溶液中铁含量的测定

溶液中铁含量的测定

溶液中铁含量的测定

①取水样1ml加20ml蒸馏水稀释;

②加入1~2滴甲基紫溶液,使水样呈蓝紫色,后加入适量HCl调节其pH值至

水样颜色呈海蓝色(若水样呈紫色说明HCl量不足可继续添加,若水样呈黄色则说明HCl过量,此时应重新取样);

③加入显色剂磺基水杨酸,水样应变为灰蓝色或紫蓝色;

④用EDTA滴定至颜色呈海兰色,记录所用EDTA体积,记为V1,即为水样

中三价铁离子所消耗EDTA的量;

⑤在溶液中加入过硫酸铵适量,再滴加磺基水杨酸1~2滴,溶液变为灰蓝色或

蓝紫色(不变色则说明水样中不含二价铁),用EDTA继续滴定至绿色,再加适量过硫酸铵,若溶液变兰则继续滴定,若颜色不再发生变化即为终点,记录所消耗EDTA的体积记为V2,此为二价铁离子所消耗EDTA的量。

试剂配制方法:

甲基紫:100毫升水加0.1g甲基紫

磺基水杨酸:100毫升水加10克磺基水杨酸

EDTA 1L水中加6.66g 乙二酰乙二酸胺

铁含量的测定方法

铁含量的测定方法 铁含量的测定采用邻菲啰啉比色法。 一、原理 在一定酸度条件下,试液中亚铁离子(Fe2+)与1,10-邻菲啰啉生成红色配合物,于波长为506nm处,测定其吸光度,即可计算出铁含量。 二、试剂和仪器 柠檬酸三钠水溶液,150g/L;盐酸羟胺溶液,50 g/L;盐酸溶液,3mol/L;氨水溶液,2.5%;1,1 0-邻菲啰啉溶液,2.5 g/L:称量2.5g1, 10-邻菲啰啉溶于80℃的约l00ml水中,加lml浓盐酸,冷却后加水稀释至1000ml,储于阴凉处备用; 醋酸-醋酸钠缓冲溶液:称量272g醋酸钠(NaCH3·CO2·3H2O)于约500m1水中,加入冰醋酸240ml,加水稀释至1000ml; Fe2+标准溶液,lmg/ml:称量7.024g硫酸亚铁铵于约500ml水中,加入浓盐酸10ml,移入l000ml 容量瓶中,稀释至刻度; Fe2+标准溶液,20?g/ml:吸取lmg/ml的亚铁标准溶液20ml于1000ml容量瓶中,用水稀释至刻度,混匀,临用前配制。 仪器:分光光度计;1cm比色皿。 三、测定步骤 (一)工作曲线的绘制 量取20?g/ml的亚铁标准溶液0.00m1、2 .50m1、5 .00ml、10.00ml、20.00ml(相当于分别含0、50、100、200、400?g/ Fe2+)分别加入l00ml烧杯中,用水稀释至50ml,加入150g/L柠檬酸三钠溶液5m1,用3mol/L盐酸或2.5%氨水溶液调节溶液pH为2.4~2.6,加入50 g/L盐酸羟胺溶液5ml混匀,加入1,10-邻菲罗琳溶液5m1,加入醋酸-醋酸钠缓冲溶液l0ml,将溶液移入到l00 ml容量瓶中,用水稀释至刻度,混匀放置60min。 用分光光度计在波长506nm处用lcm比色皿,以水为参比溶液测定该标准系列的吸光度,以Fe2+标准溶液浓度(?g/100ml)为横坐标,以其对应吸光度作纵坐标绘制工作曲线。 (二)湿法磷酸中铁含量的测定 吸取1 ml湿法磷酸,用水稀释至100m1,混匀,移取1m1到100m1的烧杯中,用水稀释至50m1,以下操作同工作曲线的绘制,测定其吸光度。 不加试样,在同样条件下进行空白试验。 (三)计算 总铁含量按下式计算 w(Fe)= 式中:m1为从工作曲线上查得被测试液Fe的质量,?g;m0为从工作曲线上查得试剂空白溶液中Fe的质量,?g;m为吸取试样溶液相当于试样的质量,g

铁矿石中铁含量测定方案

重铬酸钾法测定铁矿石中铁的含量(无汞法) 一、实验目的 1. 掌握重铬酸钾法测定亚铁盐中铁含量的原理和方法; 2. 了解氧化还原指示剂的作用原理和使用方法。 二.原理: 经典的重铬酸钾法测定铁时,每一份试液需加入饱和氯化汞溶液10mL,这样约有480mg 的汞排入下水道,而国家环境部门规定汞的允许排放量是0.05mg·L-1,因此,实验中的排放量是大大超过允许排放量的。实际上,汞盐沉积在底泥和水质中,造成严重的环境污染,有害于人的健康。近年来研究了无汞测铁的许多新方法,如新重铬酸钾法,硫酸铈法和EDTA 法等。本法是新重铬酸钾法。 新重铬酸钾法是在经典的有汞重铬酸钾法的基础上,去掉氯化汞试剂,采用钨酸钠作为 指示剂指示Fe3+还原Fe2+ 的方法。试样用硫-磷混酸溶剂后,先用氯化亚锡还原大部分Fe3+,继而用三氯化钛定量还原剩余部分的Fe3+,当Fe3+定量还原成Fe2+ 之后,过量一滴三氯化钛溶液,即可使溶液中作为指示剂的六价钨(无色的磷钨酸)还原为蓝色的五价钨化合物,俗称“钨蓝”,故使溶液呈现蓝色。滴入重铬酸钾溶液,使钨蓝刚好褪色,以消除少量还原剂的影响。“钨蓝”的结构式较为复杂 定量还原Fe3+时,不能单用氯化亚锡,因为在此酸度下,氯化亚锡不能很好的还原W(Ⅵ)为W(V),故溶液无明显颜色变化。采用SnCl2-TiCl3联合还原Fe3+为Fe2+

