数学7上:绝对值分类讨论思想,8道培优拓展练习题,考试经典常见

合集下载

七年级数学上册经典题型及解题思路绝对值

七年级数学上册经典题型及解题思路绝对值

七年级数学上册经典题型及解题思路绝对值一、绝对值的基本概念绝对值就是一个数在数轴上所对应点到原点的距离,用“ ”来表示。

比如说, 5 = 5,因为5这个点到原点的距离就是5; -3 = 3, -3到原点的距离是3。

这就像是我们在一个大操场上,以原点为起点,某个点离起点的距离就是这个数的绝对值。

二、经典题型及解题思路1. 简单求值题题型:已知a = -2,求 a 的值。

解题思路:根据绝对值的定义,一个负数的绝对值是它的相反数。

因为a=-2是负数,所以 a =-(-2)=2。

2. 含有字母的绝对值化简题题型:化简 x - 3 ,其中x<3。

解题思路:当x<3时,x - 3是负数。

根据绝对值的性质,负数的绝对值是它的相反数。

所以 x - 3 =-(x - 3)=3 - x。

就好像你欠别人钱,欠的钱数是x - 3,但是从绝对值的角度看,就相当于你要还的钱数是它的相反数3 - x。

3. 多个绝对值相加的求值题题型:已知 x + y = 0,求x和y的值。

解题思路:因为绝对值是非负的,两个非负的数相加等于0,只有当这两个数都为0的时候才成立。

所以 x = 0,x = 0; y = 0,y = 0。

这就好比两个口袋里装的东西都是正数或者0,要让两个口袋里东西的总数是0,那每个口袋里只能是0啦。

4. 绝对值方程题题型:解方程 x+1 = 3。

解题思路:根据绝对值的定义,x+1的值可以是3或者 - 3。

当x+1 = 3时,x = 2;当x+1=-3时,x=-4。

这就像是有两条路可以走,一条路让你得到3这个结果,另一条路让你得到 - 3这个结果。

5. 绝对值不等式题题型:解不等式 x - 2 <1。

解题思路:根据绝对值不等式的解法, x - 2 <1等价于 - 1<x - 2<1。

先解左边的不等式x - 2>-1,得到x>1;再解右边的不等式x - 2<1,得到x<3。

七年级数学(上)思维特训(4):绝对值与分类讨论(含答案)

七年级数学(上)思维特训(4):绝对值与分类讨论(含答案)

