2017-2018学年高二数学下学期第一次月考试题理(无答案)

合集下载

重庆市第一中学2016-2017学年高二3月月考数学理试题

重庆市第一中学2016-2017学年高二3月月考数学理试题

2017年重庆一中高2018级高二下期定时练习数学试题卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线24y x =的焦点坐标为( )A . (1,0)-B .(1,0)C .(0,1)-D .(0,1) 2.函数cos 2y x =的导数是( )A .sin 2x -B .sin 2xC .2sin 2x -D .2sin 2x 3.32(21)x dx +=⎰( )A . 2B .6C .10D . 8 4.二项式210(x的展开式的二项式系数和为( ) A . 1 B . -1 C . 102 D .05.将一枚质地均匀的骰子抛掷两次,落地时朝上的点数之和为6的概率为( ) A .536 B .16 C . 112D .196.函数32()2f x x ax x =-+在实数集R 上单调递增的一个充分不必要条件是( )A .[0,6]a ∈B .[a ∈C . [6,6]a ∈-D .[1,2]a ∈ 7. ()f x 是集合A 到集合B 的一个函数,其中,{1,2,,}A n =,{1,2,,2}B n =,*n N ∈,则()f x 为单调递增函数的个数是( )A .2n n AB .2nn C . (2)nn D .3nn C8.一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在同一个球面上,则该球的内接正方体的表面积为( )A .196 B .383 C . 578 D .1939.函数()f x 在实数集R 上连续可导,且'2()()0f x f x ->在R 上恒成立,则以下不等式一定成立的是( ) A .2(2)(1)f f e >B .2(2)(1)f f e< C . 3(2)(1)f e f -> D .3(2)(1)f e f -<10.某转播商转播一场排球比赛,比赛采取五局三胜制,即一方先获得三局胜利比赛就结束,已知比赛双方实力相当,且每局比赛胜负都是相互独立的,若每局比赛转播商可以获得20万元的收益,则转播商获利不低于80万元的概率是( ) A .34 B .58 C . 38 D .91611.已知椭圆221(0)1x y m m +=>+的两个焦点是12,F F ,E 是直线2y x =+与椭圆的一个公共点,当12||||EF EF +取得最小值时椭圆的离心率为( )A .23 BC .3D12.已知函数2()2ln f x x x =-+的极大值是函数()a g x x x =+的极小值的12-倍,并且121,[,3]x x e ∀∈,不等式12()()11f x g x k -≤-恒成立,则实数k 的取值范围是( )A .40(,2ln 3](1,1)(1,)3-∞-+-+∞B .34(,2ln 3](1,)3-∞-++∞ C . 34(,2ln 3][1,1)(1,)3-∞-+-+∞ D .40(,2ln 3](1,)3-∞-++∞ 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某种树苗成活的概率都为910,现种植了1000棵该树苗,且每棵树苗成活与否相互无影响,记未成活的棵数记为X ,则X 的方差为 .14.设变量,x y 满足条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数z x y =-的最小值为 .15.半径分别为5,6的两个圆相交于,A B 两点,8AB =,且两个圆所在平面相互垂直,则它们的圆心距为 .16.四位同学参加知识竞赛,每位同学须从甲乙两道题目中任选一道题目作答,答对甲可得60分,答错甲得-60分,答对乙得180分,答错乙得-180分,结果是这四位同学的总得分为0分,那么不同的得分情况共计有 种.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 函数3()f x x x =+在1x =处的切线为m . (1)求切线m 的方程;(2)若曲线()sin g x x ax =+在点(0,(0))A g 处的切线与m 垂直,求实数a 的取值. 18. 如图所示,PA ⊥平面ABCD ,底面ABCD 为菱形,3ABC π∠=,4PA AB ==,AC 交BD 于O ,点N 是PC 的中点.(1)求证:BD ⊥平面PAC ;(2)求平面ANC 与平面ANB 所成的锐二面角的余弦值.19. 甲、乙、丙三人每人有一张游泳比赛的门票,已知每张票可以观看指定的三场比赛中的任一场(三场比赛时间不冲突),甲乙二人约定他们会观看同一场比赛并且他俩观看每场比赛的可能性相同,又已知丙观看每一场比赛的可能性也相同,且甲乙的选择与丙的选择互不影响.(1)求三人观看同一场比赛的概率;(2)记观看第一场比赛的人数是X ,求X 的分布列和期望. 20. 已知函数3()ln f x x a x =-. (1)当3a =,求()f x 的单调递增区间;(2)若函数()()9g x f x x =-在区间1[,2]2上单调递减,求实数a 的取值范围.21. 已知椭圆C :22221(0)x y a b a b +=>>的离心率2e =,且过点(22.(1)求椭圆C 的方程;(2)如图,过椭圆C 的右焦点F 作两条相互垂直的直线,AB DE 交椭圆分别于,,,A B D E ,且满足12AM AB =,12DN DE =,求MNF ∆面积的最大值. 22.已知函数1()ln 1af x x ax x-=-+-. (1)若()f x 在2x =处取得极值,求a 的值;(2)若1a =,函数2222()ln()()221x x x h x mx f x x --+=++-+,且()h x 在(0,)+∞上的最小值为2,求实数m 的值.试卷答案一、选择题1-5: BCBCA 6-10:DDBAA 11、12:DB二、填空题13. 90 14. -2 15.. 44三、解答题17.(1)根据条件'2()31f x x =+,切点为(1,2),斜率为'(1)4f =,所以m 的方程为420x y --=,(2)根据条件'()cos g x x a =+,又()g x 图象上任意一点(0,(0))A g 处的切线与m 垂直,则有'54(0)14g a ⨯=-⇒=-,所以a 的值为54-. 18.(1)∵ABCD 是菱形,∴BD AC ⊥,又∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD PA ⊥, 而PAAC A =,∴BD ⊥平面PAC .(2)以O 为坐标原点,,,OC OB ON 所在直线分别为,,x y z 轴,方向如图所示,根据条件有点(0,0,2),(2,0,0),N A B -,由(1)可知OB ⊥平面ANC ,所以可取OB 为平面ANC 的法向量1n,1n OB ==,现设平面BAN 的法向量为2(,,)n x y z =,则有2200AN n BN n ⎧=⎪⎨=⎪⎩00x z z +=⎧⎪⇒⎨+=⎪⎩,令1z =,则2(1,3n =-,设平面ANC 与平面ANB 所成的锐二面角大小为θ,则12127cos ||7||||n n n n θ==19.(1)记事件A =“三人观看同一场比赛”,根据条件,由独立性可得,12311()()33P A C ==. (2)根据条件可得分布列如下:4221012319999EX =⨯+⨯+⨯+⨯=.20.(1)根据条件3'233(1)()3x f x x x x-=-=,又0x >,则'()0f x >解得1x >,所以()f x 的单调递增区间是(1,)+∞;(2)由于函数()g x 在区间1[,2]2上单调递减,所以'2()390ag x x x=--≤在[0,2]上恒成立,即339x x a -≤在1[,2]2上恒成立,则max [()]a h x ≥(1[,2]2x ∈),其中3()39h x x x =-,'2()99h x x =-,则()h x 在1[,1]2上单减,在[1,2]上单增,max 1[()]max{(),(2)}62a h x h h ≥==,经检验,a 的取值范围是[6,)+∞.21.(1)根据条件有2222213124a b a b⎧=⎪⎨+=⎪⎩,解得222,1a b ==,所以椭圆22:12x C y +=. (2)根据12AM AB =,12CN CD =可知,,M N 分别为,AB DE 的中点,且直线,AB DE 斜率均存在且不为0,现设点1122(,),(,)A x y B x y ,直线AB 的方程为1x my =+,不妨设0m >,联立椭圆C 有22(2)210m y my ++-=,根据韦达定理得:12222my y m +=-+,121224()22x x m y y m +=++=+,222(,)22m M m m -++,||MF =2||()2NF m=-+,所以MNF ∆面积211||||124()2MNF m mS MF NF m m∆+==++,现令12t m m =+≥, 那么21124294MNFt S t t t∆==≤++,所以当2t =,1m =时,MNF ∆的面积取得最大值19.22.(2)2'21()ax x a f x x-++-=,又()f x 在2x =处取得极值,则'1(2)03f a =⇒=, 此时'2(1)(2)()3x x f x x --=-,显然满足条件,所以a的值为13. (2)由条件12()ln()1221h x mx x =++++,又()h x 在(0,)+∞上的最小值为2, 所以有(1)2h ≥,即1511ln()2ln()0ln12323m m ++≥⇒+≥>=12m ⇒>又2'2224824()21(21)(21)(21)m mx m h x mx x mx x +-=-=++++,当2m ≥时,可知()h x 在(0,)+∞上递增,无最小值,不合题意,故这样的m 必须满足122m <<,此时,函数()h x 的增区间为)+∞,减区间为,min 1()ln()122h x h ==+=整理得1ln()02=(*)若112m <<0>,且ln10<=,无解若12m ≤<,0<,将(*)变形为0+=.即0=,设1(,1]2t =则上式即为ln 0t +=,构造()ln F t t =()0F t ='()0F t =≤,故()F t 在1(,1]2上单调递减又(1)0F =,故()0F t =等价于1t =,与之对应的1m = 综上,1m =.。

