数密码、多项式代替密码、密钥短语 密码等。这种方法可以用来传送任何信息,但安全性不及代码加密。因为每一 种语言都有其特定的统计规律,如英文字母中各字母出现的频度相对基本固定,根据这些规律可以很容易地对替换加密进行破解。以下是几种常用的替换加密 算法。

基于RSA加密算法毕业设计

摘要 数据通信是依照一定的通信协议,利用数据传输技术在两个终端之间传递数据信息的一种通信方式和通信业务。随着数据通信的迅速发展而带来了数据失密问题。信息被非法截取和数据库资料被窃的事例经常发生,在日常生活中信用卡密码被盗是常见的例子。所以数据加密成为十分重要的问题,它能保证数据的安全性和不可篡改性。RSA加密算法以它难以破译的优点,被广泛的使用在电子商务和VPN中。 本文针对非对称性加密RSA算法,采用软件Visual C++6.0进行程序编写。根据模乘法运算和模指数运算的数学原理所编写的程序在进行测试后,能够通过输入两个素数进行运算从而实现明文与密文之间的转换,然后通过对公钥和私钥的管理,对所传输的数据进行保护,让数据只能由发送者和接收者阅读,以达到数据通信中数据无法被他人破译的目的。 关键词:RSA算法,数据通信,加密, 解密。 Data communication of the RSA encryption algorithm in the Design

and Implementation Teacher:Chen Fei student:Lu Hui Abstract Data communications in accordance with certain communication protocols, the use of data transmission technology in the transmission of data between two terminals as a means of communication of information and communication business. With the rapid development of data communications and has brought the issue of data compromise. Unlawful interception of information and database information on frequent instances of theft, credit card in their daily lives stolen passwords is a common example. Therefore, data encryption has become a very important issue, it can ensure data security and can not be tamper with nature. RSA encryption algorithm to the merits of it difficult to decipher, was widely used in the e-commerce and VPN. In this paper, asymmetric RSA encryption algorithm, the use of software for Visual C + +6.0 programming. According to Die multiplication and modular exponentiation by the mathematical principles in the preparation of test procedures can be adopted for the importation of two prime numbers and computing in order to achieve explicit conversion between the ciphertext, and then through a public key and private key management, for the transmission of data protection, so that data can only be made by the sender and the recipient to read, in order to achieve data communications data can not be the purpose of deciphering the others. Keywords: RSA algorithms, data communication, encryption, decryption. 目录

加密解密课程设计

兰州商学院陇桥学院工学系课程设计报告 课程名称: Java 设计题目:加密与解密 系别:工学系 专业 (方向):信息管理与信息系统 年级、班:2012级(2)班 学生姓名:费亚芬 学生学号: 208

指导教师:张鑫 2014年7 月 1日 目录 一、系统开发的背景................................. 错误!未定义书签。 二、系统分析与设计................................. 错误!未定义书签。(一)............................................. 系统功能要求错误!未定义书签。(二)......................................... 系统模块结构设计错误!未定义书签。 三、系统的设计与实现............................... 错误!未定义书签。(一)图形用户界面模块 ........................... 错误!未定义书签。(二)加密操作模块 ............................... 错误!未定义书签。 (三)解密操作模块................................ 错误!未定义书签。(四)文件保存模块 ............................... 错误!未定义书签。

(五)文件选择模块 ............................... 错误!未定义书签。 四、系统测试....................................... 错误!未定义书签。(一)测试加密..................................... 错误!未定义书签。(二)测试选择加密文件............................. 错误!未定义书签。(三)测试生成加密文件............................. 错误!未定义书签。(四)测试浏览加密文件............................. 错误!未定义书签。(五)测试解密文件................................. 错误!未定义书签。 五、总结........................................... 错误!未定义书签。 六、附件(代码、部分图表) ......................... 错误!未定义书签。