,过量一滴TiCl3与Na2WO4作用即显示“钨蓝”而指示。如果单用TiCl3为还原剂也不好,尤其是试样中铁含量高时,则使溶液中引入较多的钛盐,当加水稀释试液时,易出现大量的四价钛沉淀,影响测定。在无汞测定铁实验中常用SnCl2-TiCl3联合还原,反应式如下: 2Fe3++SnCl42-+2Cl-=2Fe2++SnCl62- Fe3++Ti3++H2O=Fe2++TiO2++2H+ 试液中Fe3+已经被还原为Fe2+,加入二苯胺磺酸钠指示剂,用K2Cr2O7标准溶液滴定溶液呈现稳定的紫色即为终点。 三.试剂: (1) K2Cr2O7标准溶液c(1/6 K2Cr2O7)=0.1000mol·L-1 (2) 硫磷混酸:将200mL浓硫酸缓慢加入到500mL去离子水中,再加入300mL浓磷酸中,充分搅拌均匀,冷却后使用。 (3) 浓HNO3 (4) HCl(1+1) (5) Na2WO4 25%水溶液:称取25g Na2WO4溶于适量水中(若浑浊则应过滤),加入2~5mL浓H3PO4,加水稀释至100mL。 (6) SnCl2溶液10%:称取10g SnCl2·2H2O溶于40mL浓的热HCl,加水稀释至100mL。 (7) TiCl3 1.5%:量取10mL原瓶装TiCl3溶液,用(1+4)的HCl稀释至100mL。加入少量石油醚,使之浮在TiC l3溶液的表面上,用以隔绝空气,避免TiCl3氧化。

水中铁的含量

重铬酸钾法分析 (1)实验原理 ①还原: 标准液K2Cr2O7是一个氧化剂,,它在滴定过程中不断氧化Fe2+,和Fe2+等当量作用。因此,当测定试样中的全铁含量或试样中Fe3+含量时,就必须使溶液中的Fe3+全部还原成Fe2+,在根据K2Cr2O7的克当量数=Fe的克当量数。 还原Fe3+一般加入SnCl2,其反应为:Fe3++Sn2+=Fe2++Sn4+(热溶液)。为使Fe3+全部还原成Fe2+,所以SnCl2的用量必须过量1~2滴。 ②加入HgCl2,除去过剩SnCl2。 SnCl2+2HgCl2=Hg2Cl2(白色絮状沉淀)+Sn4++4Cl- ③滴定: 6Fe2++Cr2O72-+14H+=6Fe3++2Cr3++7H2O 副反应:加入SnCl2过量太多,且HgCl2又不足时,会引起下列反应: SnCl2+Hg2Cl2=SnCl4+Hg(灰色粒状沉淀) 反应中产生的全部Hg能进一步与标准液K2Cr2O7起反应,从而引起结果偏高。所以,在操作过程中应特别小心,加SnCl2应过量1~2滴,但不能过量太多,但由于SnCl2与Fe3+反应较慢,所以应在热溶液中进行。 (2)全铁分析方法 ①取5.00ml还原后液于400ml烧杯中,加5ml浓HCl; ②加热,趁热加热SnCl2溶液至FeCl3-6黄色恰好退掉,再过量1~2滴; ③冷却,加入10ml HgCl2,放置片刻至Hg2Cl2沉淀出现,加入水200ml; ④再加20ml硫、磷混合酸,二苯胺磺酸钠指示剂4~5滴; ⑤用K2Cr2O7标准液滴定至溶液由绿色至红紫色,为终点。 记下步骤⑤所消耗的K2Cr2O7标准液体积,计算全铁含量: M(全Fe)=TV*1000 (g/L) 式中:V—滴定消耗K2Cr2O7的量,ml; T—K2Cr2O7标准液滴定度,mg/ml; (3)Fe2+分析方法 ①取5.00ml试液,于400ml烧杯中,加水200ml;

食品中铁含量的测定

食品中铁含量的测定 食品安全检验技术(理化部分) 食品中铁的测定有火焰原子吸收光谱法,二硫腙比色法(邻菲啰啉,磺基水杨酸,硫氰酸盐比色法等)两种国家标准方法.下面对原子吸收分光光度法,分光光度法(邻二氮菲法)进行详细阐述. (一)原子吸收分光光度法 1,原理 经湿法消化样品测定液后,导入原子吸收分光光度计,经火焰原子化后,吸收波长248.3nm的共振线,其吸收量与铁的含量成正比,与标准系列比较定量. 2,主要试剂: (1)高氯酸-硝酸消化液:1+4(体积比) (2)0.5mol/LHNO3溶液 (3)铁标准储备液:每毫升相当于1mg铁. (4)铁标准使用液:取10.0mL(3)液于100mL容量瓶中,加入0.5mol/L硝酸溶液,定容. 3,主要仪器原子吸收分光光度计(铁空心阴极灯) 4,操作方法: 样品处理品系列标准溶液的配制仪器参考条件的选择标准曲线的绘制样品测定 仪器参考条件的选择:波长248.3nm;光源为紫外;火焰:空气-乙炔;其它条件按仪器说明调至最佳状态. 5,结果计算: 式中 X----样品的铁含量,mg/100g(或μg/100mL); ρ----测定用样品液中铁的浓度, μg/mL; ρ0----试剂空白液中铁的浓度,μg/mL; m----样品的质量或体积,g或mL; V----样品处理液总体积,mL; f----稀释倍数. 6,说明 (1)所用玻璃仪器均经硫酸-重铬酸钾洗液浸泡数小时,再以洗衣粉充分洗刷,其后用水反复冲洗,再用去离子水冲洗烘干. (2)本方法最低检出浓度为0.2μg/mL. (二),分光光度法(邻二氮菲法) 1,原理: 在pH为2~9的溶液中,二价铁离子与邻二氮菲生成稳定的橙红色配合物,在510nm有最大吸收,其吸光度与铁的含量成正比,故可比色测定. 2,试剂 ①盐酸羟胺溶液:10% ②邻二氮菲水溶液(新鲜配制):0.12% ③醋酸钠溶液:10% ④盐酸:1mol/L ⑤铁标准溶液: 3,测定方法: ①样品处理:干法灰化 ②标准曲线绘制:吸取10g/mL铁标准溶液0.0mL,1.0mL,3.0mL,4.0mL,5.0mL,分别置于50mL容量瓶中,