重庆市万州区2017_2018学年高二数学11月月考试题文201712070271

重庆市万州区2017_2018学年高二数学11月月考试题文201712070271

重庆市万州区2017-2018学年高二数学11月月考试题文考试范围:必修2;考试时间:120分钟第Ⅰ卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1.直线x﹣y﹣1=0不通过( )A.第一象限B.第二象限C.第三象限D.第四象限2.直线x+ y﹣1=0的倾斜角为()A.30°B.60°C.120°D.150°3.直线λ:2x﹣y+3=0与圆C:x2+(y﹣1)2=5的位置关系是()A.相交B.相切C.相离D.不确定4.设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β5.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.B.1cm3C.D.3cm36.直线x+y+1=0被圆x2+y2=1所截得的弦长为( )12A.B.1 C.D.227. 已知直线l的斜率,则直线倾斜角的范围为()A.B.C.D.8.长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为()A.B.56πC.14πD.16π9.圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的公共弦长为()A.B.C.3 D.10.若圆x2y22x6y60有且仅有三个点到直线x ay10的距离为1,则实数a 的值为()A. 1B. 2C. 2D. 34211.曲线y= +1(﹣2≤x≤2)与直线y=kx﹣2k+4有两个不同的交点时实数k的范围是( )535A.(,] B.(,+∞)124121353C.(,)D.(﹣∞,)∪(,+∞)3412412.已知侧棱长为2a的正三棱锥(底面为等边三角形)其底面周长为9a,则棱锥的高为()A.a B.2a C. a D. a第Ⅱ卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.不论a为何实数,直线(a+3)x+(2a﹣1)y+7=0恒过定点.14.已知正△ABC的边长为1,那么在斜二侧画法中它的直观图△A′B′C′的面积为.15. 求经过三点A(0,3)、B(4,0),C(0,0)的圆的方程y316.如果实数x,y满足等式(x﹣2)2+y2=1,那么的取值范围是.x1三、解答题(本题共6道小题,第17题10分,18-22,每题12分)17.已知直线l1:3x+4y﹣2=0和l2:2x﹣5y+14=0的相交于点P.求:(Ⅰ)过点P且平行于直线2x﹣y+7=0的直线方程;(Ⅱ)过点P且垂直于直线2x﹣y+7=0的直线方程.18. 已知圆C:(x﹣1)2+(y﹣2)2=4.(1)求直线2x﹣y+4=0被圆C所截得的弦长;(2)求过点M(3,1)的圆C的切线方程.19.如图,三棱柱ABC﹣A1B1C1的侧棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1上中点,F是AB 中点,AC=1,BC=2,AA1=4.(1)求证:CF∥平面AEB1;(2)求三棱锥C﹣AB1E的体积.20.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,点M,N分别为线段PB,PC 上的点,MN⊥PB.(Ⅰ)求证:平面PBC⊥平面PAB;(Ⅱ)求证:当点M 不与点P,B 重合时,MN∥平面ABCD;(Ⅲ)当AB=3,PA=4时,求点A到直线MN距离的最小值.21.如图,已知圆C的方程为:x2+y2+x﹣6y+m=0,直线l的方程为:x+2y﹣3=0.(1)求m的取值范围;(2)若圆与直线l交于P、Q两点,且以PQ为直径的圆恰过坐标原点,求实数m的值.yPQxO2t R22.已知以点C( ,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其t,t中O为原点.(1) 求证:△AOB的面积为定值;(2) 设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;(3) 在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.试卷答案1.B【考点】确定直线位置的几何要素.【专题】直线与圆.【分析】把直线的方程化为斜截式,可得直线的倾斜角为90°,在y轴上的截距等于﹣1,故直线经过第一、三、四象限.【解答】解:直线x﹣y﹣1=0即y=x﹣1,它的斜率等于1,倾斜角为90°,在y轴上的截距等于﹣1,故直线经过第一、三、四象限,不经过第二象限,故选B.【点评】本题主要考查直线的斜截式方程,确定直线位置的几何要素,属于基础题.2.D【考点】直线的倾斜角.【分析】利用直线的倾斜角与斜率的关系即可得出.【解答】解:设直线x+ y﹣1=0的倾斜角为α.直线x+ y﹣1=0化为.∴tanα=﹣.∵α∈[0°,180°),∴α=150°.故选:D.3.A【考点】直线与圆的位置关系.【分析】求出圆心到直线的距离,与圆半径相比较,能求出结果.【解答】解:圆C:x2+(y﹣1)2=5的圆心C(0,1),半径r= ,圆心C(0,1)到直线λ:2x﹣y+3=0的距离:d= = <r= ,∴直线λ:2x﹣y+3=0与圆C:x2+(y﹣1)2=5相交.故选:A.【考点】空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】根据线面平行的几何特征及面面平行的判定方法,可判断A;根据面面平行的判定方法及线面垂直的几何特征,可判断B;根据线面平行的性质定理,线面垂直及面面垂直的判定定理,可判断C;根据面面垂直及线面平行的几何特征,可判断D.【解答】解:若l∥α,l∥β,则平面α,β可能相交,此时交线与l平行,故A错误;若l⊥α,l⊥β,根据垂直于同一直线的两个平面平行,可得B正确;若l⊥α,l∥β,则存在直线m⊂β,使l∥m,则m⊥α,故此时α⊥β,故C错误;若α⊥β,l∥α,则l与β可能相交,可能平行,也可能线在面内,故D错误;故选B5.A【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为一个倒立的四棱锥,底面是一个直角梯形,上底AB=1,下底CD=2,AD⊥AB,AD=1,侧面PCD⊥底面ABCD,PC=PD.取CD的中点O,连接PO,则PO⊥CD,PO=1.即可得出.【解答】解:由三视图可知:该几何体为一个倒立的四棱锥,底面是一个直角梯形,上底AB=1,下底CD=2,AD⊥AB,AD=1,侧面PCD⊥底面ABCD,PC=PD.取CD的中点O,连接PO,则PO⊥CD,PO=1.∴该几何体的体积V= = cm3.故选:A.【考点】直线与圆的位置关系.【专题】直线与圆.【分析】由圆的方程可得圆心坐标和半径,再利用点到直线的距离公式求出圆心到直线x+y+1=0的距离d,即可求出弦长为2 ,运算求得结果.【解答】解:圆x2+y2=1的圆心O(0,0),半径等于1,圆心到直线x+y+1=0的距离d= ,故直线x+y+1=0被圆x2+y2=1所截得的弦长为2 = ,故选D.【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于中档题.7. 已知直线l的斜率,则直线倾斜角的范围为()A.B.C.D.【考点】直线的倾斜角.【分析】设直线倾斜角为θ,由直线l的斜率,肯定,即可得出.【解答】解:设直线倾斜角为θ,∵直线l的斜率,∴,∴θ∈∪.故选:B.8.C【考点】球的体积和表面积.【分析】根据题意可得长方体的三条棱长,再结合题意与有关知识可得外接球的直径就是长方体的对角线,求出长方体的对角线,即可得到球的直径,进而根据球的表面积公式求出球的表面积.【解答】解:因为长方体相邻的三个面的面积分别是2,3,6,∴长方体的一个顶点上的三条棱长分别是3,2,1,又因为长方体的8个顶点都在同一个球面上,所以长方体的对角线就是圆的直径,因为长方体的体对角线的长是:球的半径是:这个球的表面积:4 =14π故选C.9.B【考点】直线与圆相交的性质.【分析】由条件求得公共弦所在的直线方程、一个圆的圆心到公共弦的距离,再利用垂径定理求得公共弦的长.【解答】解:圆O1的圆心为(1,0),半径r1=1,圆O2的圆心为(0,2),半径r2=2,故两圆的圆心距,大于半径之差而小于半径之和,故两圆相交.圆和圆两式相减得到相交弦所在直线方程x﹣2y=0,圆心O1(1,0)到直线x﹣2y=0距离为,由垂径定理可得公共弦长为2= ,故选:B.10. B11.A【考点】直线与圆相交的性质.【专题】直线与圆.【分析】根据直线过定点,以及直线和圆的位置关系即可得到结论.利用数形结合作出图象进行研究即可.【解答】解:由y=k(x﹣2)+4知直线l过定点(2,4),将y=1+ ,两边平方得x2+ (y﹣1)2=4,则曲线是以(0,1)为圆心,2为半径,且位于直线y=1上方的半圆.当直线l过点(﹣2,1)时,直线l与曲线有两个不同的交点,此时1=﹣2k+4﹣2k,解得k= ,当直线l与曲线相切时,直线和圆有一个交点,圆心(0,1)到直线kx﹣y+4﹣2k=0的距离d= ,解得k= ,要使直线l:y=kx+4﹣2k与曲线y=1+ 有两个交点时,则直线l夹在两条直线之间,因此<k≤,故选:A.【点评】本题主要考查直线和圆的位置关系的应用,利用数形结合是解决本题的关键,考查学生的计算能力.12.A【考点】棱锥的结构特征.【分析】根据正三棱锥的结构特征,先求出底面中心到顶点的距离,再利用测棱长求高.【解答】解:如图示:∵正三棱锥底面周长为9a,∴底面边长为3a,∵正棱锥的顶点在底面上的射影为底面的中心O,∴OA= AD= ×3a×= a,在Rt△POA中,高PO= = =a,故选:A.13.(﹣2,1)【考点】恒过定点的直线.【分析】由直线系的知识化方程为(x+2y)a+3x﹣y+7=0,解方程组可得答案.【解答】解:直线(a+3)x+(2a﹣1)y+7=0可化为(x+2y)a+3x﹣y+7=0,由交点直线系可知上述直线过直线x+2y=0和3x﹣y+7=0的交点,解方程组可得∴不论a为何实数,直线(a+3)x+(2a﹣1)y+7=0恒过定点(﹣2,1)故答案为:(﹣2,1)14.【考点】斜二测法画直观图.【专题】数形结合;定义法;空间位置关系与距离.【分析】由直观图和原图的面积之间的关系,直接求解即可.【解答】解:正三角形的高OA= ,底BC=1,在斜二侧画法中,B′C′=BC=1,0′A′== ,则△A′B′C′的高A′D′=0′A′sin45°=×= ,则△A′B′C′的面积为S= ×1×= ,故答案为:.【点评】本题考查斜二测画法中原图和直观图面积之间的关系,属基本运算的考查15. (x﹣2)2+(y﹣1.5)2=6.25.16【考点】直线与圆的位置关系.【分析】设k= ,则y=kx﹣(k+3)表示经过点P(1,﹣3)的直线,k为直线的斜率,所以求的取值范围就等价于求同时经过点P(1,﹣3)和圆上的点的直线中斜率的最大最小值,当过P直线与圆相切时,如图所示,直线PA与直线PB与圆相切,此时直线PB斜率不存在,利用点到直线的距离公式表示出圆心C到直线PA的距离d,令d=r求出此时k的值,确定出t的范围,即为所求式子的范围.【解答】解:设k= ,则y=kx﹣(k+3)表示经过点P(1,﹣3)的直线,k为直线的斜率,∴求的取值范围就等价于求同时经过点P(1,﹣3)和圆上的点的直线中斜率的最大最小值,从图中可知,当过P的直线与圆相切时斜率取最大最小值,此时对应的直线斜率分别为k PB和k PA,其中k PB不存在,由圆心C(2,0)到直线y=kx﹣(k+3)的距离=r=1,解得:k= ,则的取值范围是[ ,+∞).故答案为:[ ,+∞)17.【考点】直线的点斜式方程.【专题】计算题.【分析】(Ⅰ)联立两直线的方程即可求出交点P的坐标,求出直线2x﹣y+7=0的斜率为2,所求直线与直线2x﹣y+7=0平行得到斜率相等都为2,根据P的坐标和斜率2写出直线方程即可;(Ⅱ)根据两直线垂直时斜率乘积为﹣1求出所求直线的斜率,根据P和斜率写出直线方程即可.【解答】解:由解得,即点P坐标为P(﹣2,2),直线2x﹣y+7=0的斜率为2(Ⅰ)过点P且平行于直线2x﹣y+7=0的直线方程为y﹣2=2(x+2)即2x﹣y+6=0;(Ⅱ)过点P且垂直于直线2x﹣y+7=0的直线方程为即x+2y﹣2=0.【点评】此题考查学生会利用两直线的方程求两直线的交点坐标,掌握两直线平行及垂直时斜率的关系,会根据一点和斜率写出直线的点斜式方程,是一道综合题.18.【考点】直线与圆相交的性质.【专题】综合题;直线与圆.【分析】(1)分类讨论,利用待定系数法给出切线方程,然后再利用圆心到切线的距离等于半径列方程求系数即可;(2)可先利用PM(PM可用P点到圆心的距离与半径来表示)=PO,求出P点的轨迹(求出后是一条直线),然后再将求PM的最小值转化为求直线上的点到原点的距离PO之最小值.【解答】解:(1)将圆C配方得(x+1)2+(y﹣2)2=2.①当直线在两坐标轴上的截距为零时,设直线方程为y=kx,由直线与圆相切得= ,即k=2±,从而切线方程为y=(2±)x.…②当直线在两坐标轴上的截距不为零时,设直线方程为x+y﹣a=0,由直线与圆相切得x+y+1=0,或x+y﹣3=0.∴所求切线的方程为y=(2±)xx+y+1=0或x+y﹣3=0.…(2)由|PO|=|PM|得,x12+y12=(x1+1)2+(y1﹣2)2﹣2⇒2x1﹣4y1+3=0..…即点P在直线l:2x﹣4y+3=0上,|PM|取最小值时即|OP|取得最小值,直线OP⊥l,∴直线OP的方程为2x+y=0.…解方程组得P点坐标为(﹣,).…【点评】本题重点考查了直线与圆的位置关系,切线长问题一般会考虑到点到圆心距、切线长、半径满足勾股定理列方程;弦长问题一般会利用垂径定理求解.19.【考点】直线与平面平行的判定;棱柱、棱锥、棱台的体积.【专题】空间位置关系与距离.【分析】(1)取AB1的中点G,联结EG,FG,由已知条件推导出四边形FGEC是平行四边形,由此能证明CF∥平面AB1E.(2)由= ,利用等积法能求出三棱锥C﹣AB1E的体积.【解答】(1)证明:取AB1的中点G,联结EG,FG∵F,G分别是棱AB、AB1的中点,∴又∵∴四边形FGEC是平行四边形,∴CF∥EG,∵CF不包含于平面AB1E,EG⊂平面AB1E,∴CF∥平面AB1E.(2)解:∵AA1⊥底面ABC,∴CC1⊥底面ABC,∴CC1⊥CB,又∠ACB=90°,∴BC⊥AC,∴BC⊥平面ACC1A1,即BC⊥面ACE,∴点B到平面AEB1的距离为BC=2,又∵BB1∥平面ACE,∴B1到平面ACE的距离等于点B到平面ACE的距离,即为2,∴= = = .【点评】本题考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.20.【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系.【分析】(Ⅰ)设O为AC的中点,连接OS,OD,推导出OS⊥AC,DO⊥AC,从而AC⊥平面SOD,由此能证明AC⊥SD.(Ⅱ)三棱锥B﹣SAD的体积V B﹣SAD=V S﹣BAD,由此能求出结果.【解答】证明:(Ⅰ)设O为AC的中点,连接OS,OD,∵SA=SC,∴OS⊥AC,∵DA=DC,∴DO⊥AC,又OS,OD⊂平面SOD,且OS∩DO=O,AC⊥平面SOD,又SD⊂平面SOD,∴AC⊥SD.…解:(Ⅱ)∵O为AC的中点,在直角△ADC中,DA2+DC2=2=AC2,则,在△ASC中,∵,O为AC的中点,∴△ASC为正三角形,且,∵在△SOD中,OS2+OD2=SD2,∴△SOD为直角三角形,且∠SOD=90°,∴SO⊥OD,又OS⊥AC,且AC∩DO=O,∴SO⊥平面ABCD.…∴三棱锥B﹣SAD的体积:V B﹣SAD=V S﹣BAD== = = .…21.【考点】直线与圆的位置关系.【分析】(1)将圆的方程化为标准方程:,若为圆,须有,解出即可;(2)设点P(x1,y1),Q(x2,y2),由题意得OP、OQ所在直线互相垂直,即k OP•k OQ=﹣1,亦即x1x2+y1y2=0,根据P、Q在直线l上可变为关于y1、y2的表达式,联立直线方程、圆的方程,消掉x后得关于y的二次方程,将韦达定理代入上述表达式可得m的方程,解出即可;【解答】解:(1)将圆的方程化为标准方程为:,依题意得:,即m<,故m的取值范围为(﹣∞,);(2)设点P(x1,y1),Q(x2,y2),由题意得:OP、OQ所在直线互相垂直,则k OP•k OQ=﹣1,即,所以x1x2+y1y2=0,又因为x1=3﹣2y1,x2=3﹣2y2,所以(3﹣2y1)(3﹣2y2)+y1y2=0,即5y1y2﹣6(y1+y2)+9=0①,将直线l的方程:x=3﹣2y代入圆的方程得:5y2﹣20y+12+m=0,所以y 1+y2=4,,代入①式得:,解得m=3,故实数m的值为3.22.(1)证明由题设知,圆C的方程为(2)解∵|OM|=|ON|,则原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,∴C、H、O三点共线,则直线OC的斜率∴t=2或t=-2. (5)∴圆心为C(2,1)或C(-2,-1),∴圆C的方程为(x-2)2+(y-1)2=5或(x+2)2+(y+1)2=5,由于当圆方程为(x+2)2+(y+1)2=5时,圆心到直线2x+y-4=0的距离d>r,此时不满足直线与圆相交,故舍去,∴圆C的方程为(x-2)2+(y-1)2=5. (6)(3)解点B(0,2)关于直线x+y+2=0的对称点为B4,2, (7)则|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|, (8)。