思维特训(四) 绝对值与分类讨论方法点津 ·1.由于去掉绝对值符号时,要分三种情况:即正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数,所以涉及绝对值的运算往往要分类讨论.用符号表示这一过程为:||a =⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0).2.由于在数轴上到原点的距离相等的点(非原点)有两个,一个点表示的数是正数,另一个点表示的数是负数,因此知道某个数的绝对值求该数时,往往需要分两种情况讨论. 用符号表示这个过程为:若||x =a (a >0),则x =±a .3.分类讨论的原则是不重不漏,一般步骤为:①分类;②讨论;③归纳.典题精练 ·类型一 以数轴为载体的绝对值的分类讨论1.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a +4|+(b -1)2=0.现将点A ,B 之间的距离记作|AB |,定义|AB |=|a -b |.(1)|AB |=________;(2)设点P 在数轴上对应的数是x ,当|P A |-|PB |=2时,求x 的值.2.我们知道:点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离表示为AB ,在数轴上A ,B 两点之间的距离AB =|a -b |,所以式子|x -3|的几何意义是数轴上表示有理数3的点与表示有理数x 的点之间的距离.根据上述材料,回答下列问题:(1)|5-(-2)|的值为________;(2)若|x -3|=1,则x 的值为________;(3)若|x -3|=|x +1|,求x 的值;(4)若|x -3|+|x +1|=7,求x 的值.类型二 与绝对值化简有关的分类讨论问题3.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答下列问题:【提出问题】三个有理数a ,b ,c 满足abc >0,求|a|a +|b|b +|c|c的值. 【解决问题】解:由题意,得a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.①当a ,b ,c 都是正数,即a >0,b >0,c >0时,则|a|a +|b|b +|c|c =a a +b b +c c=1+1+1 =3;②当a ,b ,c 中有一个为正数,另两个为负数时,设a >0,b <0,c <0,则|a|a +|b|b +|c|c=a a +-b b +-c c=1-1-1=-1. 所以|a|a +|b|b +|c|c的值为3或-1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a ,b ,c 满足abc <0,求|a|a +|b|b +|c|c的值; (2)已知|a |=3,|b |=1,且a <b ,求a +b 的值.4.在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:|6+7|=6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7-21|=________;②|-12+0.8|=________; ③⎪⎪⎪⎪717-718=________. (2)用合理的方法计算:|15-12018|+|12018-12|-|-12|+11009.5.探索研究:(1)比较下列各式的大小(填“<”“>”或“=”):①|-2|+|3|________|-2+3|;②|-12|+|-13|________|-12-13|;③|6|+|-3|________|6-3|;④|0|+|-8|________|0-8|.(2)通过以上比较,请你分析、归纳出当a,b为有理数时,|a|+|b|与|a+b|的大小关系.(直接写出结论即可)(3)根据(2)中得出的结论,解决以下问题:当|x|+|-2018|=|x-2018|时,求x的取值范围.详解详析1.解:(1)因为|a +4|+(b -1)2=0,所以a =-4,b =1,所以|AB |=|a -b |=5.(2)当点P 在点A 左侧时,|P A |-|PB |=-(|PB |-|P A |)=-|AB |=-5≠2,不符合题意; 当点P 在点B 右侧时,|P A |-|PB |=|AB |=5≠2,不符合题意.当点P 在点A ,B 之间时,|P A |=|x -(-4)|=x +4,|PB |=|x -1|=1-x . 因为|P A |-|PB |=2,所以x +4-(1-x )=2,解得x =-12. 2.解:(1)7(2)因为|x -3|=1,所以x -3=±1,解得x =2或4.故x 的值为2或4.(3)根据绝对值的几何意义可知,x 必在-1与3之间,故x -3<0,x +1>0, 所以原式可化为3-x =x +1,所以x =1.(4)在数轴上表示3和-1的两点之间的距离为4,则满足方程的x 的对应点在-1的对应点的左边或3的对应点的右边.若x 的对应点在-1的对应点的左边,则原式可化为3-x -x -1=7,解得x =-2.5; 若x 的对应点在3的对应点的右边,则原式可化为x -3+x +1=7,解得x =4.5. 综上可得,x 的值为-2.5或4.5.3.解:(1)因为abc <0,所以a ,b ,c 都为负数或其中一个为负数,另两个为正数.①当a ,b ,c 都为负数,即a <0,b <0,c <0时,则|a |a +|b |b +|c |c =-a a +-b b +-c c=-1-1-1=-3; ②当a ,b ,c 中有一个为负数,另两个为正数时,设a <0,b >0,c >0, 则|a |a +|b |b +|c |c =-a a +b b +c c=-1+1+1=1. 综上所述,|a |a +|b |b +|c |c的值为-3或1.(2)因为|a |=3,|b |=1,且a <b ,所以a =-3,b =1或-1,则a +b =-2或-4.4.解:(1)①21-7 ②0.8-12 ③717-718(2)原式=15-12018+12-12018-12+11009=15. 5.解:(1)①因为|-2|+|3|=5,|-2+3|=1,所以|-2|+|3|>|-2+3|.②因为|-12|+|-13|=56,|-12-13|=56,所以|-12|+|-13|=|-12-13|. ③因为|6|+|-3|=6+3=9,|6-3|=3,所以|6|+|-3|>|6-3|.④因为|0|+|-8|=8,|0-8|=8,所以|0|+|-8|=|0-8|.(2)当a ,b 异号时,|a |+|b |>|a +b |;当a ,b 同号或a ,b 中有一个为0或两个同时为0时,|a |+|b |=|a +b |,所以|a |+|b |≥|a +b |.(3)由(2)中得出的结论可知,x 与-2018同号或x 为0,所以当|x |+|-2018|=|x -2018|时,x 的取值范围是x ≤0.。