硫酸亚铁铵中铁含量测定

硫酸亚铁铵中铁含量测定 一、实验目的 1. 掌握重铬酸钾法测定亚铁盐中铁含量的原理和方法; 2. 了解氧化还原指示剂的作用原理和使用方法。 二、实验原理 K 2Cr 2 O 7 在酸性介质中可将Fe2+离子定量地氧化,其本身被还原为Cr3+,反应式为: Cr 2O 7 2- + 6Fe2+ + 14H+═ Cr3+ + 6Fe3+ + 7H 2 O 滴定在H 3PO 4 —H 2 SO 4 混合酸介质中进行,以二苯胺磺酸钠为指示剂,滴定至溶液 呈紫红色,即为终点。 三、试剂 硫酸亚铁铵(学生自制)、K 2Cr 2 O 7 (AR)、二苯胺磺酸钠0.2%、H 3 PO 4 85% 等。 四、实验步骤 1、准确称取1~1.5g(NH 4) 2 SO 4 ?FeSO 4 ?6H 2 O样品,置于250 mL烧杯中,加入8 mL 3 mol?L-1H 2SO 4 防止水解,再加入蒸馏水加热溶解,然后定量转移至250mL容量 瓶中定容,充分摇匀。平行移取三份25.00 mL上述样品溶液分别置于三个锥形 瓶中,各加50 mL H 2O、10 mL 3 mol?L-1 H 2 SO 4 ,再加入5~6滴二苯胺磺酸钠指 示剂,摇匀后用K 2Cr 2 O 7 标准溶液滴定,至溶液出现深绿色时,加5.0 mL 85% H 3 PO 4 , 继续滴至溶液呈紫色或紫蓝色。计算试液中Fe的含量。 实验流程

五、数据记录与处理 K 2Cr 2O 7标准溶液, 用滴定管准 确量取25.00ml 上述溶液于锥形瓶中 溶液呈深绿色时加入5mL 磷酸

五、注意事项: 1、滴定至溶液呈深绿色时加入磷酸 六、思考题: 1、本实验中加入硫酸和磷酸的作用是什么? 2、以二苯胺磺酸钠为例,说明氧化还原指示剂的变色原理 参考文献:张龙、潘亚芬《化学分析技术》 邢文卫、李炜《分析化学实验》

铁矿石中铁含量测定方案

重铬酸钾法测定铁矿石中铁的含量(无汞法) 一、实验目的 1. 掌握重铬酸钾法测定亚铁盐中铁含量的原理和方法; 2. 了解氧化还原指示剂的作用原理和使用方法。 二.原理: 经典的重铬酸钾法测定铁时,每一份试液需加入饱和氯化汞溶液10mL,这样约有480mg 的汞排入下水道,而国家环境部门规定汞的允许排放量是0.05mg L-1,因此,实验中的排 放量是大大超过允许排放量的。实际上,汞盐沉积在底泥和水质中,造成严重的环境污染,有害于人的健康。近年来研究了无汞测铁的许多新方法,如新重铬酸钾法,硫酸铈法和EDTA 法等。本法是新重铬酸钾法。 新重铬酸钾法是在经典的有汞重铬酸钾法的基础上,去掉氯化汞试剂,采用钨酸钠作为 指示剂指示 Fe3 +还原Fe2 + 的方法。试样用硫-磷混酸溶剂后,先用氯化亚锡还原大部分Fe3 + ,继而用三氯化钛定量 还原剩余部分的 Fe3 + ,当Fe3 +定量还原成 Fe2 + 之后,过量一滴三氯化钛溶液,即可使溶液中作为指示剂的六价钨(无色的磷钨酸)还原为 蓝色的五价钨化合物,俗称"钨蓝”,故使溶液呈现蓝色。滴入重铬酸钾溶液,使钨蓝刚好 褪色,以消除少量还原剂的影响。“钨蓝”的结构式较为复杂 定量还原Fe3+时,不能单用氯化亚锡,因为在此酸度下,氯化亚锡不能很好的还原W( W ) 为W(V),故溶液无明显颜色变化。采用SnCI2-TiCI3联合还原Fe3 +为Fe2 +

,过量一滴TiCI3与Na2WO4 作用即显示“钨蓝”而指示。如果单用 TiCI3为还原剂也不好,尤其是试样中铁含量高时,则使溶液中引入较多的钛盐,当加水稀释试液时,易出现大量的四价钛沉淀,影响测定。在无汞测定铁实验中常用 SnCI2-TiCI3联合还原,反应式如下: 2Fe3++SnCI 42-+2CI -=2Fe 2+ +SnCI 62- Fe3++Ti 3++H 2O=Fe 2+ +TiO 2+ +2H + 试液中Fe3 +已经被还原为 Fe2 + ,加入二苯胺磺酸钠指示剂,用K2Cr2O7标准溶液滴定 溶液呈现稳定的紫色即为终点。 三.试剂: (1) K262O7标准溶液 c(1/6 K 2Cr207)=0.1000mol L-1 (2) 硫磷混酸:将200mL浓硫酸缓慢加入到 500mL去离子水中,再加入 300mL浓磷酸 中,充分搅拌均匀,冷却后使用。 (3) 浓 HNO 3 ⑷ HCI (1 + 1) ⑸Na 2WO 4 25 %水溶液:称取25g Na 2WO 4溶于适量水中(若浑浊则应过滤),加入2亠 5mL浓H3PO4,加水稀释至 100mL。 (6) SnCI 2溶液10 % :称取10g SnCI 2 2H 2O溶于40mL浓的热HCI,加水稀释至100mL。 (7) TiCI 3 1.5 % :量取10mL原瓶装TiCI3溶液,用(1 + 4 )的HCI稀释至100mL。加入

