张量分析各章要点
【张量分析ppt课件】张量分析课件第二章 矢量代数与矢量分析

(2.1-3)
在矢量的加法和减法运算中定义单位元素为:
o 0 i1 0 i2 0 i3
同时长度为1的矢量称为单位矢量。 应当注意单位矢量元素和单位矢量的区别。
例2 : 图 2-4 所示具有坐标系的矢空间 V 中 矢量a、 b。试求 2a +1.5b在{o;i1, i2 }中的表示。 a (3 1) i 1 (1 0) i 2 2 i 1 i 2 解:
a b ( ai i i ) (b j i j ) ai b j ij ai bi b a ; a , b V
(2.1-4) (2.1-5)
1 ; i j i i i j ij 0 ; i j
其中δij称为Kronecker符号。 定义矢量积
例6 :
证明e—δ恒等式: eijk eimn jm kn jn km 证: 由(2.1-12)式有:i j ik e jkiii eijkii
im in emne ie eemn ie
eijkeemn ii ie (i j ik ) (im in ) (eijkii ) (eemnie ) (i j ik ) (im in ) eijkeemn ie (i j ik ) (im in )
X2
x2
x r2 o r1 x1 (a ) X1
x2 i2 x i1 x1 X1
X2
(b )
图2-3
设V的坐标系为{o;i1,i2,i3},V中矢量的加法和矢量与 数量的标量积按(1.1-3)和(1.1-4)定义,即对x,y ∈ V;α,β ∈F有 x y xi yi
i i i i
( xi yi ) ii
张量第四章

第四章 张量代数§4.1 张量的基本运算一、加法阶数相同、指标的结构和次序相同的诸张量可以加。
张量的代数和,就是将对应的同名分量相加。
1、 张量加法满足交换律和结合律。
2、 张量加法对坐标变换是不变的。
二、乘法对任何阶与结构的张量都可施行乘法。
用第一个张量的每一个分量乘以第二个张量中的每一个分量。
由这些乘积所组成的集合仍是一个张量,即两个张量的乘积。
j i A ⋅与m kl B ⋅ 乘 mkl j i jm kl i B A C ⋅⋅⋅⋅⋅=为一个五阶张量。
1、 张量乘法是不可交换的。
2、 张量乘法对坐标变换是不变的。
3、 乘积张量的阶数等于因子张量阶数之和。
三、连并与缩并连并:当两个张量相乘时,如果一个张量的上标和另一个张量的下标相同,则按哑标求和,结果仍为一个张量。
这种乘积运算称为连并。
缩并:对于同一个张的某个上标和某个下标取为相同的标号,则对哑标求和,其结果仍为张量,称为缩并。
缩并只能对二阶以上的混变张量进行。
四、指标的上升与下降指标的上升和下降通过度量张量与张量的连并来进行。
度量张量的逆变分量可以提升指标。
度量张量的协变分量可以下降指标。
kij ijl klT T g ⋅⋅= i j km likl im T T g g =⋅ 五、对称化和反对称化1、对称化对于任意一个n 阶张量中的某些上标或某些下标中的r 个指标的对称化,就是把这r 个指标按不同次序排列所得到的!r 个同份异构张量求和,并除以!r 的算术平均值的运算。
其结果关于所参与的r 个指标对称,也即所得张量与对称化指标的位置元素,称为关于该r 个指标的对称张量。
一般把参与对称化的指标用( )括起来,未参与对称化的指标用一对竖线分开。
)(!21)(ji ij ij T T T +=)(!31)(ilkjm ljki m jikl m jlki m likj m ijkl m l k ij m T T T T T T T ⋅⋅⋅⋅⋅⋅⋅+++++=2、反对称化反对称化就是将参与反对称化的r 个上标或下标,通过指标的交换构成!r 个同份异构张量。
张量分析第三章

s′
t′
a⋅⋅ p′q′r′
s ′r ′
设一个五阶混合张量 a⋅⋅ lmn , 令n=j时, 则 证:
ij
a⋅⋅⋅lmj = a⋅lm
ij i
是一个三阶张量
l m n
a
s ′t ′ ⋅⋅ p′q′r ′
设 t' = r' 并求和:
∂x ∂x ∂x ∂x ∂x ij = i a j p′ q′ r ′ ⋅⋅lmn ∂x ∂x ∂x ∂x ∂x
3
1′
2′
a1=xy=x1x2 a2=2y-z2=2x2-(x3)2 a 3= x 1x 3
3 2 2′ 1 3
= (sin x 2′ cos x3′ )( x1 x 2 )
2′ 3′ 2
+(sin x sin x )(2 x − ( x ) ) + (cos x )( x x )
= (sin θ cos ϕ )(r 2 sin 2 θ sin ϕ cos ϕ )
j