福建省龙海第一中学2017-2018学年高二下学期5月月考数学(理)试题

福建省龙海第一中学2017-2018学年高二下学期5月月考数学(理)试题

2017—2018学年第二学期第二次月考高二理科数学考试时间120分钟。

满分150分。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i 是虚数单位,则()201832i i z =-所对应的点位于复平面内的A .第一象限B .第二象限C .第三象限D .第四象限2.已知P 是曲线θρsin 2=上一点,则点P 到直线cos()24ρθπ+=距离的最小值为 A .123- B .1223- C .12- D .221-3.下列四个散点图中,相关系数xy r 最大的是4.已知随机变量X ~2(3,)N σ,且(4)0.15P X >=,则()P X =≥2 A .0.15B .0.35C .0.85D .0.35.两个实习生每人加工一种零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为A .12 B .512 C .14 D .166.为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为a x b y ˆˆˆ+=.已知240101=∑=i ix,1700101=∑=i iy,5ˆ=b,若该班某学生的脚长为25,据此估计其身高为 A. 160B. 165C. 170D. 175D C BA0123123xy y x 32132100123123x y y x32132107.已知X 的分布列如图:则32Y X =+的数学期望E (Y)等于A .32 B .1 C .3629 D . 61- 8.函数2sin y x x x =-的图象大致为O yx O yxO yx O yxA B CD9.抛掷红、蓝两颗骰子,设事件A 为“红色骰子点数为3”,事件B 为“蓝色骰子出现的点数是奇数”,则=)(A B P A .21 B .61 C . 365 D .12110.若(12)nx -*()n ∈N 的展开式中4x 的系数为80,则(12)nx -的展开式中各项系数的绝对值之和为A .32B .81C .243D .25611.5名教师分配到3个学校支教,每个学校至少分配1名教师,甲、乙两个老师不能分配到同一个学校,则不同的分配方案有A .60 种B .72种C .96 种D .114种 12.若对()0,x ∈+∞恒有ln e 2ax x x-+≥,则实数a 的取值范围为 A .2(,]e -∞- B .2(,)e-∞- C .(,2e]-∞- D .(,2e)-∞-二、填空题:本大题共4小题,每小题5分,共20分。

安徽省淮北市2017-2018学年高二数学下学期第一次月考试题理(pdf)

安徽省淮北市2017-2018学年高二数学下学期第一次月考试题理(pdf)
试时间 选择题

钟满 题题
数学





ś
Ĵ
ś
复数 满
Ŝ
ă

Ĵ
则复数 虚 为
设实数 满 约 条

Ś
Ě满
Ě
Ě与
值为 则ã 与 夹 为
执图
框 图 则输 结 为
双线 兰
渐 线 离为
线






ĹĹ
椭圆兰 兰
别为 马 Á 过
î

标 别为
ĝį
线
别与 线
则 与
»
Ą 内 圆 积为 值为

值为
填题
胝题

项为


设直线 MA 的方程为:
y
3
k
x
9 4
联立{
y
3
k
x
9 4
y2 4 y 12 9 0
y2 4x
kk
yA
3
4 k
,
yA
4 k
3
∵直线 AM、BM 的斜率互为相反数
∴直线 MA 的方程为:y﹣3=﹣k(x﹣ 9 ), 4
同理可得:
yB
4 k
3
k AB
yA yB xB xA
yA yB y2B y2A

2 an 2an
,∴ 1 1 an1 an
1, 2
1 ∴数列 是等差数列.
an
(2)由(1)知
1 an
1 a1
n 1 1
2
n3 2
,所以 an
2

n3

江西省南康市2017_2018学年高二数学上学期第一次月考试题理2017110301158

江西省南康市2017_2018学年高二数学上学期第一次月考试题理2017110301158

江西省南康市 2017-2018学年高二数学上学期第一次月考试题 理一、选择题:本大题共 12小题,每小题 5分,共 60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.点 A (sin 2 019°,cos 2 019°)位于( )A .第一象限B .第二象限C .第三象限D .第四象限11 52. 在等比数列中,a 2=2,且,则的值为()aaan13aa413A . 4B .5C .6D .83. 若 函 数 f (x )同 时 具 有 以 下 两 个 性 质 : ①f (x )是 偶 函 数 ; ②对 任 意 实 数 x , 都 有f (x )f ( x ) f (x ).则的解析式可以是( )44ππA .f (x )=cos xB .f (x )=cos( C .f (x )=sin2)D .f (x )=2x +2) (4x +cos 6x4.若在一次试验中,测得(x ,y )的四组数值分别是 A (1,3),B (2,3.8),C (3,5.2),D (4,6).则y 与 x 之间的回归直线方程是( )A .y =x +1.9B .y =1.04x +1.9C .y =0.95x +1.04D .y =1.05x -0.95.某公共汽车的班车在 7:30,8:00,8:30三个时间发车,小明在 7:50至 8:30之间到达发车站 乘坐班车,且到达车站的时刻是随机的,则小明等车时间不超过 10分钟的概率是 ( )1 12 A .B .C .D .3 233 46. 执行如图所示程序框图,则输出的结果是1 A.63 B.4 9C .10 11 D .12x 0,7.已知x,y满足y x,(k为常数),若2最大值为3,则=( )z x y kx y k.A.1 B.2 C.3 D.4- 1 -8.某三棱锥的三视图如图所示,则其体积为3A.B.33223C.D.32639.抛一颗均匀的正方体骰子三次,则向上的面的点数依次成公差为1的等差数列的概率是()111A.B.C.D.54279136a b2210.已知函数f(x)|lg x|,a b 0,f(a)f(b),则的最小值等于()a bA.22B.5C.23D.2311. 过正方体ABCD A1B1C1D1的顶点A作直线l,使直线l分别与三条棱所成AB,AD,AA1的角都相等,则这样的直线l有()条A.1 B.2 C.3 D.412.已知数列:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,……,即此数列第一项是20,接下来两项是20,21,再接下来三项是20,21,22,依此类推,……,设S是此数列的前n项的和,n则S2017()A.26426B.26326C.26425D.26325二、填空题:本大题共4小题,每小题5分,满分20分.把正确答案填在答题卡中相应的横线上.13. 已知向量a (1,2),b (m,1),若向量a b与a垂直,则m14. 在边长为1的正方形ABCD内任取一点M,则AMB小于90 的概率为15. 已知圆x2y24,A(3,0),动点M在圆上运动,O为坐标原点,则OMA的最大值为- 2 -16. 在平面直角坐标系xoy中,已知点A,B分别在x,y轴上运动,且AB=2,点M在AB上,12且满足,则的取值范围为OM OA OB0M33三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17. (本小题满分10分)现有6道数学题,其中4道选择题,2道填空题,小明从中任取2道题,求(1)所取的2道题都是选择题的概率。

