无人机系统原理

合集下载

无人机控制系统的工作原理

无人机控制系统的工作原理

无人机控制系统的工作原理
无人机控制系统的工作原理可以总结为以下几个步骤:
1. 传感器数据采集:无人机通过搭载各种传感器,如加速度计、陀螺仪、气压计、GPS等,实时采集周围环境和飞行状态的
数据。

2. 数据处理与滤波:传感器采集到的原始数据会通过数据处理算法进行滤波和处理,以提高数据准确性和可靠性。

3. 飞行状态估计:通过对传感器数据的处理和分析,利用状态估计算法计算出飞行器的姿态、位置、速度等飞行状态信息。

4. 控制指令生成:根据用户输入和飞行任务需求,控制指令生成模块会根据飞行状态估计数据和控制算法,生成相应的控制指令,例如姿态控制、速度控制等。

5. 控制指令传递:生成的控制指令会通过无线通信或者有线连接,传递给飞行器的执行器,例如电机和舵机。

6. 控制执行:飞行器的执行器按照控制指令的要求,控制飞行器的姿态和运动。

7. 反馈控制:通过传感器采集到的实时数据,与期望的飞行状态进行比较,不断调整控制指令,实现飞行器的稳定控制和轨迹跟踪。

整个过程是一个不断循环的过程,通过实时采集、处理、估计和控制,实现对无人机的稳定飞行和精确控制。

无人机系统组成原理

无人机系统组成原理

无人机系统组成原理无人机系统是由多个组成部分相互配合工作的复杂系统,主要包括无人机本体、地面控制站、通信链路和载荷等组成部分。

下面将从这四个方面详细介绍无人机系统的组成原理。

一、无人机本体无人机本体是无人机系统中最核心的部分,由无人机飞行器和相关的传感器、执行器以及导航与控制系统组成。

1. 无人机飞行器:无人机飞行器是无人机系统的实体,它负责完成各种任务,如侦查、监视、作战等。

无人机飞行器通常由机翼、机身、尾翼和动力装置等部分构成,根据任务需求可以设计为固定翼、旋翼或多旋翼等不同类型。

2. 传感器:传感器是无人机系统中的重要组成部分,它能够感知周围环境的信息并将其转化为电信号。

常见的传感器包括摄像头、红外线传感器、雷达等,它们可以提供无人机飞行器所需要的视觉、距离、速度等信息。

3. 执行器:执行器是无人机系统中的执行机构,它能够根据控制信号实现无人机的运动。

常见的执行器包括电机、舵机等,它们通过控制无人机飞行器的各个部分的运动,实现飞行器的姿态调整和动力输出等功能。

4. 导航与控制系统:导航与控制系统是无人机系统的大脑,它通过处理传感器信息和控制指令,实现对无人机飞行器的导航和控制。

导航与控制系统通常由惯性导航系统、GPS、计算机等组成,它们可以对无人机的位置、速度、姿态等进行准确的测量和计算,并输出相应的控制指令。

二、地面控制站地面控制站是无人机系统的指挥中心,负责对无人机的任务进行规划、指挥和监控。

地面控制站通常由地面控制设备和显示终端组成。

1. 地面控制设备:地面控制设备是地面控制站的主要组成部分,包括通信设备、控制台、电脑等。

地面控制设备可以与无人机飞行器建立通信链路,实时获取无人机的状态信息,并发送控制指令。

2. 显示终端:显示终端是地面控制站中的显示设备,用于显示无人机飞行器的图像、数据和控制界面。

显示终端通常是一台电脑或显示屏,通过地面控制设备接收到的数据进行处理和显示。

三、通信链路通信链路是无人机系统中起连接无人机飞行器和地面控制站之间的桥梁作用,它负责实现双方之间的数据传输和指令控制。

无人机的飞行原理

无人机的飞行原理

无人机的飞行原理
无人机是一种通过遥控或自主飞行的飞行器,它的飞行原理与其他飞行器有所不同。

无人机的飞行原理主要包括以下几个方面:
一、气动原理
无人机的飞行主要依靠气动原理,即利用空气的流动来产生升力和推力。

无人机的机翼和螺旋桨都是利用气动原理来产生升力和推力的。

机翼的上表面比下表面更加凸起,当飞机在空气中飞行时,空气流经机翼时会产生向上的升力,从而使飞机能够在空中飞行。

而螺旋桨则是通过旋转产生推力,从而使飞机向前飞行。

二、控制原理
无人机的控制主要依靠电子设备来实现。