x = x cos x 2 1′ 2′ x = x sin x
1
1′
2′
x =x
则
1
3
3′
2 3
∂x ∂x ∂x a1′ = 1′ a1 + 1′ a2 + 1′ a3 ∂x ∂x ∂x
x = x cos x 2 1′ 2′ x = x sin x
则
1
1′
2′
x =x
1
3
3′
2 3
a1 = 2x1 - x3 , a 2 = ( x 1) 2 x 2 , a3 = x2 x3 ,
3
1′
2′
∂x ∂x ∂x a3′ = 3′ a1 + 3′ a2 + 3′ a3 ∂x ∂x ∂x 2 3 = x x = ρ z sin ϕ
张量分析

g = g gj
i ij
式中 gij 是对偶基矢量在 gj 方向的分量,共有9个,称为相伴度量张量, 或共轭度量张量
B) 相伴(共轭)度量张量
gi ⋅ g j = gik gk ⋅ g j = gikδkj = gij
g = g ⋅gj
ij i
gi ⋅ g j = δ ij ⇒ gik gk ⋅ g j = δ ij
gik gkj = δ ij ⇒
类似
gi = gij g j
gi = gij g j gi = gij g j
协变基矢量和逆变基矢量之间可以通过度量张量和相伴度量张量变换, 提升或下降指标。
C) 矢量的逆变分量和协变分量
任何一个矢量V可以用它沿基矢量方向的分量表示:
V = v gi = vi g
可知:若坐标系由xi 变换为yi ,则基矢量gi按上述变换法则变换。基矢 量gi也称为协变基矢量。
三、基本度量张量
对于任何坐标系,首先必须知道在该坐标系中如何度量长度。 在曲线坐标系中,线元矢量dr长度的平方为下式。
ds2 = dr ⋅ dr =gi dxi ⋅ g j dx j = gi ⋅ g j dxi dx j
i j k a = aij = eijka1a2 a3
aeilm = e a a a
i ijk l
j k m n
E) 克罗内克符号与置换符号的关系
1 δ1 δi j = δ12 3 δ1 1 δ2 2 δ2 3 δ2 1 1 0 0 δ3 2 δ3 = 0 1 0 =1 3 δ3 0 0 1
δli δl j δlk
y j = y j (x1, x2 , x3 )
逆变换为:
( j =1 2,3) ,
张量分析——初学者必看精选全文

§ A-1 指标符号 三、Kronecker-符号和置换符号(Ricci符号)
Ricci符号定义
偶次置换
1 若i, j, k 1,2,3, 2,3,1, 3,1,2 eijk 1 若i, j, k 3,2,1, 2,1,3, 1,3,2
0 若有两个或三个指标相等
e123 e231 e312 1 e213 e132 e321 1 e111 e112 e113 0
§A-4 张量的代数运算 三、矢量与张量的叉积
A 张量分析
右叉乘
T a (Tijeie j ) (akek ) Tij akeie jkrer e T jkr ij akeier B
§A-4 张量的代数运算
A 张量分析
四、两个张量的点积
两个张量点积的结果仍为张量。新张量的阶数是 原两个张量的阶数之和减 2
坐标变换式 xi ii xi xi ii xi
ii cos(xi, xi ) ii cos(xi , xi )
§A-3 坐标变换与张量的定义 A 张量分析
[ii ], [ii ]
互逆、正交矩阵
ii ii
ij
1 0
0 1
基矢量变换式
ei iiei ei iiei
坐标变换系数
v 任意向量变换式 i vii i vii i
ip iq ir eijk epqr jp jq jr
kp kq kr
pk
eijk ekqr
iq jq
ir jr
iq jr ir jq
a11 a12 a13 A a21 a22 a23 a11a22a33 a12a23a31
a31 a32 a33 a13a21a32 a13a22a31 a12a21a33 a11a23a32 eijk a1ia2 j a3k eijk ai1a j2ak3
第一章 张量分析基础知识