七年级数学上册绝对值专题练习汇总

七年级数学上册绝对值专题练习汇总

七年级数学上册绝对值专题练习汇总绝对值是七年级数学上册中的一个重要概念,它在数学运算和问题解决中起着关键作用。

为了帮助同学们更好地掌握绝对值的相关知识,以下是对绝对值的详细介绍以及一系列的专题练习。

一、绝对值的定义绝对值是指一个数在数轴上所对应点到原点的距离,用“||”来表示。

例如,数字 5 的绝对值写作“|5|”,其值为 5;数字-5 的绝对值写作“|-5|”,其值也为 5。

也就是说,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是 0。

二、绝对值的性质1、绝对值具有非负性,即任何数的绝对值总是大于或等于 0。

2、互为相反数的两个数的绝对值相等。

三、绝对值的运算1、若|a| = a,则a ≥ 0;若|a| = a,则a ≤ 0。

2、绝对值的加减运算:当两个数同号时,绝对值相加,符号不变;当两个数异号时,绝对值相减,取绝对值较大的数的符号。

四、绝对值方程例如,|x| = 3,则 x = ±3;|x 2| = 5,则 x 2 = ±5,解得 x =7 或 x =-3。

五、绝对值不等式1、若|x| < a(a > 0),则 a < x < a。

2、若|x| > a(a > 0),则 x < a 或 x > a。

接下来,让我们通过一些具体的练习题来巩固对绝对值的理解和应用。

练习一:基础概念理解1、下列说法正确的是()A 绝对值等于它本身的数是正数B 绝对值等于它的相反数的数是负数C 绝对值相等的两个数一定相等D 绝对值相等的两个数一定互为相反数或相等2、若|x| = x,则 x 是()A 正数B 负数C 非正数D 非负数练习二:简单计算1、计算:| 3 |+| 5 |=2、计算:| 7 || 2 |=练习三:方程求解1、解方程:| 2x 1 |= 52、已知| x + 3 |= 2,求 x 的值。

练习四:不等式求解1、解不等式:| x 1 |< 32、解不等式:| 2x + 1 |> 5练习五:实际应用1、某工厂生产的零件尺寸误差不能超过 ±05mm,若生产的零件尺寸为 x mm,用绝对值表示其尺寸误差不超过 ±05mm 为。