无人机上装有多个传感器和控制器,可以实时感知飞行状态和环境变化,并通过控制器来调整飞行姿态和飞行方向。

无人机的控制系统包括飞行控制器、遥控器、GPS导航系统、惯性导航系统等。

三、能源原理
无人机的能源主要来自电池或燃油发动机。

电池是无人机的主要能源
来源,它可以为无人机提供长时间的飞行能力。

而燃油发动机则可以
为无人机提供更高的飞行速度和更长的飞行时间。

四、自主飞行原理
无人机的自主飞行主要依靠自主导航系统和自主控制系统。

自主导航
系统可以通过GPS、惯性导航等技术来实现无人机的自主定位和导航。

而自主控制系统则可以通过人工智能、机器学习等技术来实现无人机
的自主飞行和自主决策。

总之,无人机的飞行原理是一个复杂的系统工程,它涉及到多个学科
领域的知识和技术。

随着科技的不断发展,无人机的飞行原理也在不
断地创新和完善,为人们带来更加便捷和高效的飞行体验。

无人机系统的控制原理与实现

无人机系统的控制原理与实现

无人机系统的控制原理与实现随着科技的不断发展与进步,无人机的应用也越来越广泛。

无人机在各行各业中有着不可替代的重要性,如农业、测绘、攻击等。

而无人机的控制原理与实现则是无人机应用的基础。

本文将介绍无人机系统的控制原理与实现。

一、无人机系统的控制原理无人机系统的控制原理涉及到三个重要的部分:检测系统、控制系统和执行机构。

1. 检测系统检测系统是无人机系统的最基础的部分,这部分系统主要负责检测飞行的状态信息,为控制系统提供数据支撑。

检测系统主要包括陀螺仪、加速度计、罗盘和气压计等检测组件。

陀螺仪可以检测飞机的旋转状态,加速度计可以检测机身的加速度和重力加速度,罗盘可以检测飞机的方向角度,气压计可以用于检测飞机的高度。

2. 控制系统控制系统是无人机系统的中枢,它接收来自检测系统的状态信息,进行数据计算和分析后,再控制执行机构完成飞行指令。

控制系统主要包括传感器、控制器和负载。

传感器可以检测到机身姿态、飞行速率,以及空气剪切力的大小,控制器可以实时地计算这些状态信息,也可以具备实时的处理能力,负载可以依据控制器的指令完成相应的运动。

3. 执行机构执行机构是无人机的动力系统,包括电机、电子速度控制器、传动机构和螺旋桨等组成。

无人机通过执行机构来完成航线的控制和维持稳定。

二、无人机系统的实现方式1. 软件方式实现软件方式实现指的是无人机系统中所有控制流程的实现都由程序软件所完成。

这种方式无需特定硬件支持,只需要在控制器内部使用软件算法计算和处理各种数据即可。

2. 硬件方式实现硬件方式实现需要特定的硬件来实现控制逻辑,其中控制芯片、传感器和舵机等部件是不可少的。

各种硬件部件的信息会通过芯片进行采集和处理,并输出相应的控制信号。

这种方式相比软件方式更加高效稳定,因此在对及时性有较强要求的情况下被广泛应用。

三、结论无人机系统的控制原理与实现是无人机系统的核心。

理解无人机系统的控制原理和实现方法,可以更好地把握无人机的各项特性和优势,在实践中更好地应用无人机系统。

无人机工作原理:电动机和遥控系统

无人机工作原理:电动机和遥控系统

无人机工作原理:电动机和遥控系统无人机(Unmanned Aerial Vehicle,UAV)的工作原理涉及电动机和遥控系统两个主要方面。

1. 电动机工作原理:无人机通常搭载电动机,其工作原理类似于一般的电动机。

主要有以下几个要素:a. 电源:无人机电源通常是可充电的锂电池或其他高能量密度的电池。

电源提供电能,驱动电动机工作。

b. 电动机:直流电机(DC Motor):多数小型无人机使用直流电机,其通过电流在磁场中旋转,从而驱动无人机旋翼。

无刷电机(Brushless Motor):无人机中常使用无刷电机,因其效率高、寿命长,减少摩擦和磨损。

c. 电调器(Electronic Speed Controller,ESC):电调器是连接电池和电动机的控制设备,负责调节电动机的转速。

通过调整电调器,可以控制飞行器的升降、左右、前后等运动。

d. 螺旋桨:电动机通过螺旋桨(Propeller)转动,产生推力,从而使无人机能够在空中飞行。