晶体物理性能南京大学物理系由于近代科学技术的发展,单晶体人工培养技术的成熟,单晶体的各方面物理性能(如力、声、热、电、磁、光)以及它们之间相互作用的物理效应,在各尖端科学技术领域里,都得到了某些应用.特别是石英一类压电晶体作为换能器、稳定频率的晶体谐振器、晶体滤波器等在电子技术中,比较早地在工业规模上进行大批生产和广泛应用.激光问世的四十多年来,单晶体在激光的调制、调Q、锁模、倍频、参量转换等光电技术应用中,已成单晶体应用中极为活跃的领域.《晶体物理性能》是我系晶体物理专业的专业课程之一,目的就是希望对晶体特别是光电技术中使用的晶体(包括基质晶体与非线性光学晶体)的有关物理性能及其应用方面的基本知识,有一个了解.对今后从事光电晶体的生长、检测和应用的工作,在分析问题、解决问题方面有所帮助,同时要在今后工作中不断从实践和理论两个方面扩大知识领域,有一个基础.考虑到本专业属于晶体材料性质的专业特点,本课程不仅对晶体物理性能的各个方面作深入全面的介绍,也将侧重于激光晶体有关的一些性能及其应用.鉴于以上考虑,《晶体物理性能》讲义将以离子晶体为主要对象,以光电技术上应用为线索组织内容,共分为八章.着重于从宏观角度结合微观机制介绍晶体基本物理性能以及各种交互作用过程的物理效应和它们在光电技术中的某些应用,包括弹性与弹性波(第二章),晶体光学中的各向异性(第五章),压电与铁电现象(第四章),电光效应(第七章),光学参量过程(第六章),声光效应(第八章).由于晶体物理性能的各向异性的特点和晶体对称性有密切关系,通常正确、方便地描述这些物理性能必须使用张量来表示.因此,在第一章,我们介绍了关于张量分析基础知识方面的内容.由于水平有限,实践经验缺乏,时间仓促,因而内容安排不妥、取舍不当、错误之处一定很多,希望同学们提出宝贵意见,批评指正.第一章张量的基础知识§1.1标量、矢量和二阶张量…………………………………………………………………2§1.2坐标变换和变换矩阵……………………………………………………………………§1.3正交变换矩阵的性质……………………………………………………………………§1.4晶体对称操作的变换矩阵……………………………………………………………§1.5二阶张量的变换与张量的定义………………………………………………………§1.6张量的足符互换对称…………………………………………………………………§1.7张量的矩阵表示和矩阵的代数运算…………………………………………………§1.8二阶对称张量的几何表示和二阶张量的主轴………………………………………§1.9二阶对称张量主轴的确定……………………………………………………………§1.10晶体张量与晶体对称性的关系………………………………………………………第二章晶体的弹性与弹性波§2.1弹性性质与原子间力…………………………………………………………………§2.2应变……………………………………………………………………………………§2.3应力……………………………………………………………………………………§2.4推广的虎克定律、弹性系数…………………………………………………………§2.5立方晶体的弹性系数…………………………………………………………………§2.6各向同性材料的弹性系数……………………………………………………………§2.7弹性扰动的传播――弹性波…………………………………………………………§2.8简谐振动和驻波……………………………………………………………………§2.9弹性常数及振动衰减因子的测量方法……………………………………………第三章晶体的介电性质§3.1介质中的宏观电场强度与极化强度………………………………………………§3.2晶体中的有效场……………………………………………………………………§3.3高频电场的介电极化(光的色散与吸收)………………………………………§3.4介电常数的测量……………………………………………………………………§3.5离子晶体的静电击穿………………………………………………………………§3.6激光的电击穿(激光的电击穿损伤)……………………………………………第四章铁电与压电物理§4.1铁电体的一般性质…………………………………………………………………§4.2常用铁电体的实验规律……………………………………………………………§4.3铁电体的相变热力学………………………………………………………………§4.4铁电体相变的微观机制……………………………………………………………§4.5晶体的压电效应……………………………………………………………………§4.6压电方程和机电耦合系数…………………………………………………………§4.7压电晶体的应用实例――石英……………………………………………………第五章晶体光学§5.1光学各向异性晶体…………………………………………………………………§5.2各向异性介质中光的传播…………………………………………………………§5.3折射椭球与折射率曲面……………………………………………………………§5.4晶体表面上的折射…………………………………………………………………§5.5晶体偏光干涉及其应用……………………………………………………………第六章倍频与参量频率转换§6.1非线性极化…………………………………………………………………………§6.2非线性极化系