部编数学七年级上册专题1.5绝对值2023年7上册同步培优(解析版)【人教版】含答案

部编数学七年级上册专题1.5绝对值2023年7上册同步培优(解析版)【人教版】含答案

【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.5绝对值【名师点睛】1.概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.3.绝对值的非负性:任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.【典例剖析】【例1】化简下列各数:(1)﹣(﹣5)(2)﹣(+7)(3)﹣[﹣(+23)](4)﹣[﹣(﹣a)](5)|﹣(+7)|(6)﹣|﹣8|(7)|﹣|+4 7 ||(8)﹣|﹣a|(a<0)【分析】(1)根据相反数定义求出即可;(2)根据相反数定义求出即可;(3)根据相反数定义求出即可;(4)根据相反数定义求出即可;(5)根据绝对值定义求出即可;(6)根据绝对值定义求出即可;(7)根据绝对值定义求出即可;(8)根据绝对值定义求出即可.【解析】(1)﹣(﹣5)=5;(2)﹣(+7)=﹣7;(3)﹣[﹣(+23)]=23;(4)﹣[﹣(﹣a)]=﹣a;(5)|﹣(+7)|=7;(6)﹣|﹣8|=﹣8;(7)|﹣|+47||=47;(8)﹣|﹣a|(a<0)=﹣(﹣a)=a.【点评】本题考查了绝对值,相反数的应用,注意:一个负数的绝对值等于它的相反数,一个正数的绝对值等于它本身,0的绝对值是0.【变式】化简:(1)﹣(﹣3);(2)﹣|﹣3.2|;(3)+(﹣0.5);(4)﹣|+13 |.【分析】(1)根据相反数的定义解决此题.(2)根据绝对值以及相反数的定义解决此题.(3)根据去括号法则解决此题.(4)根据绝对值以及相反数的定义解决此题.【解析】(1)﹣(﹣3)=3.(2)﹣|﹣3.2|=﹣3.2.(3)+(﹣0.5)=﹣0.5.(4)―|+13|=―13.【点评】本题主要考查绝对值以及相反数的定义,熟练掌握相反数的定义是解决本题的关键.【例2】已知a为整数(1)|a|能取最 小 (填“大”或“小”)值是 0 .此时a= 0 .(2)|a|+2能取最 小 (填“大”或“小”)值是 2 .此时a= 0 .(3)2﹣|a﹣1|能取最 大 (填“大”或“小”)值是 2 .此时a= 1 .(4)|a﹣1|+|a+2|能取最 小 (填“大”或“小”)值是 3 .此时a= ﹣2≤a≤1 .【分析】(1)由绝对值的性质即可得出答案;(2)由绝对值的性质即可得出答案;(3)由绝对值的性质即可得出答案;(4)由绝对值的性质即可得出答案.【解析】(1)|a|能取最小值是0.此时a=0.故答案为:小,0,0;(2)|a|+2能取最小值是2.此时a=0.故答案为:小,2,0;(3)2﹣|a﹣1|能取最大值是2.此时a=1.故答案为:大,2,1;(4)|a﹣1|+|a+2|能取最小值是3.此时﹣2≤a≤1;故答案为:小,3,﹣2≤a≤1.【点评】本题考查了绝对值的非负性质;熟练掌握绝对值的非负性质是解题的关键.【变式】.(1)如果|x|=2,则x= ±2 ;(2)如果x=﹣x,则x= 0 ;(3)如果|x|=x,求x的取值范围;(4)如果|x|=﹣x,求x的取值范围.【分析】(1)利用绝对值的定求解即可,(2)利用相反数的定义求解,(3)利用绝对值的性质求解即可,(4)利用绝对值的性质求解即可.【解析】(1)如果|x|=2,则x=±2;故答案为:±2.(2)如果x=﹣x,则x=0;故答案为:0.(3)如果|x|=x,则x≥0;(4)如果|x|=﹣x,则x≤0.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.【满分训练】一.选择题(共10小题)1.(2022•通辽)﹣3的绝对值是( )A.―13B.3C.13D.﹣3【分析】应用绝对值的计算方法进行计算即可得出答案.【解析】|﹣3|=3.故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的计算方法进行求解是解决本题的关键.2.(2022•聊城)实数a的绝对值是54,a的值是( )A.54B.―54C.±45D.±54【分析】根据绝对值的意义直接进行解析【解析】∵|a|=5 4,∴a=±5 4.故选:D.【点评】本题考查了绝对值的意义,即在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.3.(2022•百色)﹣2023的绝对值等于( )A.﹣2023B.2023C.±2023D.2022【分析】利用绝对值的意义求解.【解析】因为负数的绝对值等于它的相反数;所以,﹣2023的绝对值等于2023.故选:B.【点评】本题考查绝对值的含义.即:正数的绝对值是它本身,负数的绝对值是它的相反数.4.(2022•绥化)化简|―12|,下列结果中,正确的是( )A.12B.―12C.2D.﹣2【分析】利用绝对值的意义解析即可.