2. 遥控系统工作原理:遥控系统是指通过遥控器或其他控制设备来操控无人机飞行。

其主要组成部分包括:a. 遥控器(Remote Controller):飞行员使用遥控器来发送指令,包括升降、前后、左右等控制信号。

b. 接收机(Receiver):接收机接收遥控器发出的信号,并将其转化为电信号传递给飞行器的飞行控制系统。

c. 飞行控制系统:飞控主板(Flight Controller):飞控主板是无人机的大脑,负责接收并处理传感器数据,执行飞行控制算法,调整电调器以控制飞行器。

传感器:无人机搭载各种传感器,如陀螺仪、加速度计、罗盘等,用于感知飞行状态。

d. 通信模块:一些无人机配备了通信模块,允许与地面站或其他设备进行实时通信。

这在一些长距离飞行或需要远程监控的应用中尤为重要。

3. 工作流程:遥控输入:飞行员通过遥控器发送指令。

信号传输:遥控器发送的信号通过接收机传递给飞行控制系统。

无人机应用知识:无人机的控制系统及算法介绍

无人机应用知识:无人机的控制系统及算法介绍

无人机应用知识:无人机的控制系统及算法介绍无人机是一种无人驾驶的飞行器,大幅提升了人类的观察、勘察和采集能力。

无人机的控制系统和算法是无人机成功运作的关键,本文将为大家介绍无人机控制系统的工作原理和常用的算法。

一、无人机控制系统的工作原理无人机控制系统的核心是飞行控制器(Flight Controller,FC)。

飞行控制器主要包括传感器、CPU、调制解调器和电源系统等组成,其中传感器和CPU是最为重要的部分。

1.传感器飞行控制器的传感器主要包括以下几种:(1)加速度计(Accelerometer):用于测量飞行器的加速度,确定其加速度的大小和方向。

(2)陀螺仪(Gyroscope):用于测量飞行器的角速度,确定其旋转速度和方向。

(3)磁力计(Magnetometer):用于测量飞行器所处的磁场,确定其所在的方向。

(4)气压计(Barometer):用于测量飞行器所处的高度,确定其海拔高度。

2. CPU飞行控制器中的CPU负责运算和控制,其主要功能包括数据采集、信号处理、控制计算和控制输出等。

通过分析传感器采集的数据,CPU可以得到飞行器的实时状态信息,从而根据预设的控制算法进行计算,输出给各个执行机构控制指令,从而调整飞行器的运动状态。

3.调制解调器调制解调器是飞行控制器与地面站进行通信的设备,主要负责接收地面站发送的指令,并将飞行器状态信息上传到地面站。

4.电源系统飞行控制器需要电源供电,无人机通常使用锂电池作为主要电源。

电源系统设计不当会对飞行控制器的性能产生影响,例如电源电压波动会导致飞行控制器输出的控制指令不稳定。

二、常用的无人机控制算法无人机的控制算法是控制系统重要的组成部分,其好坏直接决定着飞行器飞行的稳定性和精度。

以下是几种常用的无人机控制算法。

1. PID控制算法PID控制算法是一种常见的飞行器控制算法,其作用是通过将飞行器的状态与期望状态之间的误差作为控制量,不断调整飞行器的姿态以尽可能减小误差。

无人机的飞行原理

无人机的飞行原理

无人机的飞行原理
无人机是一种无人操控的飞行器,其飞行原理主要基于机电一体化技术、自主导航系统和遥控技术等多种技术手段。

具体来说,无人机的飞行原理包括以下几个方面:
1. 气动力学原理:无人机通过在空气中产生升力来实现飞行。

其翼型设计、机身形状、机翼和螺旋桨等外形结构都是根据气动力学原理进行设计的。

例如,机翼的弧度和前缘后缘的角度会影响机翼的升力和阻力,而螺旋桨的旋转则产生推力和升力。

2. 控制系统:无人机的控制系统包括飞行控制系统和导航控制系统。

飞行控制系统能够控制机翼、螺旋桨和尾翼等部件的运动,实现俯仰、横滚、偏航等飞行动作。

导航控制系统则可根据预设的飞行路线和飞行高度进行自主导航,保证无人机在飞行过程中的稳定性和安全性。

3. 传感器技术:传感器技术是无人机飞行的重要保障。