铁矿中铁含量的测定

铁矿中铁含量的测定 化学生物郭梦雨 (四川农业大学四川雅安,625014) 【摘要】本实验运用了改进的重铬酸钾法测定铁的原理,首先是试样用盐酸加热分解, 让有铁的氧化物及硅酸盐都变成氧化铁进入溶液中。先用氯化亚锡将大部分三价铁离子还原成二价铁, 以钨酸钠为指示剂, 用三氯化钛将剩余的三价铁还原成二价铁至生成/ 钨蓝 , 再用重铬酸钾标准溶液氧化至蓝色消失, 加入硫磷混合酸,以二苯胺磺酸钠为指示剂, 用重铬酸钾标准液滴定。用SnCl2- TiCl3- K2Cr2O7 滴定分析法测得铁矿石中铁含量为(19.460.78)% ±, 相对标准偏差为0.03 【关键词】重铬酸钾法、、铁矿石 In the iron mine the assaying of iron content Guo Mengyu 20114049 Chemistry And Biology (Sichuan Agricultural University, Yaan 625014) 【Abstract 】This experiment made use of potassium dichromate method to measurese ferrous principle . First of all, ferric ions was reduced toferrous iron by the stannous chloride, other ferric iron was reduced to ferrous iron by titanium trichloride to generate / tungsten blue0 with sodium tungstate as the indicator . Next, the solution was titratedby potassium dichromate standard solution until the blue was disappeared. After adding mixed acid, the solution was titrated by potassium dichromate standard solution with dipheny lamine sulfonante as indicator.Finally get, in iron content for ±,the average opposite error margin measuring distinguishes to 0.03. (19.460.78)% 【Key words】potassium dichromate method;scraps iron 1引言 铁矿的主要成分是Fe2O3·xH2O。对铁矿来说,盐酸是很好的溶剂,溶解后生成的Fe3+离子,必须用还原剂将它预先还原,才能用氧化剂K2Cr2O7溶液滴定。重铬酸钾法是测铁的国家标准方法。在测定合金、矿石、金属盐及硅酸盐等的含铁量时具有很大实用价值。经典的K2Cr2O7法测定铁时,用SnCl2作预还原剂,多余的SnCl2用HgCl2除去,然后用K2Cr2O7溶液滴定生成的Fe2+离子。这种方法操作简便,结果准确。但是HgCl2有剧毒,造成严重的环境污染,近年来推广采用各种不同汞盐的测定铁的方法。本实验采用的是SnCl2-TiCl3联

铁矿中铁含量的测定

铁矿中铁含量的测定

铁矿中铁含量的测定 指导教师:吴明君 摘要:本实验运用了改进的重铬酸钾法测定铁的原理,首先是试样用盐酸加热分解, 让有铁的氧化物及硅酸盐都变成氧化铁进入溶液中。先用氯化亚锡将大部分三价铁离子还原成二价铁, 以钨酸钠为指示剂, 用三氯化钛将剩余的三价铁还原成二价铁至生成/ 钨蓝 , 再用重铬酸钾标准溶液氧化至蓝色消失, 加入硫磷混合酸,以二苯胺磺酸钠为指示剂, 用重铬酸钾标准液滴定。用SnCl2- TiCl3- K2Cr2O7 滴定分析法测 得铁矿石中铁含量为。 关键词:重铬酸钾法、、铁矿石 In the iron mine the assaying of iron content Chemical biology class Zeyu Wang 20122982 Instructor: Wu Mingjun Abstract: This experiment made use of potassium dichromate method to measurese ferrous principle . First of all, ferric ions was reduced toferrous iron by the stannous chloride, other ferric iron was reduced to ferrous iron by titanium trichloride to generate / tungsten blue0 with sodium tungstate as the indicator . Next, the solution was titratedby potassium dichromate standard solution until the blue was disappeared. After adding mixed acid, the solution was titrated by potassium dichromate standard solution with dipheny lamine sulfonante as indicator.Finally get, in iron content for . Key words: potassium dichromate method scraps iron 综述:铁矿的主要成分是Fe 2O 3 ·xH 2 O。对铁矿来说,盐酸是很好的溶剂,溶解后生成的Fe3+ 离子,必须用还原剂将它预先还原,才能用氧化剂K 2Cr 2 O 7 溶液滴定。重铬酸钾法是测铁的国 家标准方法。在测定合金、矿石、金属盐及硅酸盐等的含铁量时具有很大实用价值。经典的 K 2Cr 2 O 7 法测定铁时,用SnCl 2 作预还原剂,多余的SnCl 2 用HgCl 2 除去,然后用K 2 Cr 2 O 7 溶液滴定 生成的Fe2+离子。这种方法操作简便,结果准确。但是HgCl 2 有剧毒,造成严重的环境污染, 近年来推广采用各种不同汞盐的测定铁的方法。本实验采用的是SnCl 2-TiCl 3 联合还原铁的无 汞测铁方法,即先采用SnCl 2将大部分Fe3+离子还原,以钨酸钠为指示剂,再用TiCl 3 溶液还原 剩余的Fe3+离子,其反应式如下:

实验十一 盐酸普鲁卡因注射液含量的测定

实验十一盐酸普鲁卡因注射液含量的测定 一、目的要求 1.掌握亚硝酸钠滴定法测定盐酸普鲁卡因注射液含量的原理及操作方法; 2.掌握盐酸普鲁卡因注射液含量的计算方法; 3. 掌握检验结果的处理与判断,能够规范书写检验原始记录及检验报告书; 4. 正确并更科学合理地解释检验中的现象,处理检验中的异常情况。 二、实验原理 分子结构中具有芳伯胺基的药物,在酸性溶液中课与亚硝酸钠反应,生成重氮盐,因此可用亚硝酸钠滴定法测定含量,用外指示剂法确定滴定终点。 三、仪器与试剂 1. 仪器电子天平或分析天平(0.1mg)、酸式滴定管、烧杯 2. 试剂 亚硝酸钠(分析纯)、无水碳酸钠、对氨基苯磺酸(分析纯)、浓氨水、盐酸(1→2)、溴化钾(分析纯)、淀粉碘化钾试纸 四、实验步骤 1. 亚硝酸钠滴定溶液(0.05mol/L)的配制与标定 取亚硝酸钠约1.8g,加无水碳酸钠0.05g,加水适量使溶解成500mL,作为滴定溶液,摇匀后待标定。 取在120℃干燥至恒重的基准对氨基苯磺酸约0.25g,精密称定,加水30mL及浓氨水3mL,溶解后加盐酸(1→2)20mL,搅拌,在30℃以下用亚硝酸钠滴定溶液迅速滴定。滴定时将滴定管尖端插入液面下约2/3处,事先通过计算,一次将反应所需的大部分亚硝酸钠滴定溶液在搅拌条件下迅速加入,使其尽快反应。然后将滴定管尖提出液面,然后用水淋洗尖端,再缓缓滴定至溶液使碘化钾试纸变蓝为终点。1mmol亚硝酸钠相当于173.2mg对氨基苯磺酸,计算出亚硝酸钠滴定溶液的浓度。 2. 盐酸普鲁卡因注射液含量的测定 精密量取规格为40mg/2mL的盐酸普鲁卡因注射液5mL于200mL烧杯中,加水使成120mL,加入盐酸(1→2)5mL,溴化钾1g,用亚硝酸钠滴定溶液迅速滴定。滴定时将滴定管尖端插入液面下约2/3处,事先通过计算,一次将反应所需的大部分亚硝酸钠滴定溶液在搅拌条件下迅速加入,使其尽快反应。然后将滴定管尖提出液面,然后用水淋洗尖端,再缓