数……………………………………………………………………§6.3非线性介质中电磁场耦合方程……………………………………………………§6.4光倍频………………………………………………………………………………§6.5光倍频的相匹配……………………………………………………………………§6.6第II类相匹配………………………………………………………………………§6.7角度匹配和温度匹配扫描实验曲线………………………………………………§6.8内腔倍频……………………………………………………………………………§6.9光参量放大…………………………………………………………………………§6.10参量振荡器…………………………………………………………………………§6.11参量振荡器的调谐方法……………………………………………………………§6.12参量频率上转换……………………………………………………………………§6.13非线性材料的性能要求……………………………………………………………第七章电光效应及其应用§7.1线性电光效应………………………………………………………………………§7.2两种典型材料的电光效应…………………………………………………………§7.3电光滞后……………………………………………………………………………§7.4电光调制原理………………………………………………………………………§7.5实际调制器的几个问题……………………………………………………………§7.6晶体电光开关………………………………………………………………………§7.7电光Q开关…………………………………………………………………………§7.8电光偏转……………………………………………………………………………§7.9电光材料……………………………………………………………………………§7.10晶体均匀性的实验检测……………………………………………………………§7.11晶体的激光损伤……………………………………………………………………§7.12晶体均匀性实验检测………………………………………………………………第八章声光效应及其应用§8.1弹光效应……………………………………………………………………………§8.2声光交互作用产生的衍射现象……………………………………………………§8.3声光交互作用的理论………………………………………………………………§8.4声光效应在一些物理常数测量中的应用…………………………………………§8.5声光调制器…………………………………………………………………………§8.6声光偏转器…………………………………………………………………………§8.7声光调Q……………………………………………………………………………§8.8声光材料……………………………………………………………………………附录A.32点群投影图…………………………………………………………………………B.各阶张量在不同点群中的矩阵形式……………………………………………………C.主要常数表………………………………………………………………………………D.单轴晶体中光线离散角α的推导………………………………………………………E.双轴晶体中双折射面相差Γ的推导……………………………………………………F.贝塞尔函数的基本性质…………………………………………………………………第一章 张量分析基础知识以前学的课程中,有关力学、热学、电学、光学等的性质都是以各向同性介质来表述的或以一维问题来说明问题,这对于突出某些物理现象的微观的物理原因方面是必要的,但晶体物理性能是讲晶体中的力学、电学、光学、声学、磁学、热学等物理性能,而晶体的各向异性却是一种很普遍的特性,特别是很多现象如热电、压电、电光、声光、非线性光学效应……等等物理现象则完全因为晶体具有各向异性性质才能表现出来.因此,晶体结构对称性和这些性质之间的关系成为问题的主要方面。
第2章 张量分析(清华大学张量分析,你值得拥有)

( Nij ij )a j 0 det( Nij ij ) 0
利用指标升降关系 a为非0矢量 利用主不变量
N ( ) 3 J1N 2 J 2 J3N 0
二阶张量的标准形: 张量最简单的形式
非对称二阶张量
•
请研究以下领域的同学关注。 1、应变梯度理论,偶应力理论 2、电流场,电磁流变(有旋场)
x
x
椭圆曲线的坐标变换
正交变换可使椭圆曲线的方程由以下一般形式
ax bxy cy d 0
任意二阶张量将一线性相关的矢量集映射为线性相 关的矢量集:
(i)u(i) 0
i 1
l
l l 0 T (i)u(i) (i)(T u(i)) i 1 i 1
正则与退化的二阶张量
•
3D空间中任意二阶张量T将任意矢量组u,v,w映射 为另一矢量组,满足:
N S
1 p
S S1e1e1 S2e2e2 S3e3e3
Si N i
1 p
几种特殊的二阶张量
正张量的对数
N N1e1e1 N2e2e2 N3e3e3
ln N ln N1 e1e1 ln N2 e2e2 ln N3 e3e3
Nij N ji Ni j Nij Nij N ji N ij N ji
N 1 NT 1
( ) , ( ) , ( ) ,
N T 1 N 2 N T 3 N 3 N T 2 N 4
NT 4
N T ( 4 )
反对称张量与其转置张量分量及二者所对应的矩阵
二阶张量的行列式
(完整版)《张量分析》报告

一 爱因斯坦求和约定1.1指标变量的集合:n n y y y x x x ,...,,,...,,2121表示为:n j y n i x j i ...,3,2,1,,...,3,2,1,==写在字符右下角的 指标,例如xi 中的i 称为下标。
写在字符右上角的指标,例如yj 中的j 称为上标;使用上标或下标的涵义是不同的。
用作下标或上标的拉丁字母或希腊字母,除非作了说明,一般取从1到n 的所有整数,其中n 称为指标的范围。
1.2求和约定若在一项中,同一个指标字母在上标和下标中重复出现,则表示要对这个指标遍历其范围1,2,3,…n 求和。
这是一个约定,称为求和约定。
例如:333323213123232221211313212111bx A x A x A b x A x A x A bx A x A x A =++=++=++筒写为:ijijbx A =j——哑指标i——自由指标,在每一项中只出现一次,一个公式中必须相同遍历指标的范围求和的重复指标称为“哑标”或“伪标”。
不求和的指标称为自由指标。
1.3 Kronecker-δ符号(克罗内克符号)和置换符号Kronecker-δ符号定义j i ji ij ji ≠=⎩⎨⎧==当当01δδ置换符号ijkijk e e =定义为:⎪⎩⎪⎨⎧-==的任意二个指标任意k j,i,当021)(213,132,3的奇置换3,2,1是k j,i,当112)(123,231,3的偶置换3,2,1是k j,i,当1ijk ijke ei,j,k 的这些排列分别叫做循环排列、逆循环排列和非循环排列。
置换符号主要可用来展开三阶行列式:231231331221233211231231133221332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++==因此有:ijmjimii i i jijAA aa a a a ==++=δδδδδ332211kijjkiijkkjiikjjikijkee e e e e e ==-=-=-=同时有:ijjijij iiiijijijkj ikilkljkijjjiiijijijkjikiie e aa aa a a a aa δδδδδδδδδδδδδδδδδδδ=⋅=++=========++=332211332211331001010100131211232221333231321333222111321321321-=====δδδδδδδδδδδδδδδδδδδδδδδδδδδe e k j i k j i k j i k k k j j j i i i ijk333222111321321321r q p r q p r q p k k k j j j i i i pqr ijke e δδδδδδδδδδδδδδδδδδ⋅=ipp i p i p i p i δδδδδδδδδ==++11332211krkqkpjrjqjpiriqippqrijke e δδδδδδδδδ=jqirjriqjrjqiriqkqrijke e kp δδδδδδδδ-===321321322311332112312213322113312312332211333231232221131211k j i ijkkjiijkaa a e a a a e aa a a a a a a a a a a a a a a a a aaaa a aaa a A ==---++==Kronecker-δ和置换符号符号的关系为:itjsjtiskstkije e δδδδ-=二 张量代数2.1张量的加法(减法)两个同阶、同变异(结构) 的张量可以相加(或相减)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各章要点第一章:矢量和张量指标记法:哑指标求和约定 :同一项中出现一对相同的协、逆变指标则对该指标求和 自由指标规则:同一项中只能出现一次,不同项中保持在同一水平线上 协变基底和逆变基底:ki