河北省唐山市开滦第二中学2020-2021学年高二下学期第一次月考数学试题(含答案解析)

河北省唐山市开滦第二中学2020-2021学年高二下学期第一次月考数学试题(含答案解析)

河北省唐山市开滦第二中学2020-2021学年高二下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.将5封信投入3个邮筒,不同的投法有()A .35种B .53种C .3种D .15种2.已知二项式((0)na >的展开式的第五、六项的二项式系数相等且最大,且展开式中2x 项的系数为84,则a 为A .2B .1C .15D .3103.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种4.某种产品的广告费支出x 与销售额y (单位:万元)之间有下表关系:x24568y3040605070y 与x 的线性回归方程为ˆ 6.517.5y x =+,当广告支出5万元时,随机误差的效应(残差)为()A .10-B .20-C .20D .105.将7个座位连成一排,安排4个人就坐,恰有两个空位相邻的不同坐法有A .240B .480C .720D .9606.5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有A .150种B .180种C .200种D .280种7.形如45132这样的数称为“波浪数”,即十位上的数字,千位上的数字均比与它们各自相邻的数字大,则由1,2,3,4,5可组成数字不重复的五位“波浪数”的个数为A .20B .18C .16D .118.有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有A .1344种B .1248种C .1056种D .960种二、双空题9.已知离散型随机变量X 的分布列如下:X 012Px4x5x由此可以得到期望E (X )=___________,方差D (X )=___________.三、填空题10.设随机变量()~3,1X N ,若()4P X p >=,则()24P X <<=___________.11.若2019220190122019(12)()x a a x a x a x x R -=++++∈ ,则010********()()()()a a a a a a a a ++++++++ =_______.(用数字作答)12.某学校要对如图所示的5个区域进行绿化(种花),现有4种不同颜色的花供选择,要求相邻区域不能种同一种颜色的花,则共有___________种不同的种花方法.13.用数字0,1,2,3,4,5,6组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.14.投掷3枚骰子,记事件A :3枚骰子向上的点数各不相同,事件B :3枚骰子向上的点数中至少有一个3点,则()P A B =___________.四、解答题15.从4名男生和2名女生中任选3人参加演讲比赛.(1)求所选3人既有女生又有男生的概率;(2)设随机变量ξ表示所选3人中女生的人数,求ξ的分布列和数学期望.16.考取驾照是一个非常严格的过程,有的人并不能够一次性通过,需要补考.现在有一张某驾校学员第一次考试结果汇总表,由于保管不善,只残留了如下数据(见下表):成绩性别合格不合格合计男性4510女性30合计105(1)完成此表;(2)根据此表判断:是否可以认为性别与考试是否合格有关?如果可以,请问有多大把握;如果不可以,试说明理由.参考公式:①相关性检验的临界值表:()20P k x ≥0.400.250.150.100.050.0250.100x 0.7081.3232.0722.7063.8415.0246.635②卡方值计算公式:()()()()()22n ad bc k a b c d a c b d -=++++.其中n a b c d =+++.17.有4个编号为1,2,3,4的小球,4个编号为1,2,3,4的盒子,现需把球全部放进盒子里,(最后结果用数字作答)(1)没有空盒子的方法共有多少种?(2)可以有空盒子的方法共有多少种?(3)恰有1个盒子不放球,共有多少种方法?(4)恰有一个小球放入自己编号的盒中,有多少种不同的放法?18.已知在()*n n N ∈的展开式中,第6项为常数项.()I 求n 的值;()II 求展开式的所有项的系数之和;()III 求展开式中所有的有理项.19.甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23.(1)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望;(2)求乙至多击目标2次的概率;(3)求甲恰好比乙多击中目标2次的概率.20.某银行招聘,设置了A,B,C三组测试题供竞聘人员选择.现有五人参加招聘,经抽签决定甲、乙两人各自独立参加A组测试,丙独自参加B组测试,丁、戊两人各自独立参加C组测试.若甲、乙两人各自通过A组测试的概率均为23;丙通过B组测试的概率为12;而C组共设6道测试题,每个人必须且只能从中任选4题作答,至少答对3题者就竞聘成功.假设丁、戊都只能答对这6道测试题中4道题.(1)求丁、戊都竞聘成功的概率;(2)记A、B两组通过测试的总人数为ξ,求ξ的分布列和期望.参考答案:1.B【分析】本题是一个分步计数问题,首先第一封信有3种不同的投法,第二封信也有3种不同的投法,以此类推每一封信都有3种结果,根据分步计数原理得到结果.【详解】:由题意知本题是一个分步计数问题,首先第一封信有3种不同的投法,第二封信也有3种不同的投法,以此类推每一封信都有3种结果,∴根据分步计数原理知共有35种结果,故选:B .2.B【分析】如果n 是奇数,那么是中间两项的二次项系数最大,如果n 是偶数,那么是最中间那项的二次项系数最大,由此可确定n 的值,进而利用展开式,根据二次项的系数,即可求出a 的值.【详解】∵二项式(0)na ⎛> ⎝的展开式的第五、六项的二项式系数相等且最大,∴9n =,又∵9⎛⎝的通项为:275999362199r r r r r r r r T C a x x a C x -----+==,令27526r-=,解得3r =,又∵展开式中2x 项的系数为84,即63984a C =,解得1a =或1a =-(舍去)故选B.【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,根据展开式中某项的系数求参数,属于中档题3.B【详解】分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.解:最左端排甲,共有55A =120种,最左端只排乙,最右端不能排甲,有1444C A =96种,根据加法原理可得,共有120+96=216种.故选B .【分析】随机误差的效应(残差)为观测值减去预测值【详解】当广告支出5万元时,观测值为60,预测值为ˆ 6.5517.550y=⨯+=,则随机误差的效应(残差)为605010-=.故选:D.5.B【详解】12或67为空时,第三个空位有4种选择;23或34或45或56为空时,第三个空位有3种选择;因此空位共有24+43=20⨯⨯,所以不同坐法有4420480A =,选B.6.A【详解】人数分配上有两种方式即122,,与113,,若是113,,,则有311352132260C C C A A ⨯=种若是122,,,则有122354232290C C C A A ⨯=种则不同的分派方法共有150种故选A点睛:本题主要考查的知识点是排列,组合及简单计数问题.由题意知本题是一个分类问题,根据题意可知人数分配上两种方式即122,,与113,,,分别计算出两种情况下的情况数目,相加即可得到答案.7.C【分析】根据“波浪数”的定义,可得“波浪数”中,十位数字,千位数字必有5、另一数是3或4,分别计算出每种的个数,相加即可.【详解】此“波浪数”中,十位数字,千位数字必有5、另一数是3或4;是4时“波浪数”有232312A A =;另一数3时4、5必须相邻即45132;45231;13254;23154四种.则由1,2,3,4,5可构成数字不重复的五位“波浪数”个数为16,故选C .【点睛】本题主要考查了排列组合的应用,要对该问题准确分类,做到不充分,不遗漏,正确求解结果,属于中档题.【详解】首先确定中间行的数字只能为1,4或2,3,共有1222C A 4=种排法.然后确定其余4个数字的排法数.用总数46A 360=去掉不合题意的情况数:中间行数字和为5,还有一行数字和为5,有4种排法,余下两个数字有24A 12=种排法.所以此时余下的这4个数字共有360412312-⨯=种方法.由乘法原理可知共有43121248⨯=种不同的排法,选B .9. 1.40.44【详解】根据分布列的性质可知:45101x x x x ++==,解得110x =.()042514 1.4E x x x x x =⨯++⨯==.()()()()2220 1.41 1.442 1.45 1.960.64 1.80.44D x x x x x x x =-⨯+-⨯+-⨯=++=.10.12p-【分析】由正态曲线的对称性直接求得.【详解】因为随机变量()~3,1X N ,()4P X p >=,所以由正态曲线的对称性可得:()2P X p <=,所以()()()2112442p P X P X P X <<=->=--<.故答案为:12p -.11.2017【分析】由题意,根据二项式的展开式,令0x =和1x =可得00120191,1a a a a =+++=- ,进而得01020201900122019()()()2018()a a a a a a a a a a a ++++++=+++++ ,即可求解,得到答案.【详解】由题意,可知201922018201901220182019(12)x a a x a x a x a x -=+++++ ,令0x =,可得01a =,令1x =,可得012320191a a a a a +++++=- ,所以01020302019001232019()()()()2018()a a a a a a a a a a a a a a ++++++++=++++++ 2018112017=⨯-=,故答案为2017.【点睛】本题主要考查了二项式定理的应用问题,其中解答中利用二项展开式,合理化简、赋值是解答此类问题的关键,着重考查了分析问题和解答问题的能力,属于基础题.12.72【分析】根据题意,分4步进行分析:依次分析区域1、2、3、4和5的着色方法数目,由分步计数原理计算可得答案.【详解】根据题意,分4步进行分析:①对于区域1,有4种颜色可选,即有4种着色方法,②对于区域2,与区域1相邻,有3种颜色可选,即有3种着色方法,③对于区域3,与区域1、2相邻,有2种颜色可选,即有2种着色方法,④对于区域4,若其颜色与区域2的相同,区域5有2种颜色可选,若其颜色与区域2的不同,区域4有1种颜色可选,区域5有1种颜色可选,所以区域4、5共有2+1=3种着色方法;综上,一共有4×3×2×(1+2)=72种着色方法;故答案为:7213.90【分析】一共有3个奇数,故只能是3个奇数加1个偶数,分类讨论该偶数是不是为0.【详解】一共有3个奇数,故只能是3个奇数加1个偶数.当该偶数不为0时,则有1434C A 72=种;当该偶数为0时,0不能作为首位,则有1333C A 18=种;故共有721890+=种.故答案为:90.14.6091【分析】分别求出事件B 和事件AB 所包含的基本事件的个数,再根据条件概率公式求解即可.【详解】解:投掷3枚骰子,3枚骰子向上的点数共有36216=种情况,其中3枚骰子向上的点数没有一个3点的有35125=种,则3枚骰子向上的点数中至少有一个3点有21612591-=种,即()91n B =,3枚骰子向上的点数中至少有一个3点且3枚骰子向上的点数各不相同有1235C A 60=种,即()60n AB =,所以()6091P A B =.故答案为:6091.15.(1)45(2)分布列见解析,1【分析】(1)根据对立事件的概率和为1得,之需求两人来自同一性别即可.(2)此分布为超几何分布,对应的概率为()32436C C C k kP k ξ-==.【详解】(1)3个人来自于两个不同专业的概率为3436C 41C 5-=(2)ξ可能取的值为0,1,2.()32436C C C k k P k ξ-==,0,1,2k =.∴ξ的分布列为ξ012P153515∴ξ的数学期望为1310121555E ξ=⨯+⨯+⨯=16.(1)答案见解析(2)可以,有97.5%的把握【分析】(1)直接根据题意即可完成表格;(2)计算得出2 6.109k ≈,根据独立性检验思想即可得结果.【详解】(1)成绩合格不合格合计性别男性451055女性302050合计7530105(2)假设0H :性别与考试是否合格无关,()2210545203010 6.10975305550k ⨯-⨯=≈⨯⨯⨯.若0H 成立,()25.2040.025P k ≥=,∵2 6.109 5.204k ≈≥,∴有97.5%的把握认为性别与考试是否合格有关.17.(1)24(2)256(3)144(4)8【分析】(1)4个球全放4个盒中,没有空盒则全排列即可求得.(2)有4个球,每个球有4种放法,此时随意放,盒子可以空也可以全用完.(3)恰有一个空盒,说明另外三个盒子都有球,而球共四个,必然有一个盒子中放了两个球.(4)恰有一个小球放入自己编号的盒中,选定从四盒四球中选定标号相同得球和盒,另外三球三盒不能对应共两种.【详解】(1)没有空盒子的方法:4个球全放4个盒中,没有空盒则全排列共44A 24=种;(2)可以有空盒子,有4个球,每个球有4种放法共44256=种;(3)恰有一个空盒子,说明另外三个盒子都有球,而球共四个,必然有一个盒子中放了两个球,先将四盒中选一个作为空盒,再将四球中选出两球绑在一起,再排列共123443C C A 144=种;(4)恰有一个小球放入自己编号的盒中,选定从四盒四球中选定标号相同得球和盒,另外三球三盒不能对应共两种,则共14C 28⋅=种.18.(I )10n =;(II )11024;(III )有理项分别为23454T x =,6638T =-;2945256T x -=⋅.【分析】()1在二项展开式的第六项的通项公式1055361()2n n T C x -=⋅-⋅中,令x 的幂指数等于0,求出n 的值;()2在二项展开式中,令1x =,可得展开式的所有项的系数之和;()3二项式()*n n N ∈的展开式的通项公式为10231101()2r r r r T C x -+=⋅-⋅,令1023r -为整数,可求出r 的值,即可求得展开式中所有的有理项.【详解】()1在()*n n N ∈的展开式中,第6项为1055361(2n n T C x -=⋅-⋅为常数项,1003n -∴=,10n ∴=.()2在()*10)n n N ∈=的展开式中,令1x =,可得展开式的所有项的系数之和为1011(1)21024-=.()3二项式()*n n N ∈的展开式的通项公式为10231101()2r r r r T C x -+=⋅-⋅,令1023r -为整数,可得2r =,5,8,故有理项分别为22231014544T C x x =⋅⋅=,50610163328T C x ⎛⎫=⋅-⋅=- ⎪⎝⎭;8822910145(2256T C x x --=⋅-⋅=⋅.【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r r r n T C a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.19.(1)分布列见解析,1.5;(2)1927;(3)124.【分析】(1)ξ的可能取值为0,1,2,3,根据独立事件概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得ξ的数学期望;(2)根据独立事件与对立事件的概率公式求解即可;(3)根据互斥事件的概率公式以及独立事件的概率公式求解即可.【详解】(1)ξ的概率分布列为ξ0123P()E ξ=0×+1×+2×+3×=1.5或()E ξ=3×=1.5.(2)乙至多击中目标2次的概率为1-C ()3=.(3)设甲恰好比乙多击中目标2次为事件A ,甲恰击中目标2次且乙恰击中目标0次为事件B 1,甲恰击中目标3次且乙恰击中目标1次为事件B 2,则A =B 1+B 2,B 1、B 2为互斥事件,P (A )=P (B 1)+P (B 2)=×+×=.20.(1)925(2)分布列见解析,116【分析】对于(1),因两人竞聘成功相互独立,算出一人竞聘成功概率即可.而一人竞聘成功概率,相当于从6道题中至少抽中3道会做题的概率;对于(2),由题意可知通过的总人数可能为3,2,1,0.又甲,乙,丙竞聘成功相互独立,结合题目条件可分别算得人数为3,2,1,0的概率,即可得答案.【详解】(1)设参加C 组测试的每个人竞聘成功为A 事件,则()43144246C C C 183C 155P A ++===又两人竞聘成功相互独立,故丁、戊都竞聘成功的概率等于3395525⨯=(2)由题意可知ξ可取0,1,2,3,又3人竞聘成功相互独立,则()21210112318P ξ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭,()221121512113323218P ξ⎛⎫⎛⎫⎛⎫==⨯⨯⨯-+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()22112182213323218P ξ⎛⎫⎛⎫⎛⎫==⨯⨯⨯+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()221433218P ξ⎛⎫==⨯= ⎪⎝⎭,故ξ的分布列为:ξ0123P 118518818418所以()15843311 0123 181********E=⨯+⨯+⨯+⨯==ξ.。