矿泉水中铁含量的测定

诚信声明 本人声明: 我所呈交的本科毕业设计论文是本人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢中所罗列的内容以外,论文中不包含其他人已经发表或撰写过的研究成果。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。本人完全意识到本声明的法律结果由本人承担。 申请学位论文与资料若有不实之处,本人承担一切相关责任。 本人签名:日期:年月日

毕业设计(论文)任务书 设计(论文)题目:矿泉水中铁含量的测定 学院:专业:班级: 学生:指导教师: 1.设计(论文)的主要任务及目标 (1) 通过查阅文献,了解煤炭发热量测定的方法,能够在老师指导下设计测定实验; (2) 完成实验,熟悉具体的实验操作; (3) 分析影响煤炭发热量准确测定因素,使实验值尽可能的接近真实值。 2.设计(论文)的基本要求和内容 (1) 学习文献调研,了解国内外相关课题的前沿知识; (2) 独立完成实验,掌握实验过程工艺,钻研实验原理; (3) 按设计要求,撰写毕业论文,解决科学问题。 3.主要参考文献 [1] 赵海勇,谭劲松.我国煤炭市场结构分析[J].技术经济与管理研究,2006,(4). [2] 李英华.煤质分析应用技术指南[M].北京:中国标准出版社,1999. [3] 周艳霞.影响煤炭发热量准确测定的因素及对策[J] .黑龙江科技信息,2011,(17):44.

矿泉水中铁含量的测定 摘要 本论文是应用分光光度法和分子荧光法测定矿泉水中的铁含量。分光光度法以邻二氮菲作为显色剂,分别测定矿泉水中铁的含量,在pH值为5左右时,邻二氮菲与二价铁生成稳定的桔红色配合物((Fe(phen)3)2+),在波长512nm处有最大吸收波长,在室温下,显色时间为10min。测得矿泉水中铁的含量为2.11μg/mL;分子荧光法测定矿泉水中的铁含量是基于Fe(II)与邻菲啰啉生成络合物使其荧光猝灭的特性,讨论了在室温下,pH 5.5 的乙酸—乙酸铵的缓冲介质中,以λex= 270 nm 为激发波长,于λem= 365 nm 波长处测定该络合物荧光强度。结果表明Fe(II)质量浓度0.8~120.0 ng/mL 范围内与络合物的荧光强度具有良好的线性关系,相关系0.9994,检出限0.50ng/mL。对60 ng/mL 的Fe RSD ( n = 9) 为2.8%。Fe 的回收率为98.03% ~ 102.9% 。四种水样的铁含量分析结果分别为3.48μg/mL、4.08μg/mL、2.12μg/mL、1.35μg/mL。 关键词:分光光度法;邻二氮菲;分子荧光法;铁;矿泉水

聚酯中铁含量的测定方法

5. 7聚酯中铁含量的测定方法 5.7.1适用范围: 本标准适用于精对二甲酸和乙二醇为原料而生产的聚酯中铁含量的测定。 5.7.2方法提要: 将样品灰化后的残余物,溶解于盐酸中,用盐酸羟胺将三价离子还原成二价铁离子,加入邻菲罗啉后,生成的红色络和物用分光光度计在510nm波长处测定吸光度,求得铁含量。 5.7.3试剂: 5.7.3.1 三氧化二铁:分析纯 5.7.3.2 铁标准溶液:称取14.3mgFe 2O 3 (相当于10mgFe)于100ml烧杯中,加 5ml浓盐酸,加热溶解,冷却后将溶液转移至1000ml容量瓶中,用 蒸馏水稀释至刻度,1ml该溶液含0.01mg铁。 5.7.3.3 盐酸羟胺溶液(4%):10g盐酸羟胺用150ml蒸馏水溶解,转移至250ml 容量瓶中稀释至刻度。 5.7.3.4 0.4%邻菲罗啉:0.4g邻菲罗啉用75ml甲醇溶解并稀释至100ml;5.7.3.5 浓盐酸:分析纯; 5.7.3.6 甲醇:分析纯; 5.7.3.7 氨水(85g/L):将374 ml浓氨水用蒸馏水稀释至1000ml ; 5.7.3.8 5mol/lHCL溶液:移取41.7ml浓盐酸用蒸馏水稀释至100升; 5.7.4 仪器: 5.7.4.1 756型分光光度计 5.7.4.2 比色皿:1cm 5.7.4.3 容量瓶:1000ml 1个;500ml 2个;250ml 1个;100ml 8个; 5.7.4.4 烧杯:100ml 8个;500ml 2个;250ml 1个;2000 ml 1个; 5.7.4.5 直管吸量管:5ml 1个; 5.7.4.6 移液管:10ml 1 个;5 ml 2个; 5.7.4.7 量筒:50ml 1个 5.7.4.8 PH计(带复合玻璃电极、磁力搅拌器); 5.7.4.9 电炉

试验八K2Cr2O7法测定铁矿石中铁的含量

莫尔法测定食盐中NaCl的含量 一、实验目的 1、掌握莫尔法测定可溶性氯化物的原理及方法。 2、学会AgNO3标准溶液的配制和标定方法。 3、学会莫尔法滴定终点的观测。 二、实验原理 某些可溶性氯化物中氯含量的测定常采用莫尔法。在中性或弱碱性条件下,以K2CrO4为指示剂,用AgNO3标准溶液进行滴定,主要反应如下:Ag++ Cl-= AgCl↓(白色) 2 Ag++ CrO42-= Ag2CrO4↓(砖红色) 由于AgCl的溶解度小于Ag2CrO4,根据分步沉淀的原理,溶液中首先析出AgCl沉淀。当AgCl定量沉淀后,稍微过量的Ag+即与CrO42-形成砖红色的Ag2CrO4沉淀,它与白色的AgCl沉淀一起,使溶液略带橙红色即为终点。 滴定必须在中性或弱碱性液中进行,最适宜pH范围为6.5~10.5。如果有铵盐存在,溶液的pH需控制在6.5~7.2之间。 指示剂的用量对滴定准确度有影响,一般以5×10-3mol·L-1为宜。 凡是能与Ag+生成难溶性化合物或络合物的阴离子都干扰测定。如:PO43-、AsO43-、SO32-、CO32-、C2O42-、S2-等。大量Cu2+、Ni2+、Co2+等有色离子将影响终点观察。凡是能与CrO42-指示剂生成难溶化合物的阳离子也干扰测定。如:Ba2+、Pb2+能与CrO42-分别生成BaCrO4和PbCrO4沉淀。Al3+、Fe3+、Bi3+、Sn4+等高价金属离子在中性或弱碱性液中易水解产生沉淀,会干扰测定。 AgNO3标准溶液既可以用直接法配制,也可以用间接法配制。间接法配