k i i x ∂∂==∂ξ∂ξr g e j j i i ⋅=δg giik k x∂ξ=∂g e123 ===g g g 张量概念i i'i'i =βg g i'i'ii =βg g i k i k j j''''ββ=δ i'i'i i v v =β ii 'i 'iv v =β i 'j'i 'j'k l ij ..k 'l'i j k 'l'..kl T T =ββββ i i i i v v ==v g g ..kl ij ijk l T =⊗⊗⊗T g g g g 度量张量ij i i i j i i g =⊗=⊗=⊗G g g g g g g⋅=⋅=⋅=⋅=v G G v v T G G T T.j kj i ik T T g =张量的商法则lm ijk T(i,j,k,l,m)S U = ijk...lmT(i,j,k,l,m)T = 置换符号312n 1n123n i i i i i 123n 1n i i i ...i A a a a ......a a e -- i j k Lmnijk .L.m .n a a a e e A = i j k .L .m .n ijk Lmn a a a e e A =置换张量i j k ijk ijk i j k =ε⊗⊗=ε⊗⊗εg g g g g gijk i j k ()e ε=⋅⨯=g g gijk ijk i j k ()ε=⋅⨯=g g gi j k ijk ijk i j k a b a b ()::()⨯=ε=ε=⊗=⊗a b g g a b εεa b广义δ符号i ii r s tj j j ijk ijk ijk r s t rst rst rst k k k r s te e δδδδδδ==εε=δδδδijk j k j k jk ist s t t s st δ=δδ-δδδijk k ijt t 2δ=δijk ijk 6δ=性质:是张量重要矢量等式:()()()⨯⨯=⋅-⋅a b c a c b a b c第二章: 二阶张量重要性质:T =T.u u.T 主不变量i 1.i Tr()T ζ==T i j l m2l m .i .j 1T T 2ζ=δ 3det()ζ=T1()()(())(())()⋅⋅⨯⋅⋅⨯⋅⨯⋅=ζ⋅⨯T u v w +u T v w +u v T w u v w2)[)][()(]()[()]()⋅⋅⋅⨯⋅⋅⨯⋅⋅⋅⨯⋅=ξ⋅⨯T u (T v w +u T v T w)+T u (v T w u v w ( ()[()()]det()()⋅⋅⋅⨯⋅=⋅⨯T u T v T w T u v w 标准形1. 特征值、特征向量⋅=λT v v ()-λ⋅=T G v 0 321230λ-ζλ+ζλ-ζ= 2. 实对称二阶张量标准形i 123i 112233=⋅⊗=λ⊗+λ⊗+λ⊗N N g g g g g gg g 3. 正交张量(了解方法)12112233(cos()sin())(sin()cos())=ϕ+ϕ⊗+-ϕ+ϕ⊗+⊗R e e e e e e e e4. 反对称二阶张量的标准形21123=μ⊗-μ⊗=μ⨯Ωe e e e e G⋅=⨯Ωu ωu31:2=-=μ⨯ωεΩe u=-⋅Ωεω5. 正则张量极分解=⋅=⋅T R U V R第三章 张量函数概念:各项同性张量函数、解析函数 计算 e T , sin()T 重要定理:1. Hamilton-Cayley 定理:32321231230λ-ζλ+ζλ-ζ=⇒-ζ+ζ-ζ=T T T G 0 2.对称各向同性张量函数表示定理:2012f ()k k k ==++H N G N N ;其中T T ;==H H N N ;而系数i k 是N 的主不变量的函数。
张量函数的导数1. 方向导数:'h 01(,)lim [(h )()]h →=+-T A C T A C T A 是C 的线性函数2. 方向导数与导数之间的关系 ''(,)():=T A C T A C3. 张量函数对张量的导数'i j ki j k ijkijk()()()A A ∂∂=⊗⊗⊗=⊗⊗⊗∂∂T T T A g g g g g g 4. 