湖南师大附中高二第一次月考理科数学试卷

湖南师大附中高二第一学期第一次阶段性检测数学(理科)时量:120分钟 满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合⎭⎬⎫⎩⎨⎧≤<=2221x xA ,⎭⎬⎫⎩⎨⎧≤⎪⎭⎫ ⎝⎛-=021ln x x B ,则()=B C A R I ( )A. φB. ⎥⎦⎤ ⎝⎛-21,1C. ⎪⎭⎫⎢⎣⎡1,21D. (]1,1-2. 下列有关命题的说法正确的是( )A. 命题“若12=x ,则1=x ”的否命题为:“若12=x ,则1≠x ” B. “1-=x ”是“0652=--x x ”的必要不充分条件C. “2=a ”是函数“()x x f 4log =在区间()+∞,0上为增函数”的充分不必要条件D. 命题“若y x ≠,则y x sin sin ≠”的逆命题为真命题 3. 设正项等比数列{}n a 的前n 项和为n S ,且11<+nn a a ,若2053=+a a ,6453=a a ,则=4S ( ) A. 63或120B. 256C. 120D. 634. 若0>x 且1≠x ,则函数10log lg x x y +=的值域为( ) A. RB. [)+∞,2C. (]2,-∞-D. (]2,-∞-U [)+∞,25. 设集合⎭⎬⎫⎩⎨⎧<+-=011x x xA ,{}a x x B <-=1,则“1=a ”是“A ∩B ≠0”的( ) A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 已知等差数列{}n a 的公差0≠d ,且1a ,3a ,13a 成等比数列,若11=a ,n S 为数列{}n a 的前n 项和,则3162++n n a S 的最小值为( )A. 3B. 4C. 232-D.297. 4枝玫瑰花与5枝茶花的价格之和不小于22元,而6枝玫瑰花与3枝茶花的价格之和不大于24元,则2枝玫瑰花和3枝茶花的价格之差的最大值是( ) A. 1- B. 0 C. 1 D. 2 8. 设n S 为等差数列{}n a 的前n 项的和,且11=a ,12016201820162018=-S S ,则数列⎭⎬⎫⎩⎨⎧n S 1的前2018项和为( )A. 20171B. 20182017C.10092017D.201940369. 已知1-=+y x ,且x 、y 都是负数,则xyxy 1+有( ) A. 最小值2B. 最大值2C. 最小值417D. 最大值417-10. 已知函数()x x a x f cos sin +=(a 为常数,R x ∈)的图象关于直线6π=x 对称,则函数()x a x x g cos sin +=的图象( ) A. 关于直线3π=x 对称B. 关于点⎪⎭⎫⎝⎛0,32π对称 C. 关于点⎪⎭⎫⎝⎛0,3π对称D. 关于直线6π=x 对称11. 我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为M ,现将该金杖截成长度相等的10段,记第i 段的重量为()10,,2,1Λ=i a i ,且1021a a a <<<Λ,若M a i 548=,则=i ( ) A. 4B. 5C. 6D. 712. 已知函数()()1sin 2++=ϕωx x f ⎪⎭⎫⎝⎛≤>2,1πϕω,其图象与直线1-=y 相邻两个交点的距离为π,若()1>x f 对于任意的⎪⎭⎫⎝⎛-∈3,12ππx 恒成立,则ϕ的取值范围是( ) A. ⎥⎦⎤⎢⎣⎡3,12ππB. ⎥⎦⎤⎢⎣⎡2,12ππC. ⎥⎦⎤⎢⎣⎡3,6ππ D. ⎥⎦⎤⎝⎛2,6ππ二、填空题:本大题共4小题,每题5分,共20分.13. 已知向量()2,1=,()3,4=,且()t +⊥,则实数=t ;14. 太极图是以黑白两个鱼形纹组成的图形图案,它形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美,按照太极图的构图方法,在平面直角坐标系中,圆O 被x y4sin3π=的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为 ;15. 若直线()0,002>>=-+b a by ax 始终平分圆22222=--+y x y x 的周长,则ba 121+的最小值为 ; 16. 已知实数x 、y 满足⎪⎩⎪⎨⎧≥-+≥+-≤--022*******y x y x y x ,在这两个实数x 、y 之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为 .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分10分)已知()21cos 2sin 232-+=x x x f ,R x ∈ (Ⅰ)求函数()x f 的单调递增区间,并求满足函数()x f 在区间[]m m ,-上是单调递增函数的实数m 的最大值; (Ⅱ)若()310=x f ,⎥⎦⎤⎢⎣⎡∈125,60ππx ,求02sin x 的值.18. (本小题满分12分)如图,在平面四边形ABCD 中,AD AB ⊥,1=AB ,7=AC ,ABC ∆的面积23=∆ABC S ,574=DC . (Ⅰ)求BC 的长;(Ⅱ)求ACD ∠的大小.19. (本小题满分12分)在公比为q 的等比数列{}n a 中,已知161=a ,且1a ,22+a ,3a 成等差数列. (Ⅰ)求q ,n a ;(Ⅱ)若1<q ,求满足()101212321>-+-+--n n a a a a Λ的最小的正整数n 的值.20. (本小题满分12分)如图,几何体11DC A ABC -由一个正三棱柱截去一个三棱锥而得,4=AB ,231=AA ,11=D A ,⊥1AA 平面ABC ,M 为AB 的中点,E 为棱1AA 上一点,且//EM 平面D BC 1.(Ⅰ)若N 在棱BC 上,且NC BN 2=,证明://EN 平面D BC 1;(Ⅱ)过A 作平面BCE 的垂线,垂足为O ,确定O 的位置(说明做法及理由),并求线段OE 的长.21. (本小题满分12分)水培植需要一种植物专用营养液,已知每投放a (40≤<a 且R a ∈)个单位的营养液,它在水中释放的浓度y (克/升)随着时间x (天)变化的函数关系式近似为()x af y =,其中()()()⎪⎩⎪⎨⎧≤<-≤≤-+=5252033x x x x xx f ,若多次投放,则某一时刻水中的营养液浓度为每次投放的营养液在相应时刻所释放的浓度之和,根据经验,当水中营养液的浓度不低于4(克/升)时,它才能有效.(Ⅰ)若只投放一次2个单位的营养液,则有效时间最多可持续几天?(Ⅱ)若先投放2个单位的营养液,3天后再投放b 个单位的营养液,要使接下来的2个单位的营养液天中,营养液能够持续有效,试求b 的最小值.22. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,点⎪⎭⎫ ⎝⎛n S n n ,在直线21121+=x y 上. 正项数列{}n b 满足221++=n n n b b b ()*∈N n ,且273=b ,前3项和为39.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)求数列(){}na n a 25⋅-的前n 项和nT ;(Ⅲ)设数列()⎭⎬⎫⎩⎨⎧-212n n b b 的前n 项和为n M ,求证:对任意*∈N n ,都有2<n M .。