制的AgNO3标准溶液可用NaCl基准试剂标定。 三、仪器和试剂 1、仪器:50ml酸式滴定管1支;25ml移液管1支;250ml容量瓶1个;250ml 锥形瓶3个;50~100mL烧杯1个;50~100mL量筒1个;玻璃棒1根;洗耳球1个;小滴瓶1个;洗瓶1个。 2、试剂:AgNO3标准溶液(待标定);待测试液;5%K2CrO4溶液;NaCl基准试剂。 四、实验步骤 1、0.05mol·L-1AgNO3标准溶液的配制(由实验员配制) 称取1.3g AgNO3溶于150mL蒸馏水中,转入棕色试剂瓶中,置于暗处保存,待标定。(试剂量为一人所用) 2、0.05mol·L-1AgNO3标准溶液的标定(由指导老师标定) 准确称取0.60~0.70gNaCl基准试剂于小烧杯中,用蒸馏水溶解后,转入250mL容量瓶中,稀释至刻度摇匀。 用25mL移液管准确移取基准NaCl试液于250mL锥形瓶中,加入20mL 蒸馏水,再加入1mL5%K2CrO4溶液,在不断摇动下,用AgNO3标准溶液滴定至砖红色即为终点。 3、试液中NaCl含量的测定(由学生独立完成) 用25mL移液管移取待测试液于250mL锥形瓶中,加水20mL,混匀。加入1mL5% K2CrO4溶液,在不断摇动下,用AgNO3标准溶液滴定至砖红色即为终点,平行测定三份。 五、问题讨论

硫氰酸盐分光光度法测定水样中铁含量

实验一双氧水中过氧化氢含量的测定 【实验目的】 1.学习并掌握高锰酸钾标准溶液的配制与标定方法。 2.巩固滴定管、移液管、分析天平的规范化操作。 3.学会用KMnO4法测定过氧化氢的含量。 【预习作业】 1.过氧化氢(或双氧水)对人体的危害有哪些?为何还可医用? 2.双氧水中过氧化氢含量的测定的原理是什么?检测过氧化氢含量的方法有哪些? 3.在配制KMnO4标准溶液过程中要用烧结玻璃漏斗过滤,能否用滤纸?为什么? 4.为何在KMnO4溶液的标定开始时先将约10mL的KMnO4溶液加入锥形瓶中?可以 先不加入KMnO4溶液吗? 5.用滴定管装有色溶液时如何准确读数? 6.根据氧化还原滴定原理及相应的KMnO4滴定法原理给出本实验的设计流程图,并在流程中标注上测定的实验条件及保证实验准确度所采取的措施及缘由。 7.如何通过实验措施解决引起误差的原因?保证实验结果的准确性? 【实验原理】 H2O2是医药上常用的消毒剂,市售的H2O2是3%~30%的水溶液,常用高锰酸钾滴定法测定其含量。在酸性溶液中,KMnO4能使过氧化氢被氧化成氧和水,而本身被还原成二价的锰盐。反应式如下: 2KMnO4+5H2O2+8H2SO4=2MnSO4+K2SO4+8H2O+5O2↑ 使用KMnO4标准溶液滴定具有还原性的物质时,其酸性条件常用H2SO4来控制,H2SO4的适宜酸度是0.5~1.0mol·L-1。 KMnO4与H2O2的反应属于自动催化反应,反应产物Mn2+是该反应的催化剂,因此,无需另外加入催化剂,且随着反应的进行,滴定速度可稍加快些。当滴定至溶液呈微红色且在30s内不褪色即达到滴定终点。根据滴定消耗的KMnO4体积和相应物质的量,根据KMnO4 溶液的准确浓度可计算样品中H2O2的含量。 【仪器与试剂】 仪器:分析天平,台秤,吸量管(1mL),移液管(20mL×2),酸式滴定管(25mL),容量瓶(100mL,250mL),锥形瓶(250mL×3),烧杯(250mL),烧杯(100mL),量筒(10mL×2),洗瓶,酒精灯,石棉网,洗耳球,玻棒 试剂:分析纯Na2C2O4,0.005mol·L-1KMnO4标准溶液,H2O2溶液,3mol·L-1H2SO4 【实验步骤】 1.KMnO4标准溶液的配制与标定 见本书实验六标准溶液的配制与标定相关部分内容。 2.测定双氧水中的过氧化氢的含量 用吸量管吸取1.00mL市售H2O2溶液于100mL容量瓶中,加蒸馏水稀释至标线,摇匀。然后用移液管自容量瓶中吸取待测H2O2溶液20.00mL置于锥形瓶中,加入3mol·L-1 H2SO4约5mL,用已标定过的KMnO4标准溶液滴定,至溶液呈淡红色并在30s内不褪色即达到滴定终点。记录滴定结果。平行测定三次。按照下式计算H2O2的百分含量。