无人机的传感器包括GPS、陀螺仪、加速度计、气压计等多种传感器,能够实时监测无人机的姿态、位置、高度和速度等参数信息,确保无人机飞行的精准性和稳定性。

4. 能源系统:无人机需要通过能源系统提供足够的能量来驱动机翼、螺旋桨和电子系统等部件的运动。

能源系统包括电池、燃油发动机等多种形式,不同类型的无人机应用场景和需求不同,能源系统也会有所不同。

总之,无人机的飞行原理是一个复杂的系统工程,需要多方面的
技术支持和综合优化,才能实现无人机的高效、稳定和安全的飞行。

无人机物理工作原理是什么

无人机物理工作原理是什么

无人机物理工作原理是什么
无人机的物理工作原理主要包括飞行原理、操纵原理和稳定原理。

1.飞行原理:无人机的飞行原理基于空气动力学,通过操纵机翼、螺旋桨或喷气引擎等来产生升力和推力。

无人机一般采用固定翼结构或旋翼结构。

固定翼无人机通过机翼的升力和尾推方式产生推力,依靠机翼的升力支撑飞行;旋翼无人机则通过旋转的螺旋桨产生的升力和推力来飞行。

2.操纵原理:无人机通过操纵机翼、螺旋桨或喷气引擎等来改变其升力和推力,从而控制飞行姿态和方向。

通常采用遥控设备或自主控制算法来完成操纵操作。

3.稳定原理:无人机在飞行过程中需要保持稳定,防止出现失控的情况。

为了确保稳定,无人机通常配备了加速度计、陀螺仪、磁力计和气压计等传感器来感知环境和飞行状态,然后通过飞行控制系统对相关参数进行调整,保持平稳飞行。

总体来说,无人机的工作原理是通过控制和调整产生升力和推力的机件,以及利用传感器和飞行控制系统来实现操纵和稳定飞行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、无人机特点与用途
2.1 无人机与航模
无人机的定义: 机上没有驾驶员 能一次或多次使用 可以自行控制也可以远程引导 可携带有效载荷 升力主要靠空气动力 航模:只能在视距内遥控控制
2.2 无人机的特点
机上无驾驶员,不再考虑人的安危和生理承受能 力; 没有机上驾驶员,不考虑人的生理承受能力(大 机动)和体力限制,可执行枯燥、危险、污染性 的工作,即3D任务(Dangerous,Dirty,Dull) 使用灵活,用途广泛; 成本低廉,生存力强。
三、无人机系统
无人机一般由以下部分组成:
飞行器-飞行载体 飞行控制系统 地面控制系统-地面站 任务设备-航拍仪器 起飞与降落回收系统
3.1 飞行载体
ZC—1型无人飞机
3.2 飞行控制系统
飞行控制主要有中央计算机、飞行控制类传感 器、伺服作动器、导航定位系统及通讯系统组 成; 飞行控制类传感器包括高度/速度类传感器和姿 态类传感器; 伺服作动器是将控制指令转化为舵面动作及发 动机阀门动作的执行机构。 导航定位系统:惯性导航设备、卫星定位传感 器、惯性/卫星组合定位 通讯电台
2.4 常见无人机气动外形
2.4.1 常规布局
2.4.2 双尾撑(双尾梁)无人机
2.4.3 倒V尾无人机
2.4.4 飞翼无人机
机长:21.03米 机高:5.18米 翼展:52.43米 机翼后掠角: 33度 空重:45360-49900千克 最大武器载荷:18144千克 最大燃油量:81650-90720千 克 正常起飞重量:152635千克 最大起飞重量:170550千克 巡航速度:高亚音速,小于 331m/s;0.8马赫(12200m) 进场速度:259千米/小时 实用升限:15240米 航程:不加油10400km,空中 加油一次大于18520千米 翼负荷:329千克/平方米 推重比:0.205
2.3 无人机的分类
2.3.5 按实用升限分类
超低空无人机 实用升限一般在100m以下 低空无人机 实用升限一般在100~1000m之间 中空无人机 实用升限一般在1000~7000m之间 高空无人机 实用升限一般在7000~18000m之间 超高空无人机 实用升限一般大于18000m
2.5 认识无人机的主要技术指标
翼展 最大起飞重量 有效载荷重量 燃料重量 巡航速度 续航时间 飞行半径 实用升限 抗风性能 起降方式 任务载荷类型 2.6m 16kg 4kg 2.5kg 110km/h 2h 50km 6000m 5级 滑跑/弹射/伞降/撞网 航空测绘