【研】2017-2018学年第二学期第一次月考模拟试卷(高二理)数学答案

【研】2017-2018学年高二理科数学第二学期第一次月考模拟试卷(参考答案)一.选择题(共12小题)1.一个物体的运动方程为s=t2﹣t+2(其中s的单位是米,t的单位是秒),那么物体在t=4秒的瞬时速度是()A.6米/秒B.7米/秒C.8米/秒D.9米/秒【分析】根据导数的物理意义,求出函数在t=4处的导数即可.【解答】解:∵s=s(t)=t2﹣t+2,∴s'(t)=2t﹣1,∴根据导数的物理意义可知物体在4秒末的瞬时速度为为s'(4),即s'(4)=2×4﹣1=7(米/秒),故选:B.【点评】本题主要考查导数的物理意义,根据导数的公式直接进行计算即可,比较基础.等于()2.已知函数f(x)=2x2﹣4的图象上一点(1,﹣2)及邻近一点(1+△x,﹣2+△y),则△△A.4 B.4△x C.4+2△x D.4+2(△x)2【分析】求出f(1+△x),△y=f(1+△x)﹣f(1),结合定义求解即可.【解答】解:∵△y=2(1+△x)2﹣4﹣(2﹣4)=2△x2+4△x,=2△x+4,∴△△故选:C.【点评】本题简单的考察变化率的概念,关键是求出自变量的变化量,函数值的变化量,化简求值,属于容易题.3.设a>0,b>0.若是3a与3b的等比中项,则的最小值为()A.8 B.4 C.1 D.【分析】由题设条件中的等比关系得出a+b=1,代入中,将其变为2+,利用基本不等式就可得出其最小值【解答】解:因为3a•3b=3,所以a+b=1,,当且仅当即时“=”成立,故选择B.【点评】本小题考查指数式和对数式的互化,以及均值不等式求最值的运用,考查了变通能力.4.设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定【分析】由条件利用正弦定理可得sinBcosC+sinCcosB=sinAsinA,再由两角和的正弦公式、诱导公式求得sinA=1,可得A=,由此可得△ABC的形状.【解答】解:△ABC的内角A,B,C所对的边分别为a,b,c,∵bcosC+ccosB=asinA,则由正弦定理可得sinBcosC+sinCcosB=sinAsinA,即sin(B+C)=sinAsinA,可得sinA=1,故A=,故三角形为直角三角形,故选B.【点评】本题主要考查正弦定理以及两角和的正弦公式、诱导公式的应用,根据三角函数的值求角,属于中档题.5.设函数f(x)可导,则△ △△等于()A.f′(1)B.3f′(1)C.D.f′(3)【分析】利用导数的定义即可得出.【解答】解:△ △△=△△△=.故选C.【点评】本题考查了导数的定义,属于基础题.6.设曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.﹣2 C.﹣D.【分析】求出函数的导数,切线的斜率,由两直线垂直的条件,即可得到a的值.【解答】解:∵y=,∴y′==,∴曲线y=在点(3,2)处的切线的斜率k=﹣,∵曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,∴直线ax+y+1=0的斜率k′=﹣a×=﹣1,即a=﹣2.故选:B.【点评】本题考查导数的几何意义的求法,考查导数的运算,解题时要认真审题,仔细解答,注意直线与直线垂直的性质的灵活运用.7.已知函数f(x)=,则y=f(x)的图象大致为()A. B. C.D.【分析】利用函数的定义域与函数的值域排除B,D,通过函数的单调性排除C,推出结果即可.【解答】解:令g(x)=x﹣lnx﹣1,则,由g'(x)>0,得x>1,即函数g(x)在(1,+∞)上单调递增,由g'(x)<0得0<x<1,即函数g(x)在(0,1)上单调递减,所以当x=1时,函数g(x)有最小值,g(x)min=g(0)=0,于是对任意的x∈(0,1)∪(1,+∞),有g(x)≥0,故排除B、D,因函数g(x)在(0,1)上单调递减,则函数f(x)在(0,1)上递增,故排除C,故选A.【点评】本题考查函数的单调性与函数的导数的关系,函数的定义域以及函数的图形的判断,考查分析问题解决问题的能力.8.已知等比数列{a n},且a4+a8=,则a6(a2+2a6+a10)的值为()A.π2B.4 C.πD.﹣9π【分析】设等比数列{a n}的公比为q,由dx表示圆的x2+y2=4的面积的,可得dx=π.由于a4+a8=dx=π=,可得a6(a2+2a6+a10)==π2.【解答】解:设等比数列{a n}的公比为q,∵dx表示圆的x2+y2=4的面积的,∴dx==π.∴a4+a8=dx=π=,∴a6(a2+2a6+a10)===π2.故选:A.【点评】本题考查了定积分的几何意义、等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.9.设函数f(x)在R上可导,其导函数f′(x),且函数f(x)在x=﹣2处取得极小值,则函数y=xf′(x)的图象可能是()A.B.C. D.【分析】由题设条件知:当x>﹣2时,xf′(x)<0;当x=﹣2时,xf′(x)=0;当x<﹣2时,xf′(x)>0.由此观察四个选项能够得到正确结果.【解答】解:∵函数f(x)在R上可导,其导函数f′(x),且函数f(x)在x=﹣2处取得极小值,∴当x>﹣2时,f′(x)>0;当x=﹣2时,f′(x)=0;当x<﹣2时,f′(x)<0.∴当x>﹣2时,xf′(x)<0;当x=﹣2时,xf′(x)=0;当x<﹣2时,xf′(x)>0.故选A.【点评】本题考查利用导数研究函数的极值的应用,解题时要认真审题,注意导数性质和函数极值的性质的合理运用.10.设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有<恒成立,则不等式x2f(x)>0的解集是()A.(﹣2,0)∪(2,+∞)B.(﹣2,0)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣2)∪(0,2)【分析】首先根据商函数求导法则,把<化为[]′<0;然后利用导函数的正负性,可判断函数y=在(0,+∞)内单调递减;再由f(2)=0,易得f(x)在(0,+∞)内的正负性;最后结合奇函数的图象特征,可得f(x)在(﹣∞,0)内的正负性.则x2f(x)>0⇔f(x)>0的解集即可求得.【解答】解:因为当x>0时,有<恒成立,即[]′<0恒成立,所以在(0,+∞)内单调递减.因为f(2)=0,所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.又因为f(x)是定义在R上的奇函数,所以在(﹣∞,﹣2)内恒有f(x)>0;在(﹣2,0)内恒有f(x)<0.又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.所以答案为(﹣∞,﹣2)∪(0,2).故选D.【点评】本题主要考查函数求导法则及函数单调性与导数的关系,同时考查了奇偶函数的图象特征.11.若过点P(a,a)与曲线f(x)=xlnx相切的直线有两条,则实数a的取值范围是()A.(﹣∞,e)B.(e,+∞)C.(0,)D.(1,+∞)【分析】设切点为(m,mlnm),求出导数,求得切线的斜率,由两点的斜率公式可得=,设g(m)=,求出导数和单调区间,可得最大值,由题意可得0<<,解不等式即可得到所求范围.【解答】解:设切点为(m,mlnm),f(x)=xlnx的导数为f′(x)=1+lnx,可得切线的斜率为1+lnm,由切线经过点P(a,a),可得1+lnm=,化简可得=,(*),由题意可得方程(*)有两解,设g(m)=,可得g′(m)=,当m>e时,g′(m)<0,g(m)递增;当0<m<e时,g′(m)>0,g(m)递减.可得g(m)在m=e处取得最大值,即有0<<,解得a>e.故选:B.【点评】本题考查导数的运用:求切线的斜率和单调区间、极值和最值,考查函数方程的转化思想,以及运算能力,属于中档题.12.若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是()A.3 B.4 C.5 D.6【分析】求导数f′(x),由题意知x1,x2是方程3x2+2ax+b=0的两根,从而关于f(x)的方程3(f(x))2+2af (x)+b=0有两个根,作出草图,由图象可得答案.【解答】解:f′(x)=3x2+2ax+b,x1,x2是方程3x2+2ax+b=0的两根,由3(f(x))2+2af(x)+b=0,得x=x1,或x=x2,即3(f(x))2+2af(x)+b=0的根为f(x)=x1或f(x2)=x2的解.如图所示,由图象可知f(x)=x1有2个解,f(x)=x2有1个解,因此3(f(x))2+2af(x)+b=0的不同实根个数为3.故选A.【点评】考查函数零点的概念、以及对嵌套型函数的理解,考查数形结合思想.二.填空题(共4小题)13.若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k=﹣1.【分析】先求出函数的导数,再由题意知在1处的导数值为0,列出方程求出k的值.【解答】解:由题意得,y′=k+,∵在点(1,k)处的切线平行于x轴,∴k+1=0,得k=﹣1,故答案为:﹣1.【点评】本题考查了函数导数的几何意义应用,难度不大.14.已知f(x)=2x3﹣6x2+m(m为常数),在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值为﹣37.【分析】本题是典型的利用函数的导数求最值的问题,只需要利用已知函数的最大值为3,进而求出常熟m 的值,即可求出函数的最小值.【解答】解:由已知,f′(x)=6x2﹣12x,有6x2﹣12x≥0得x≥2或x≤0,因此当x∈[2,+∞),(﹣∞,0]时f(x)为增函数,在x∈[0,2]时f(x)为减函数,又因为x∈[﹣2,2],所以得当x∈[﹣2,0]时f(x)为增函数,在x∈[0,2]时f(x)为减函数,所以f(x)max=f(0)=m=3,故有f(x)=2x3﹣6x2+3所以f(﹣2)=﹣37,f(2)=﹣5因为f(﹣2)=﹣37<f(2)=﹣5,所以函数f(x)的最小值为f(﹣2)=﹣37.答案为:﹣37【点评】本题考查利用函数的导数求最值的问题,解一元二次不等式的方法.15.已知F1、F2为椭圆=1的两个焦点,过F1的直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB|= 8.【分析】运用椭圆的定义,可得三角形ABF2的周长为4a=20,再由周长,即可得到AB的长.【解答】解:椭圆=1的a=5,由题意的定义,可得,|AF1|+|AF2|=|BF1|+|BF2|=2a,则三角形ABF2的周长为4a=20,若|F2A|+|F2B|=12,则|AB|=20﹣12=8.