实验十 铁矿中全铁含量的测定

实验十铁矿中全铁含量的测定(无汞定铁法) 一、实验目的 1.掌握K2Cr2O7标准溶液的配制及使用。 2.学习矿石试样的酸溶法。 3.学习K2Cr2O7法测定铁的原理及方法。 4.对无汞定铁有所了解,增强环保意识。 5.了解二苯胺磺酸钠指示剂的作用原理。。 二、实验原理 K2Cr2O7直接配制标准溶液。 1.测定: Cr2O7 2-+ 6 Fe2++ 14H+===2Cr3++6 Fe3+ +7H2O 2.预还原: 2FeCl4- + SnCl42- + 2Cl- =====2FeCl42- + SnCl62- 过量SnCl2:SnCl2 + 2HgCl2===== SnCl4 + Hg2Cl2(汞污染) 使用甲基橙指示SnCl2还原Fe3+: (CH3)2NC6H4N=NC6H4SO3Na 2H+ (CH3)2NC6H4N-NC6H4SO3Na 2H+ (CH3)2NC6H4H2N + H2NC6H4SO3Na(产物不消耗K2Cr2O7) 三、实验步骤 1. K2Cr2O7标准溶液的配制 准确称取0.65~0.70g左右已在150~180oC干燥2h的K2Cr2O7于小烧杯中,加水溶解,定量转移至250ml容量瓶中,加水稀释至刻度,摇匀。 2. 铁矿中全铁含量的测定 准确称取铁矿石粉1.5g左右于250 mL烧杯中,用少量水润湿,加入20 mL浓HCl溶液,盖上表面,在通风柜中低温加热分解试样,若有带色不溶残渣,可滴加20~30滴100g/L SnCl2助溶。试样分解完全时,残渣应接近白色(SiO2),用少量水吹洗表面皿及烧杯壁,冷却后转移至250ml容量瓶中,稀释至刻度并摇匀。 移取试样溶液25.00mL于锥形瓶中,加8mL浓HCl溶液,加热近沸,加人6滴甲基橙,趁热边摇动锥形瓶边逐滴加人100g·L-1 SnCl2还原Fe3+。溶液由橙变红,再慢慢滴加50g·L-1 SnCl2

测定蛋黄中铁含量综合实验

齐鲁工业大学 化学与制药工程学院 基础化学综合实验小论文 蛋黄中铁的测定 院系名称:化学与制药工程学院 专业班级:应用化学2012级3班 姓名: 组号: 指导教师:

摘要:本实验是根据Lambert-beer定律A=εbc,用工作曲线的方法测定鸡蛋黄中铁的含量;样品中的三价铁被还原为二价铁可与显色剂形成有色配合物,可用分光光度计测定吸光度; 本试验样品鸡蛋黄是用干灰化法预处理成实验试剂的。关键词:Lambert-beer定律、工作曲线、条件实验、样品预处理、分光光度计。 前言:此论文是对我们之前进行的为期三天的测定鸡蛋黄的实验的结果讨论和总结,本实验主要原理就是Lambert-beer定律,这个定律应用到试验中就是利用分光光度计测定吸光度从而通过吸光度与浓度的关系确定一条标准曲线,接着只要测定样品溶液中的铁的吸光度就可以从曲线上找到对应的铁的浓度了。此论文中包括我们做的实验的内容,所用的仪器,试剂的配制,条件试验的设计,样品的预处理,工作曲线的绘制等。条件实验是通过单一变量的方法来确定最终的实验条件是保证实验精确不可获取的一部分,也是几部分实验内容之中时间最长的一部分,所以本实验大部分重点就在条件实验,也是本论文的重要部分。一实验部分 (一)主要仪器试剂

仪器:722型分光光度计、电加热炉、坩埚、马弗炉、50ml容量瓶16个、500ml容量瓶1个、500ml烧杯1个、200ml烧杯1个、10ml移液管2个、5ml移液管3个、吸耳球2个、胶头滴管1个、试剂瓶2个、25ml 移液管1个。 试剂:200μg/ml的铁标溶液(准确称取3.456g分析纯NH4Fe(So4)2·12H2O,置于一烧杯中以120ml 2mol/L 的HCl溶解后移入1000ml的容量瓶中),10%的盐酸羟胺(8瓶盐酸羟胺试剂用水溶解移入1000ml的容量瓶中),2mol/L的HCl(取83ml的浓盐酸溶于417ml的水中),1:1HCl(250mlHCl溶于250ml水),8mol/LNaOH(68g固体溶于200ml水中),8μg/ml的铁标溶液(移取20ml的200μg/ml的铁标与500ml的容量瓶中),0.1%的邻二氮杂菲(取0.5g邻二氮杂菲溶于500ml水中),1mol/LNaAc(41gNaAc溶于500ml水)。 (二)实验步骤与结果 1样品预处理 取一鸡蛋黄,放入坩埚中称取质量为18.3g,用玻璃棒捣碎,放到电加热上边加热边搅拌加热到不产生烟为止,然后放入到马弗炉中加热一天一夜。取出冷却后的坩埚,用10ml 1:1的盐酸溶解样品(注意经过马弗炉加热后的样品用肉眼观察不到,用盐酸沿着坩埚

水溶液中铁离子的含量和PH值的测定操作规程

水溶液中铁离子含量和PH值的测定操作规程 (原子吸收光谱法) 1 适用范围 本观察适用于用原子吸收光谱法测定分离水、凝结水或其它水溶液中的铁离子的含量,不适用于含有较多无机杂质和较粘稠的溶液的测定。 2 方法概要 通过过滤和酸化等过程使溶液清澈透明,达到一定的PH值,然后用原子吸收光谱仪测定其铁离子的含量。 3 仪器和试剂 3.1 原子吸收光谱仪,PE5100ZL。 3.2 烧杯,50或100毫升。 3.3 盐酸,分析纯。 3.4 三氧化二铁,光谱纯。 3.5 移液管,1毫升,10毫升。 3.6 PH试纸。 3.7 玻璃棒。 3.8 铁标准溶液: 准确称取三氧化二铁0.2860克于烧杯中,加入1:1盐酸20毫升,缓慢加热至三氧化二铁完全溶解,冷却至室温后定量转移到200毫升容量瓶中,用去离子水冲洗烧杯三次,冲洗液也转入容量瓶中,最后用去离子水定容至刻度,摇匀,此溶液含Fe 1.0mg/ml。取5ml 1.0mg/ml 的铁标准溶液于100ml容量瓶中,用去离子水稀释至刻度,摇匀,此溶液为50μg/ml的铁标准溶液。用移液管分别吸取50μg/ml的铁标准溶液1.0、3.0ml于两个50毫升容量瓶中,用去离子水稀释至刻度,摇匀,配成1.0、3.0μg/ml铁标准溶液。 4 仪器与设备 4.1 原子吸收光谱仪:PE 5100型,备有铁的空心阴极灯。 4.2 打印机:OKIDATA 320,可选择。 4.3 空气压缩机。 4.4 3KW交流稳压电源。 5 试验条件 5.1 空气压缩机输出压力:50~65PSI,一般设为60 PSI。 5.2 乙炔气输出压力:85~100KPa,一般设为90 KPa。 5.3 元素测定条件: 项目Fe 波长(nm)248.3 狭缝(nm)0.2 灯电流(mA)30 线性范围(ug/ml)0~5.0 乙炔气流量读数L/min 1.0 空气流量读数L/min 5.6 6 试验步骤 6.1 将待测的样品摇荡均匀,保证样品具有代表性。 6.2 取适量的样品倒入烧杯中,如果样品混浊,含有不溶的物体或杂质,可用定性滤纸过滤到烧杯中。