【解析】|―12|的绝对值是12,故选:A.【点评】本题主要考查了绝对值的意义,正确利用绝对值的意义是解题的关键.5.(2022•南充)下列计算结果为5的是( )A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5|【分析】根据相反数判断A,B,C选项;根据绝对值判断D选项.【解析】A选项,原式=﹣5,故该选项不符合题意;B选项,原式=﹣5,故该选项不符合题意;C选项,原式=5,故该选项符合题意;D选项,原式=﹣5,故该选项不符合题意;故选:C.【点评】本题考查了相反数,绝对值,掌握只有符号不同的两个数互为相反数是解题的关键.6.(2021秋•河东区期末)若ab≠0,那么|a|a+|b|b的取值不可能是( )A.﹣2B.0C.1D.2【分析】由ab≠0,可得:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b >0;分别计算即可.【解析】∵ab≠0,∴有四种情况:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b>0;①当a>0,b>0时,|| a +||b=1+1=2;②当a<0,b<0时,|| a +||b=―1﹣1=﹣2;③当a>0,b<0时,|| a +||b=1﹣1=0;④当a<0,b>0时,|| a +||b=―1+1=0;综上所述,||a+||b的值为:±2或0.故选:C.【点评】本题考查绝对值的定义,运用分类讨论思想和熟练掌握并正确运用绝对值的定义是正确解题的关键.7.(2021秋•泗洪县期末)在数轴上有A、B两点,点A在原点左侧,点B在原点右侧,点A对应整数a,点B对应整数b,若|a﹣b|=2022,当a取最大值时,b值是( )A.2023B.2021C.1011D.1【分析】先根据A、B的位置关系,判断出a、b的大小关系,化简|a﹣b;再根据a取最大值,求出a的值;最后求出b的值.【解析】∵点A在点B左侧,∴a﹣b<0,∴|a﹣b|=b﹣a=2022;a为负整数,取最大值时为﹣1,此时b﹣(﹣1)=2022,则b=2021;故选:B.【点评】考查绝对值的化简和数轴.解题的关键在于能够结合数轴判断a、b的大小关系,进而化简|a﹣b|.注意:最大的负整数是﹣1.8.(2021秋•霍邱县期中)若|a|=﹣a,则在下列选项中a不可能是( )A.﹣2B.―12C.0D.5【分析】根据||=―a,结合绝对值性质可知:a≤0,不可能是正数.【解析】∵||=―a,∴实数a是非正数,即a≤0,∴选项中的数a不可能是正数,故选:D.【点评】本题考查了绝对值定义和性质,熟练掌握并正确运用绝对值性质是解题关键.9.(2020秋•九龙坡区校级期末)已知﹣1≤x≤2,则化简代数式3|x﹣2|﹣|x+1|的结果是( )A.﹣4x+5B.4x+5C.4x﹣5D.﹣4x﹣5【分析】由于﹣1≤x≤2,根据不等式性质可得:x﹣2≤0,x+1≥0,再依据绝对值性质化简即可.【解析】∵﹣1≤x≤2,∴x﹣2≤0,x+1≥0,∴3|x﹣2|﹣|x+1|=3(2﹣x)﹣(x+1)=﹣4x+5;故选:A.【点评】本题考查了不等式性质,绝对值定义和性质,整数加减运算等,熟练掌握并运用绝对值性质化简是解题关键.10.(2020秋•长垣市月考)若x为整数,且满足|x﹣2|+|x+4|=6,则满足条件的x的值有( )A.4个B.5个C.6个D.7个【分析】依据|x﹣2|+|x+4|=6,分类讨论即可得到所有整数x即可.【解析】①当x<﹣4时,|x﹣2|+|x+4|>6(不合题意);②当﹣4≤x≤2时,|x﹣2|+|x+4|=6,符合题意的所有整数x的值为﹣4,﹣3,﹣2,﹣1,0,1,2,③当x>2时,|x﹣2|+|x+4|>6(不合题意);综上所述,满足|x﹣2|+|x+4|=6的所有整数x的个数是7.故选:D.【点评】此题考查绝对值的意义,熟练掌握绝对值的意义是解题的关键.二.填空题(共8小题)11.(2022•常德)|﹣6|= 6 .【分析】根据绝对值的化简,由﹣6<0,可得|﹣6|=﹣(﹣6)=6,即得答案.【解析】﹣6<0,则|﹣6|=﹣(﹣6)=6,故答案为6.【点评】本题考查绝对值的化简求值,即|a|=a(a≥0)―a(a<0).12.(2022•泰州)若x=﹣3,则|x|的值为 3 .【分析】利用绝对值的代数意义计算即可求出值.【解析】∵x=﹣3,∴|x|=|﹣3|=3.故答案为:3.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.13.(2020秋•达孜区期末)绝对值不大于4的整数有 9 个.【分析】根据绝对值的性质解析即可.【解析】根据绝对值的概念可知,绝对值不大于4的整数有4,3,2,1,0,﹣1,﹣2,﹣3,﹣4,一共9个.【点评】解析此题的关键是熟知绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.互为相反数的两个数的绝对值相等.14.(2020秋•吴江区期中)若|x|=﹣(﹣8),则x= ±8 .