des课程设计

DES加解密算法的实现 一、DES算法的概述 DES(Data Encryption Standard)是由美国IBM公司于20世纪70年代中期的一个密码算(LUCIFER)发展而来,在1977年1月15日,美国国家标准局正式公布实施,并得到了ISO的认可,在过去的20多年时间里,DES被广泛应用于美国联邦和各种商业信息的保密工作中,经受住了各种密码分析和攻击,有很好的安全性。然而,目前DES算法已经被更为安全的Rijndael算法取代,但是DES 加密算法还没有被彻底的破解掉,仍是目前使用最为普遍的对称密码算法。所以对DES的研究还有很大价值,在国内DES算法在POS、ATM、磁卡及智能卡(IC卡)、加油站、高速公路收费站等领域被广泛应用,以此来实现关键的数据保密,如信用卡持卡人的PIN码加密传输,IC卡与POS机之间的双向认证、金融交易数据包的MAC 校验等,均用到DES算法。 DES算法是一种采用传统的代替和置换操作加密的分组密码,明文以64比特为分组,密钥长度为64比特,有效密钥长度是56比特,其中加密密钥有8比特是奇偶校验,DES的加密和解密用的是同一算法,它的安全性依赖于所用的密钥。它首先把需要加密的明文划分为每64比特的二进制的数据块,用56比特有效密钥对64比特二进制数据块进行加密,每次加密可对64比特的明文输入进行16 轮的替换和移位后,输出完全不同的64比特密文数据。由于DES 算法仅使用最大为64比特的标准算法和逻辑运算,运算速度快,密

钥容易产生,适合于在大多数计算机上用软件快速实现,同样也适合于在专用芯片上实现。 二、DES算法描述 DES算法的加密过程首先对明文分组进行操作,需要加密的明文分组固定为64比特的块。图2-1是DES加密算法的加密流程。图2-2是密钥扩展处理过程。

常用加密算法概述

常用加密算法概述 常见的加密算法可以分成三类,对称加密算法,非对称加密算法和Hash算法。 对称加密 指加密和解密使用相同密钥的加密算法。对称加密算法的优点在于加解密的高速度和使用长密钥时的难破解性。假设两个用户需要使用对称加密方法加密然后交换数据,则用户最少需要2个密钥并交换使用,如果企业内用户有n个,则整个企业共需要n×(n-1) 个密钥,密钥的生成和分发将成为企业信息部门的恶梦。对称加密算法的安全性取决于加密密钥的保存情况,但要求企业中每一个持有密钥的人都保守秘密是不可能的,他们通常会有意无意的把密钥泄漏出去——如果一个用户使用的密钥被入侵者所获得,入侵者便可以读取该用户密钥加密的所有文档,如果整个企业共用一个加密密钥,那整个企业文档的保密性便无从谈起。 常见的对称加密算法:DES、3DES、DESX、Blowfish、IDEA、RC4、RC5、RC6和AES 非对称加密 指加密和解密使用不同密钥的加密算法,也称为公私钥加密。假设两个用户要加密交换数据,双方交换公钥,使用时一方用对方的公钥加密,另一方即可用自己的私钥解密。如果企业中有n个用户,企业需要生成n对密钥,并分发n个公钥。由于公钥是可以公开的,用户只要保管好自己的私钥即可,因此加密密钥的分发将变得十分简单。同时,由于每个用户的私钥是唯一的,其他用户除了可以可以通过信息发送者的公钥来验证信息的来源是否真实,还可以确保发送者无法否认曾发送过该信息。非对称加密的缺点是加解密速度要远远慢于对称加密,在某些极端情况下,甚至能比非对称加密慢上1000倍。 常见的非对称加密算法:RSA、ECC(移动设备用)、Diffie-Hellman、El Gamal、DSA(数字签名用) Hash算法 Hash算法特别的地方在于它是一种单向算法,用户可以通过Hash算法对目标信息生成一段特定长度的唯一的Hash值,却不能通过这个Hash值重新获得目标信息。因此Hash算法常用在不可还原的密码存储、信息完整性校验等。 常见的Hash算法:MD2、MD4、MD5、HAVAL、SHA、SHA-1、HMAC、HMAC-MD5、HMAC-SHA1 加密算法的效能通常可以按照算法本身的复杂程度、密钥长度(密钥越长越安全)、加解密速度等来衡量。上述的算法中,除了DES密钥长度不够、MD2速度较慢已逐渐被淘汰外,其他算法仍在目前的加密系统产品中使用。 加密算法的选择 前面的章节已经介绍了对称解密算法和非对称加密算法,有很多人疑惑:那我们在实际使用的过程中究竟该使用哪一种比较好呢?