矿泉水中铁含量的测定毕业设计

毕业设计(论文)任务书 设计(论文)题目:矿泉水中铁含量的测定 学院:专业:班级: 学生:指导教师: 1.设计(论文)的主要任务及目标 (1) 通过查阅文献,了解煤炭发热量测定的方法,能够在老师指导下设计测定实验; (2) 完成实验,熟悉具体的实验操作; (3) 分析影响煤炭发热量准确测定因素,使实验值尽可能的接近真实值。 2.设计(论文)的基本要求和内容 (1) 学习文献调研,了解国内外相关课题的前沿知识; (2) 独立完成实验,掌握实验过程工艺,钻研实验原理; (3) 按设计要求,撰写毕业论文,解决科学问题。 3.主要参考文献 [1] 赵海勇,谭劲松.我国煤炭市场结构分析[J].技术经济与管理研究,2006,(4). [2] 李英华.煤质分析应用技术指南[M].北京:中国标准出版社,1999. [3] 周艳霞.影响煤炭发热量准确测定的因素及对策[J] .黑龙江科技信息,2011,(17):44.

矿泉水中铁含量的测定 摘要 本论文是应用分光光度法和分子荧光法测定矿泉水中的铁含量。分光光度法以邻二氮菲作为显色剂,分别测定矿泉水中铁的含量,在pH值为5左右时,邻二氮菲与二价铁生成稳定的桔红色配合物((Fe(phen)3)2+),在波长512nm处有最大吸收波长,在室温下,显色时间为10min。测得矿泉水中铁的含量为2.11μg/mL;分子荧光法测定矿泉水中的铁含量是基于Fe(II)与邻菲啰啉生成络合物使其荧光猝灭的特性,讨论了在室温下,pH 5.5 的乙酸—乙酸铵的缓冲介质中,以λex= 270 nm 为激发波长,于λem= 365 nm 波长处测定该络合物荧光强度。结果表明Fe(II)质量浓度0.8~120.0 ng/mL 范围内与络合物的荧光强度具有良好的线性关系,相关系0.9994,检出限0.50ng/mL。对60 ng/mL 的Fe RSD ( n = 9) 为2.8%。Fe 的回收率为98.03% ~ 102.9% 。四种水样的铁含量分析结果分别为3.48μg/mL、4.08μg/mL、2.12μg/mL、1.35μg/mL。 关键词:分光光度法;邻二氮菲;分子荧光法;铁;矿泉水

铁素体含量测定

石油、化工、核能、轻工、医药等部门,大量使用的压力容器、管道、构件和 阀门等,很多是用奥氏体不锈钢焊接制成的。如不锈钢复层焊、不锈钢堆焊、双相 不锈钢焊接等。因此,奥氏体不锈钢焊接技术方面的焊接裂纹,焊接接头的耐腐蚀 性能,焊接和熔敷金属的脆化问题就成为影响产品使用性能和寿命的关键。 通常情况下,装载不同介质的不锈钢容器的焊接,要求控制不同的铁素体含量。 因为,从焊接性(裂纹敏感性)角度,要求铁素体含量大于5%Fe 为好,从抗腐蚀性 能角度,在一般介质中铁素体含量大于8%Fe 为好;但在诸如尿素之类介质中, 以小于0.5%Fe 为好;从机械性能角度,特别是在中、高温下工作的焊缝,以小于 5%Fe 为宜,否则将产生西格玛相脆化。由此可见,不锈钢焊接生产 和科研工作中,均需方便而准确地控制和测量焊缝或熔敷金属的铁素体 的含量。目前,国际上均采用磁性法作为统一的测量方法。 并且国际标准以单触点测量仪为推荐仪器。 我所在充分消化进口仪器的基础上,按国际标准要求研制成功 GJD-F-2A型铁素体测量仪可分别给出铁素体百分比含量和铁素体 数(FN)。GJD-F-2A型铁素体测量仪已达到国外同类铁素体测量仪的各项技 术指标,能够满足工程上的需要。 GJD-F-2A型铁素体测量仪主要特点 ⑴1.50mm 单触点探针(头部为R0.75mm 半球形)。 ⑵便于采用国际标准中规定的非磁性涂层标准试样。 ⑶单触点探头可以测量更小区域内的铁素体含量,从而能够测定出铁素体含 量的局部偏析情况。 ⑷探头磁场渗透度小,测量范围宽,可以用于测量薄覆层焊缝或堆焊层中铁 素体含量及双相不锈钢焊缝等。 ⑸适合于深窄坡口根部焊道中铁素体含量的测量。 ⑹对被测表面凸凹程度不敏感(凹坑尺寸大于探头半径7 倍)。 ⑺测量范围扩大到63%Fe。 F-2A 型铁素体测量仪主要技术指标 ⑴测量参数:奥氏体不锈钢焊缝铁素体百分含量%Fe 及铁素体数FN(FN 为WRC 铁素体数单位)。 ⑵误差:为满刻度的±5% ⑶量程范围:0.1%Fe ~ 63%Fe 或0.1 FN ~ 91.3 FN ⑷探头中心到试件边缘最小距离2mm 测量值不受影响 ⑸环境工作温度:-10~+40℃ ⑹探头导线长度:1m ⑺提供二块二级标样 ⑻电源:4 节5 号电池或外接电源。 ⑼长╳宽╳高:200╳115╳45mm 铁素体(ferrite,缩写:FN) 即α-Fe和以它为基础的固溶体,具有体心立方点阵。亚共析成分的奥氏体通过先共析析出形成铁素体。这部分铁素体称为先共析铁素体或组织上自由的铁素体。随形成条件不同,先共析铁素体具有不同形态,如等轴形、沿晶形、纺锤形、锯齿形和针状等。铁素体还是珠光体组织的基体。在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;

相关文档
最新文档