全球鹰
长13.4m,翼展 35.5m,最大起飞 重量11610kg,最 大载油量6577kg, 有效载荷900kg。 一台涡扇发动机置 于机身上方,最大 飞行速度740km/h, 巡航速度635km/h, 航程26000km,续 航时间42h。
MQ-1 捕食者
可监视目标24小 时,最大续航时 间60小时。该机 装有光电/红外侦 察设备、GPS导 航设备和具有全 天候侦察能力的 合成孔径雷达, 在4000米高处分 辨率为0.3米,对 目标定位精度 0.25米。
6.3 民用无人机应用前景展望
无人机的主要使命是空中观察和监视。 (1)科学研究; (2)巡线飞行; (3)应急情况监视; (4)半军事用途; (5)农林生产; (6)特殊使命;
目前,无人机主要用于军事目的,军用无人机占世界无人机市场90%的份 额。尽管目前民用市场的开发较少,但无人机用途广泛,它的应用前景远 大,在多个领域具有极大的应用潜力。
“翔龙”高空高速无人侦察机全机长14.33米,翼展24.86米,机高5.413 米,正常起飞重量6800公斤,任务载荷600公斤,机体寿命暂定为 2500Fh。巡航高度为18000米~20000米,巡航速度大于 700公里/小时; 作战半径2000~2500公里,续航时间最大10小时,起飞滑跑距离350米, 着陆滑跑距离500米。连翼飞机具有结构结实、抗坠毁能力强、抗颤振能 力好、飞行阻力小、航程远等优点。
3.3 地面控制站
地面控制站主要功能: 任务规划; 飞机状态监控; 飞机和任务设备的操控; 信息处理
3.4 任务设备
常见的任务设备有: 照相机 电视摄像机 红外热像仪 光电侦察稳定平台 合成孔径雷 哈苏 莱卡 尼康
六、无人机发展展望
6.1 军用发展热点和趋势
高集成化、多任务平台、实现一机多用 根据用途,机身尺寸向两端发展 从平台武器化到专用猎杀平台
6.2 关键技术的发展
传感器技术 数据链及通信技术 自主技术 武器系统技术 生存能力及可靠性设计技术 动力技术 地面控制站技术
Canon 5DmarkⅡ 2100万像素全画幅
3.5 起飞与降落
四、无人机飞行与控制原理
4.1 无人机飞行原理
飞机姿态角示意图
飞机受力示意图
飞机三轴角运动示意图
机翼上下表面压力示意图
机翼受力示意图
飞机爬升运动示意图
飞机转弯运动示意图
4.2 无人机控制原理
无人机的飞行控制系统主要包括传感器、机载计算机和 伺服作动设备三部分,其功能有: 1)无人机姿态稳定与控制; 2)无人机导航与航迹控制; 3)无人机起飞和着陆控制; 4)无人机任务设备管理与控制等。
机身长9.34米,翼展14米,机高2.7米,翼龙飞机的展弦比较大,因此升力较大、 诱导阻力较小,巡航升阻比较大,可以长时间在空中滞留。最大起飞重量:1200 公斤,最大飞行高度:5300米,最大飞行速度:280公里/小时,最大续航时间: 20小时,最大航程:4000公里,起飞滑跑距离:800米,着陆滑跑距离:600米 (刹车),最大燃油和任务载荷重量:350公斤,最大任务载荷重量:200公斤 (机翼两个挂点),最大载燃油量:300公斤[6]
机长8.27米,翼展14.87米,最大 活动半径3700公里,最大飞行时 速240公里。
1.2 国内无人机发展概述
航模队
专业从事无人机应用或研究
无人靶机
多用途无人机
无人机行业发展的现状: 无人机近几年呈现出一种跨越式、跃迁式的发展; 我国无人机发展的正在步入“黄金年代” ,目前 中高端无人机研发与生产能力主要掌握在中航工 业集团公司、航空航天类院校(西北工业大学第 三六五研究所爱生集团,北京航空航天大学无人 机所,南京航空航天大学无人机所)等国家队和 其他科研院所; 尽管号称有百余家企业在从事无人机研究与生产, 但真正能够严格按照研制程序开发无人机系统的 并不多。
无人机控制系统原理图
五、无人机作业流程
设备地面展开 根据任务进行航线规划 飞行前全部设备检查 启动动力系统 飞机起飞 到达作业地点、作业 返回降落 飞机落地后检查维护 获取作业数据 作业数据的后期处理