(完整版)公开密钥加密算法RSA的Matlab实现毕业设计

公开密钥加密算法RSA的Matlab实现 [摘要]RSA算法是基于数论的公开密钥加密算法,它已经成为现在最流行的公钥加密算法和数字签名算法之一。其算法的安全性基于数论中大素数分解的困难性,所以RSA公钥密码体制算法的关键是如何产生大素数和进行大指数模幂运算。本文首先介绍了RSA 公开密钥加密算法的数学原理,并介绍了几种流行的产生大素数的算法。然后用matlab具体实现公钥加密算法RSA的加密和解密,从而实现了数据的安全传输。 [关键词] RSA算法;加密;素数

The Realization of RSA Algorithm for Public Key Encryption Based on Matlab (Grade 07,Class 3,Major electronics and information engineering ,Communication engineering Dept.,Tutor: [abstract]:The algorithm is based on the theory of RSA public key encryption algorithm, it has become the most popular public key encryption algorithm and digital signature algorithm of one. The safety of the algorithm based on number theory cuhk the difficulty of prime decomposition, so the RSA public key cryptography algorithms is key to how to produce large prime Numbers DaZhi and transmit power operation. This paper first introduced the RSA public key encr -yption algorithm of mathematical theory, and introduces several popular produce large prime Numbers of the algorithm. Then use matlab RSA public key encryption algorithm re -alization of encryption and decryption is realized, and the safety of the data trans -mission. [Key words]:RSA algorithm; encryption; prime number

常见的几种加密算法

1、常见的几种加密算法: DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合; 3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高; RC2和RC4:用变长密钥对大量数据进行加密,比DES 快;IDEA(International Data Encryption Algorithm)国际数据加密算法,使用128 位密钥提供非常强的安全性; RSA:由RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的; DSA(Digital Signature Algorithm):数字签名算法,是一种标准的DSS(数字签名标准); AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高,目前AES 标准的一个实现是Rijndael 算法; BLOWFISH,它使用变长的密钥,长度可达448位,运行速度很快; 其它算法,如ElGamal钥、Deffie-Hellman、新型椭圆曲线算法ECC等。 2、公钥和私钥: 私钥加密又称为对称加密,因为同一密钥既用于加密又用于解密。私钥加密算法非常快(与公钥算法相比),特别适用于对较大的数据流执行加密转换。 公钥加密使用一个必须对未经授权的用户保密的私钥和一个可以对任何人公开的公钥。用公钥加密的数据只能用私钥解密,而用私钥签名的数据只能用公钥验证。公钥可以被任何人使用;该密钥用于加密要发送到私钥持有者的数据。两个密钥对于通信会话都是唯一的。公钥加密算法也称为不对称算法,原因是需要用一个密钥加密数据而需要用另一个密钥来解密数据。

java文件加密解密课程设计

软件学院 课程设计报告书 课程名称面向对象程序设计 设计题目文本文档的加密与解密 专业班级财升本12-1班 学号 1220970120 姓名王微微 指导教师徐娇月 2013年 1 月

1 设计时间 2013年1月14日-2013年1月18日 2 设计目的 面向对象程序设计是一门实践性很强的计算机专业基础课程。通过实践加深学生对面向对象程序设计的理论、方法和基础知识的理解,掌握使用Java语言进行面向对象设计的基本方法,提高运用面向对象知识分析实际问题、解决实际问题的能力,提高学生的应用能力。 3 设计任务 对文件进行加密解密 4 设计内容 4.1 需求分析 (1)给定任意一个文本文件,进行加密,生成另一个文件。 (2)对加密后的文件还原。 4.2 总体设计 4.2.1 包的描述 导入了java.awt; java.awt.event; java.io; javax.swing等包。 4.2.2 类的描述 Myframe类;E1类。其中Myframe类继承Frame类;可以扩展Frame的功能并且可以实例化的多种功能,这个类也实现了ActionListener这个接口,它是Java中关于事件处理的一个接口,ActionListener用于接收操作事件的侦听器接口。对处理操作事件感兴趣的类可以实现此接口,而使用该类创建的对象可使用组件的addActionListener 方法向该组件注册。在发生操作事件时,调用该对象的actionPerformed 方法。 4.3 页面设计

图4.3-1 显示页面 代码实现: addWindowListener(new WindowAdapter() { public void windowClosing(WindowEvent e) { System.exit(0); } });

相关文档
最新文档