故答案为:8【点评】本题考查椭圆的方程和定义,考查运算能力,属于基础题.16.对正整数n,设曲线y=x n(1﹣x)在x=2处的切线与y轴交点的纵坐标为a n,则数列的前n项和的公式是2n+1﹣2.【分析】欲求数列的前n项和,必须求出在点(1,1)处的切线方程,须求出其斜率的值即可,故先利用导数求出在x=2处的导函数值,再结合导数的几何意义即可求出切线的斜率即得直线方程进而得到切线与y轴交点的纵坐标.最后利用等比数列的求和公式计算,从而问题解决.【解答】解:y′=nx n﹣1﹣(n+1)x n,曲线y=x n(1﹣x)在x=2处的切线的斜率为k=n2n﹣1﹣(n+1)2n切点为(2,﹣2n),所以切线方程为y+2n=k(x﹣2),令x=0得a n=(n+1)2n,令b n=.数列的前n项和为2+22+23+…+2n=2n+1﹣2.故答案为:2n+1﹣2.【点评】本题考查应用导数求曲线切线的斜率,数列通项公式以及等比数列的前n项和的公式.解后反思:应用导数求曲线切线的斜率时,要首先判定所经过的点为切点.否则容易出错.二.解答题(共6小题)17.已知数列{a n}的前n项和为S n,且S n=2a n﹣2(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{S n}的前n项和T n.【分析】(Ⅰ)直接利用递推关系式求出数列的通项公式.(Ⅱ)利用数列的通项公式,直接利用等比数列的前n项和公式求出结果.【解答】解:(Ⅰ)列{a n}的前n项和为S n,且S n=2a n﹣2①.则:S n+1=2a n+1﹣2②,②﹣①得:a n+1=2a n,即:(常数),当n=1时,a1=S1=2a1﹣2,解得:a1=2,所以数列的通项公式为:,(Ⅱ)由于:,则:,=,=2n+1﹣2.﹣2﹣2﹣ (2)=2n+2﹣4﹣2n.【点评】本题考查的知识要点:数列的通项公式的求法,等比数列前n项和的公式的应用.18.双曲线C与椭圆+=1有相同焦点,且经过点(4,).(1)求双曲线的方程;(2)若F1,F2是双曲线C的两个焦点,点P在双曲线C上,且∠F1PF2=60°,求△F1PF2的面积.【分析】(1)求出椭圆的焦点,设出双曲线的方程,代入点的坐标,解方程即可得到双曲线的方程;(2)运用余弦定理和双曲线的定义及面积公式,即可计算得到所求面积.【解答】解:(1)椭圆的焦点坐标为(﹣3,0),(3,0),设双曲线的方程为﹣=1,又因为双曲线过点(4,),则=1,即有a4﹣40a2+144=0,解得a2=4或a2=36(舍去)所以双曲线的方程为=1;(2)在△F1PF2中,由余弦定理得:|F1F2|2=|PF1|2+|PF2|2﹣2|PF1|•|PF2|•cos60°=(|PF1|﹣|PF2|)2+|PF1|•|PF2|又|F1F2|2=4c2=36,(|PF1|﹣|PF2|)2+|=4a2=16,则|PF1|•|PF2|=20,则△ =|PF1|•|PF2|•sin60°==5.【点评】本题考查椭圆和双曲线的方程和性质,考查双曲线的定义,同时考查余弦定理和面积公式的运用,考查运算能力,属于基础题.19.已知函数f(x)=alnx﹣bx2,若函数f(x)的图象在x=1处与直线y=﹣相切.(Ⅰ)求实数a,b的值;(Ⅱ)求函数f(x)在[,e]上的最大值.【分析】(Ⅰ)求出原函数的导函数,得到f′(1),由f′(1)=0且f(1)=﹣,列方程组求得实数a,b的值;(Ⅱ)由(Ⅰ)求得函数f(x)的解析式,然后利用导数求函数在[,e]上的最大值.【解答】解:(Ⅰ)由f(x)=alnx﹣bx2,得f′(x)=﹣2bx,∴f′(1)=a﹣2b,则,解得a=1,b=;(Ⅱ)由(Ⅰ)知,f(x)=lnx﹣x2.f′(x)=﹣x=(x>0).∴当x∈(,1)时,f′(x)>0,当x∈(1,e)时,f′(x)<0.∴f(x)在(,1)上为增函数,在(1,e)上为减函数,则f(x)max=f(1)=﹣.【点评】本题考查利用导数求过曲线上某点处的切线方程,训练了利用导数求函数在闭区间上的最值,是中档题.20.已知函数f(x)=x3﹣x2+ax﹣a (a∈R).(1)当a=﹣3时,求函数f(x)的极值;(2)若函数f(x)的图象与x轴有且只有一个交点,求a的取值范围.【分析】(1)当a=﹣3时,求出f′(x)=x2﹣2x﹣3=(x﹣3)(x+1).令f′(x)=0,得x1=﹣1,x2=3.根据x<﹣1,﹣1<x<3,x>3三种情况分类讨论,利用导数性质能求出f(x)的极值.(2)由f′(x)=x2﹣2x+a,△=4﹣4a=4(1﹣a),当a≥1时,f(x)在R上单调递增,函数f(x)的图象与x轴有且只有一个交点;当a<1,则△>0,f′(x)=0有两个不相等的实数根,不妨设为x1,x2,(x1<x2),从而x1+x2=2,x1x2=a,由f(x1)•f(x2)>0,得到a>0;当0<a<1时,f(0)=﹣a<0,f(3)=2a>0,从而当0<a<1时,函数f(x)的图象与x轴有且只有一个交点.由此能求出a的取值范围.【解答】解:(1)当a=﹣3时,f(x)=﹣x2﹣3x+3,∴f′(x)=x2﹣2x﹣3=(x﹣3)(x+1).令f′(x)=0,得x1=﹣1,x2=3.当x<﹣1时,f′(x)>0,则f(x)在(﹣∞,﹣1]上单调递增,当﹣1<x<3时,f′(x)<0,则f(x)在(﹣1,3)上单调递减,当x>3时,f′(x)>0,f(x)在(3,+∞)上单调递增.∴当x=﹣1时,f(x)取得极大值为f(﹣1)=﹣;当x=3时,f(x)取得极小值为f(3)=.(2)∵f′(x)=x2﹣2x+a,∴△=4﹣4a=4(1﹣a).①若a≥1,则△≤0,∴f′(x)≥0在R上恒成立,∴f(x)在R上单调递增.∵f(0)=﹣a<0,f(3)=2a>0,∴当a≥1时,函数f(x)的图象与x轴有且只有一个交点.②若a<1,则△>0,∴f′(x)=0有两个不相等的实数根,不妨设为x1,x2,(x1<x2).∴x1+x2=2,x1x2=a.当x变化时,f′(x),f(x)的取值情况如下表:∵,∴a=﹣.∴===.同理f(x2)=.∴f(x1)•f(x2)=•[]•[]=[(x1x2)2+3(a﹣2)()+9(a﹣2)2]=a{a2+3(a﹣2)[(x1+x2)2﹣2x1x2]+9(a﹣2)2}=a(a2﹣3a+3).令f(x1)•f(x2)>0,解得a>0.而当0<a<1时,f(0)=﹣a<0,f(3)=2a>0,故当0<a<1时,函数f(x)的图象与x轴有且只有一个交点.综上所述,a的取值范围是(0,+∞).【点评】本题考查函数的极值的求法,考查实数的取值范围的求法,考查导数性质、导数的几何意义等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类讨论与整合思想、函数与方程思想,是中档题.21.设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.【分析】(1)求出函数的导数,求出极值点,利用导函数的符号,判断函数的单调性即可.(2)化简f(x)=(1﹣x)(1+x)e x.f(x)≤ax+1,下面对a的范围进行讨论:①当a≥1时,②当0<a<1时,设函数g(x)=e x﹣x﹣1,则g′(x)=e x﹣1>0(x>0),推出结论;③当a≤0时,推出结果,然后得到a的取值范围.【解答】解:(1)因为f(x)=(1﹣x2)e x,x∈R,所以f′(x)=(1﹣2x﹣x2)e x,令f′(x)=0可知x=﹣1±,当x<﹣1﹣或x>﹣1+时f′(x)<0,当﹣1﹣<x<﹣1+时f′(x)>0,所以f(x)在(﹣∞,﹣1﹣),(﹣1+,+∞)上单调递减,在(﹣1﹣,﹣1+)上单调递增;(2)由题可知f(x)=(1﹣x)(1+x)e x.下面对a的范围进行讨论:①当a≥1时,设函数h(x)=(1﹣x)e x,则h′(x)=﹣xe x<0(x>0),因此h(x)在[0,+∞)上单调递减,又因为h(0)=1,所以h(x)≤1,所以f(x)=(1+x)h(x)≤x+1≤ax+1;②当0<a<1时,设函数g(x)=e x﹣x﹣1,则g′(x)=e x﹣1>0(x>0),所以g(x)在[0,+∞)上单调递增,又g(0)=1﹣0﹣1=0,所以e x≥x+1.因为当0<x<1时f(x)>(1﹣x)(1+x)2,所以(1﹣x)(1+x)2﹣ax﹣1=x(1﹣a﹣x﹣x2),取x0=∈(0,1),则(1﹣x0)(1+x0)2﹣ax0﹣1=0,所以f(x0)>ax0+1,矛盾;③当a≤0时,取x0=∈(0,1),则f(x0)>(1﹣x0)(1+x0)2=1≥ax0+1,矛盾;综上所述,a的取值范围是[1,+∞).【点评】本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查转化思想以及计算能力.22.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【分析】(Ⅰ)把a的值代入f(x)中,求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率,可得曲线y=f(x)在x=1处的切线方程;(Ⅱ)求出f(x)的导函数,分a大于等于0和a小于0两种情况讨论导函数的正负,进而得到函数的单调区间;(Ⅲ)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)min,分别求出相应的最大值,即可求得实数a的取值范围.【解答】解:(Ⅰ)由已知>,f'(1)=2+1=3,所以斜率k=3,又切点(1,2),所以切线方程为y﹣2=3(x﹣1)),即3x﹣y﹣1=0故曲线y=f(x)在x=1处切线的切线方程为3x﹣y﹣1=0.﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)>①当a≥0时,由于x>0,故ax+1>0,f'(x)>0,所以f(x)的单调递增区间为(0,+∞).﹣(6分)②当a<0时,由f'(x)=0,得.在区间,上,f'(x)>0,在区间,上,f'(x)<0,所以,函数f(x)的单调递增区间为,,单调递减区间为,.﹣﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)由已知,转化为f(x)max<g(x)min.g(x)=(x﹣1)2+1,x∈[0,1],所以g(x)max=2由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在,上单调递增,在,上单调递减,故f(x)的极大值即为最大值,,所以2>﹣1﹣ln(﹣a),解得<.﹣﹣﹣(12分)【点评】此题考查学生会利用导数求曲线上过某点切线方程的斜率,会利用导数研究函数的单调性,掌握不等式恒成立时所满足的条件,是一道中档题.。