张量函数导数的链式法则:)()(()=H T U V T ,则 *n ()()()'''=H T U V V T 重要辅助知识二阶张量的迹具有如下性质:tr()::==A A G G A ; tr()tr()tr()+=+A B A Bi jT T .j .i tr()A B ::⋅===A B A B A Bi j k .j .k .i tr()A B C tr()tr()⋅⋅==⋅⋅=⋅⋅A B C B C A C A B第四章:曲线坐标系张量分析基矢量的导数jkijk i ∂=Γ∂ξg g ; i i jkj k ∂=-Γ∂ξg g k km ij ij,m g Γ=Γ ; m ij,k km ij g Γ=ΓHamilton 算子 i i 'i i '∂∂∇=⊗=⊗∂ξ∂ξg g i i∂⋅∇=⋅∂ξT T g i i ∂∇⋅=⋅∂ξT T g i i ∂∇=⊗∂ξT T g ii ∂∇=⊗∂ξT T g i i ∂⨯∇=⨯∂ξT T g i i ∂∇⨯=⨯∂ξTT g张量的协变导数ij ij mj i im j ij m ij m ij..kl s ..kl ..kl ms ..kl ms ..ml ks ..km ls ..kl;s sT T T T T T T ∂∇+Γ+Γ-Γ-Γ∂ξij k ls ..kl i j sT ∂=∇⊗⊗⊗∂ξT g g g g 重要性质:1.度量张量的协变导数为零 2.置换张量的协变导数为零3.张量分量的缩并与求协变导数次序可交换4.ij l ij l ij ls ..k .m s ..k .m ..k s .m (A B )(A )B A (B )∇=∇+∇积分定理SVd dV *=∇*⎰⎰a T T SVd dV *=*∇⎰⎰T a TSLd ()d ⋅∇⨯=⋅⎰⎰a T s TLSd ()d ⋅=-⨯∇⋅⎰⎰T s T aRiemann-Christoffel 张量欧氏空间特性:①Riemann 曲率张量等于零 ②张量对曲线坐标的求导顺序可交换 可展曲面的Riemann-Christoffel 张量为零 物理分量掌握张量在标准基下分解时Hamilton 算子对张量的运算(求极坐标系下线应变张量)第六章 连续介质力学基础物质导数空间坐标基底矢量的物质导数:i i k k i m mk k D v v Dt x ∂==-Γ∂g g g ; k k mi i ik m k D v v Dt x∂==Γ∂g g g 物质坐标基底矢量的物质导数:()()i i i ˆD ˆˆDt =-⋅∇=-∇⋅g g v v g ; ()()i i i ˆD ˆˆDt=∇⋅=⋅∇gv gg v 空间描述下二阶张量的物质导数()i i .j.jk ik .j D T tT T v tD ∂=+∇∂k k v ()()t tD Dt t x ∂∂==+∇⋅=+⋅∇∂∂∂+∂∂∂T T T v v T T T T 物质描述下二阶张量的物质导数()()i i .j .j m i m i .j m .m jˆˆDT T ˆˆˆT v T v Dtt∂=+∇-∇∂ ()()i .j j i ˆTD ˆˆDt t∂=⊗+∇⋅-⋅∇∂Tgg v T T v 变形梯度张量:ˆd d =⋅rF r k k ˆ=⊗F gg ; 1k k ˆ-=⊗F g g k k ˆ⋅=F g g; T k k ˆ-⋅=F g g k 1k ˆ-⋅=F gg ; T k k ˆ⋅=F g g 应变张量()()()()()()1122=+∇+∇-=∇+∇+∇⋅∇E G u G u G u u u u ()()()()()()1122=--∇-∇=∇+∇-∇⋅∇e G G u G u u u u u 小变形、小位移假设下1()2≈∇+∇E u u ; 1()2=∇+∇e u u在直角坐标系下k j i k ij j i i j u 1u u u E 2x x x x ∂⎛⎫∂∂∂=++ ⎪∂∂∂∂⎝⎭线元、面元、体元d d =⋅r F rT d J d -=⋅a F a dv Jdv =J det()==F变形梯度张量的物质导数()=∇⋅Fv F ()11--=-⋅∇F F v 线元、面元、体元 的物质导数()d d =∇⋅rv r d ()d ()d =⋅∇-∇⋅av a v adv()dv =⋅∇v ; J ()J =⋅∇v T T11()22=⋅∇+∇⋅=⋅⋅E F v v F F D F几种应力Cauchy 应力 ij i j ˆˆ=σ⊗σgg ; n =⋅p n σ 第一类Piola-Kirchhoff 应力 1i j i j ˆJ J -=⋅=σ⊗P F σg g第二类Piola-Kirchhoff 应力 1T k m kmJ J --=⋅⋅⊗=σS F σF g g面力合力 T d d d =⋅=⋅=⋅⋅n T a σa P a S F连续介质力学的基本定律 质量守恒定律()0ρ+⋅∇ρ=v 动量定理ρ+∇⋅=ρf σvρ+∇⋅=ρf P v动量矩定理T σ=σ机械能守恒定律SVV V d 1ˆd dv ()dv J :dv dt 2⋅⋅+ρ⋅=⋅ρ+⎰⎰⎰⎰v σa v f v v σD 变形功率密度T ::J :==S EP F σD 掌握用张量方法推导弹性体运动方程(小位移、小应变)。