1. 启动/预热 2. 滑跑 3. 起飞 4. 爬升 5. 巡航 6. 作业 7. 降高 8. 着陆
民用无人机起步晚,与发展较好的军用无人机在技术上脱 节; 主要无人机研究单位定位于军事技术,先进的军用无人机 技术向民用无人机转化不足; 民营企业充分发挥了自己的市场优势,积极投身民用无人 机行业; 民用无人机市场正在升温。
民用无人机行业存在的不足:
从航模转型的多,专业设计研究的少; 设计水平低,生产规模小; 测绘应用多,其它应用少; 机型小,总体质量水平较低。
遥控飞机
无人机—UAV (Unmanned Aerial Vehicle)
无人靶机
多用途无人机
侦察无人机
无人机在军事中的应用:
第一次世界大战,美国开发了携带高爆炸药的双翼 无人机; 越战中美军将无人机用于侦察; 以色列1973年第四次中东战争中使用无人机模拟有 人机作战群,掩护有人机突防; 以色列1982年派无人机进入贝卡谷地上空,诱使叙 利亚地空导弹雷达开机,锁定对方雷达位置; 海湾战争、科索沃战争、伊拉克战争和阿富汗战争 中美军大量使用无人机。
1.3 国外民用无人机应用概况
美国将全球鹰和捕食者修改后,应用于民用领域, 全球鹰成为第一种被美国联邦航空管理局批准授 权可在美国空域飞行的无人机; 美国NASA下属的德莱顿飞行研究中心正在研究 将伊克纳无人机用于灭火; 美国海洋与大气局已成功将无人机用于风暴探测 的研究;
1.4 国内民用无人机发展现状
2.3 无人机的分类
2.3.1按功能分类 军用无人机 侦察机、电子对抗无人机、通信中继无人机、攻击无人 机及靶标无人机等 民用无人机 各种用途的巡查和监视用无人机、航拍无人机、气象无 人机、地质勘探无人机、测绘无人机等。
2.3 无人机的分类
2.3.2 按大小分类
微小型无人机 小型无人机 中型无人机 大型无人机 重量一般小于1Kg,尺寸在15cm以内 重量一般在1~100Kg内 重量一般在100~1000Kg内 重量一般大于1000Kg
谢 谢!
2.3.4 按速度分类 低速无人机 亚音速无人机 跨音速无人机 超音速无人机 高超音速无人机 速度一般小于0.3马赫 速度一般在0.3~0.7马赫 速度一般在0.7~1.2马赫 速度一般在1.2~5马赫 速度一般大于5马赫
马赫:奥地利物理学家、哲学家、心理学家、生物学家恩斯特· 马赫 (Ernst Mach,1838年~1916年)的简称,马赫在研究气体中物体 的高速运动时,发现了激波。他确定了以物速与声速的比值(即马 赫数)为标准,来描述物体的超音速运动。 音速:空气中的音速在1个标准大气压和15℃的条件下约为340米/ 秒。
2.3 无人机的分类
2.3.3 按活动半径分类
超近程无人机 近程无人机 短程无人机 中程无人机 远程无人机
活动半径在5~15km之间 活动半径在15~50km之间 活动半径在50~200km之间 活动半径在200~800km之间 活动半径一般大于800km
相关文档
最新文档