2017-2018学年高二下学期第一次月考理数试题含答案

长沙市第一中学2017-2018学年度高二第二学期第一次阶段性检测理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的•1. 下列数据中,拟合效果最好的回归直线方程,其对应的相关指数R2为( )A. 0.27 B . 0.85 C . 0.96 D . 0.5Z +12. 已知复数Z满足i,则复数Z的虚数为( )1-iA. -i B . i C . 1 D . -13. 已知U B(n,0.3) , D『:=:2.1,则n 的值为( )A. 10 B . 7 C . 3 D . 6e 14. 积分1 ( 2x)dx的值为( )XA. 1 B . e C. e 1 D . e25. 已知对任意实数x,有f(-x) - -f(x) , g(-x)=g(x),且x ::: 0时,导函数分别满足f'(x) 0, g'(x) ::0,则x 0 时,成立的是( )A f (x) :>0,g (x) cO B.f (x) >0,g (x) >0C. f (x) :: 0,g (x) :: 0D.f (x) :: 0, g (x) 06.以下命题的说法错误的是( )2A.命题“若x -3x • 2 = 0,则2x =1 ”的逆否命题为“若X = 1,则x - 3x • 2 = 0B. “ x = 1 ”是“ X2 -3x • 2 = 0 ”的充分不必要条件C. 若p q为假命题,则p, q均为假命题D. 对于命题p : -k R 使得x2 x V : 0,则—p : 一x • R,均有x2• x T 一07. 已知随机变量XLN(3,;「2),若P(X :a)龙4 ,则P(a <X :::6-a)的值为( )A. 0.4 B . 0.2 C. 0.1 D . 0.68. 对于不等式n2■ n ::: n 1(^ N*),某同学应用数学归纳法的证明过程如下:(1)当口曰时,/2• 1 :::1 • 1,不等式成立;(2)假设当n二k(k・N*)时,不等式成立,即• k k ::k 1,即当n =k 1 时,(k 1) (k 1) = , k 3k 2 ::: (k 3k 2) (k 2) = (k 2)2 = (k 1)1 ,当n二k 1时,不等式成立,则上述证法( )A.过程全部正确 B . n = 1验证不正确C.归纳假设不正确 D .从n=k到n = k 1的推理不正确9.将A,B,C,D,E排成一列,要求A,B,C在排列中顺序为“ A, B,C ”或“ C,B, A ”( A,B,C可以不相邻),这样的排列数有( )A. 12 种B . 20 种C. 40 种D . 60 种2 2X y10•点P是椭圆1上一点,F1,F2是椭圆的两个焦点,且PF1F2的内切圆半径为25 161, 当P在第一象限时,P点的纵坐标为( )A.8B.3C. 2 D.53211.点P为曲线(x-1)2• (y -2)2 =9(y — 2)上任意一点,则* 、3y的最小值为( )A.2 3 -5B.2,3-2C.5、3 1 D .厶3 112.设集合A二{1,2,3, |||,n} (n・N*,n_3),记A n中的元素组成的非空子集为A'(「N*,i =1,2,3, Hl,2n-1),对于{1,2,3,11|,2n-1} , A中的最小元素和为S n ,A. 32 B . 57 C. 75 D . 480二、填空题(每题5分,满分20分,将答案填在答题纸上)P(K2—G)0.500.400.250.150 . 10 0.050.0250.010.0050.001k。

安徽省蚌埠市2017-2018学年高二数学8月月考试题(含解析)

2017年8月初月考新高二数学试卷一、选择题(本大题共12小题,共60分)1. 已知tanα=2,tanβ=3,则tan(α+β)=()A. 1B. -1C.D.【答案】B.....................本题选择B选项.2. 在△ABC中,∠A=60°,a=,b=4,则满足条件的△ABC()A. 有两个B. 有一个C. 不存在D. 有无数多个【答案】A【解析】在△ABC中,∵∠A=60°,a=,b=4,∴由正弦定理得,则,∵b>a,∴B>60°,故B有一个为锐角,一个为钝角,满足条件的△ABC有2个。

本题选择A选项.3. 不等式ax2+bx+2>0的解集是,则a-b等于()A. -10B. 10C. -14D. 14【答案】A【解析】由题意可得方程ax2+bx+2=0的解为或,故则a=−12,b=−2,a-b=−10.本题选择A选项.4. 已知数据x1,x2,x3,…,x200是上海市普通职工的2016年的年收入,设这200个数据的平均数为x,中位数为y,方差为z,如果再加上中国首富马云的年收入x201则这201个数据中,下列说法正确的是()A. x大大增大,y一定变大,z可能不变B. x可能不变,y可能不变,z可能不变C. x大大增大,y可能不变,z也不变D. x大大增大,y可能不变,z变大【答案】D【解析】试题分析::∵数据x1,x2,x3,…,x200是上海普通职工n(n≥3,n∈N*)个人的年收入,而x201为世界首富的年收入则x201会远大于x1,x2,x3, (x200)故这21个数据中,年收入平均数大大增大,但中位数可能不变,也可能稍微变大,但由于数据的集中程序也受到x201比较大的影响,而更加离散,则方差变大考点:极差、方差与标准差5. 己知α为第二象限角,cosa=-,则sin2α=()A. -B. -C.D.【答案】A【解析】∵α为第二象限角,,∴,∴.本题选择A选项.6. 一个三角形的三个内角A、B、C成等差数列,那么tan(A+C)的值是()A. B. C. D. 不确定【答案】B【解析】试题分析:因为,三角形的三个内角A、B、C成等差数列,所以,由三角形内角和定理,B=60°,A+C=120°,=,故选B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷(理科)
时间:120分钟 满分:150
一、选择题(本大题共12小题,每小题5分,共60分)
1.在等差数列{}n a 中已知,13,2321=+=a a a ,则654a a a ++等于 ( )
A .40
B .42
C .43
D .45
2.等比数列{}n a 中2,811==
q a ,则与的等比中项是 ( ) A . B.4 C .41± D.4
1 3.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知32cos ,2,5=
==
A c a ,则b 等于( ) A .
B .
C .2
D .3 4.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( )
A .有 一个解
B .有两个解
C .无解
D .不能确定
5.设11->>>b a ,则下列不等式中恒成立的是( )
A .b a 22>
B .b a 11>
C .b
a 11<D .2
b a > 6.已知等差数列{}n a 的前项和为,,15,555==s a 则数列⎭⎬⎫⎩⎨⎧⋅+11n n a a 的前100项的和为 ( )
A .101100
B .10199
C .10099
D .100
101 7.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半
时间跑步,如果两人步行速度、跑步速度均相同,则( )
A .甲先到教室
B .乙先到教室
C .两人同时到教室
D .谁先到教室不确定
8. 在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( ) A. 3400米 B. 3
3400米C. 200 米 D. 200米 9.等差数列{}n a 中,0,01110><a a ,且a 11>|a 10|,s n 为数列{}n a 的前n 项和,则使0>n s 的的最小值为( )
A .21
B .20
C .10
D .11
10.设△ABC 内角A 、B 、C 所对的边分别为a 、b 、c ,若三边的长为连续的三个正整数,且A>B>C,,cos 203A a b =则A sin :B sin :C sin 为( )
A .4:3:2
B .5:6:7
C .5:4:3
D .6:5:4
11.在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知,
3,4,2)4tan(
===+a B A ππ则△ABC 的面积为( )
A .18
B .9
C .53
D .59
12.如图,点列,分别在某锐角的两边上,且*,2211|,|||N n A A A A A A n n n n n n ∈≠=++++ *,2211|,|||N n B B B B B B n n n n n n ∈≠=++++(p ≠Q 表示点P 与Q 不重合)若n n n n s B A d |,|= 为△1+n n n B B A 的面积,则( )
A.是等差数列
B.是等差数列
C.{}n d 是等差数列
D.{}
2n d 是等差数列 二、填空题(本大题共4小题,每小题5分,共20分)
13.不等式13x
<的解集为 。

14.设等差数列{}n a 的公差d ≠0,又139,,a a a 成等比数列,则1392410
a a a a a a ++=++。

15. 给出下列命题:①在△ABC 中,若
0>⋅,则△ABC 是钝角三角形。


在△ABC 中,若0tan tan cos <⋅⋅C B A ,则△ABC 是钝角三角形。

③在△ABC 中,若B A B A cos cos sin sin <,则△ABC 是钝角三角形。

④在△ABC 中,若B b A a cos cos =,则△ABC 是等腰三角形。

其中,正确命题序号是。

16.在正项等比数列{}n a 中,32
1765=+=a a a ,。

则满足n n a a a a a a 2121>++的最大正整数n 的值为。

三、解答题(本大题共6小题,共70分,解答题应写出文字说明、证明过程或演算步骤)
17、(本小题10分)已知等差数列}{n a 满足2,103421=-=+a a a a 。

(1)求}{n a 的通项公式;
(2)设等比数列}{n b 满足7332,a b a b ==,问:与数列}{n a 的第几项相等?。

相关文档
最新文档