【分析】根据绝对值的性质解析可得.【解析】∵|x|=﹣(﹣8),∴x=±8.故答案为:±8.【点评】本题主要考查绝对值,掌握绝对值的性质是解题的关键.15.(2020秋•兴化市月考)当a= ﹣2 时,式子10﹣|a+2|取得最大值.【分析】根据任何数的偶次方是非负数,即可求解.【解析】∵|a+2|≥0,且当a+2=0,即a=﹣2时,|a+2|=0,∴当a=﹣2时,代数式10﹣|a+2|取得最大值是10.故答案是:﹣2.【点评】此题主要考查了非负数的性质,解题的关键是明确初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).16.(2022春•东台市期中)|x﹣2|+9有最小值为 9 .【分析】根据绝对值的非负性即可得出答案.【解析】∵|x﹣2|≥0,∴|x﹣2|+9≥9,∴|x﹣2|+9有最小值为9.故答案为:9.【点评】本题考查了绝对值的非负性,掌握|a|≥0是解题的关键.17.(2021秋•玄武区校级月考)如果|a+2|+|b﹣1|=0,那么(a+b)2021的值是 ﹣1 .【分析】根据绝对值的非负数的性质分别求出a、b,代入计算即可.【解析】∵|a+2|+|b﹣1|=0,∴a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2021=(﹣1)2021=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.18.(2021秋•虎林市期末)|a+3|+|b﹣2|=0,则a+b= ﹣1 .【分析】根据绝对值非负数的性质列式求解即可得到a、b的值,然后再代入代数式进行计算即可求解.【解析】根据题意得,a+3=0,b﹣2=0,解得a=﹣3,b=2,∴a+b=﹣3+2=﹣1.故答案为:﹣1.【点评】本题考查了绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.三.解析题(共4小题)19.在有理数3,﹣1.5,﹣312,0,2.5,﹣4,﹣(+3.5),|―12|中,求出其中分数的相反数和绝对值.【分析】据只有符号不同的两个数互为相反数,可得一个数的相反数;根据绝对值实数轴上的点到原点的距离,可得一个数的绝对值;【解析】﹣1.5的相反数1.5,绝对值是1.5;﹣312的相反数是312,绝对值是312;2.5的相反数是﹣2.5,绝对值是2.5;﹣(+3.5)=﹣3.5相反数是3.5,绝对值是3.5;|―12|=12相反数是―12,绝对值是12.【点评】本题考查了绝对值,利用了绝对值得性质:正数的绝对等于它本身,负数的绝对值等于它的相反数.20.求下列各数的绝对值:(1)﹣38;(2)0.15;(3)a(a<0);(4)3b(b>0);(5)a﹣2(a<2);(6)a﹣b.【分析】根据绝对值的含义和求法,求出每个数的绝对值各是多少即可.【解析】(1)|﹣38|=38;(2)|+0.15|=0.15;(3)∵a<0,∴|a|=﹣a;(4)∵b>0,∴3b>0,∴|3b|=3b;(5)∵a<2,∴a﹣2<0,∴|a﹣2|=﹣(a﹣2)=2﹣a;(6)a﹣b≥0时,|a﹣b|=a﹣b;a﹣b<0时,|a﹣b|=b﹣a.【点评】此题主要考查了绝对值的含义和应用,要熟练掌握,解析此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.21.(2020秋•江阴市校级月考)阅读下面的例题:我们知道|x|=2,则x=±2请你那么运用“类比”的数学思想尝试着解决下面两个问题.(1)|x+3|=2,则x= ﹣5或﹣1 ;(2)5﹣|x﹣4|=2,则x= 1或7 .【分析】(1)根据绝对值解析即可;(2)根据绝对值的非负性解析即可.【解析】(1)因为)|x+3|=2,则x=﹣5或﹣1;(2)因为5﹣|x﹣4|=2,可得:|x﹣4|=3,解得:x=1或7;故答案为:(1)﹣5或﹣1(2)1或7【点评】此题考查绝对值,关键是根据绝对值的非负性和概念解析.22.(2019秋•睢宁县期中)【观察与归纳】(1)观察下列各式的大小关系:|﹣2|+|3|>|﹣2+3||﹣8|+|3|>|﹣8+3||﹣2|+|﹣3|=|﹣2﹣3||0|+|﹣6|=|0﹣6|归纳:|a|+|b| ≥ |a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【理解与应用】(2)根据上题中得出的结论,若|m|+|n|=9,|m+n|=1,求m的值.【分析】(1)根据提供的关系式得到规律即可;(2)根据(1)中的结论分当m为正数,n为负数时和当m为负数,n为正数时两种情况分类讨论即可确定答案.【解析】(1)根据题意得:|a|+|b|≥|a+b|,故答案为:≥;(2)由上题结论可知,因为|m|+|n|=9,|m+n|=1,|m|+|n|≠|m+n|,所以m、n异号.当m为正数,n为负数时,m﹣n=9,则n=m﹣9,|m+m﹣9|=1,m=5或4;当m为负数,n为正数时,﹣m+n=9,则n=m+9,|m+m+9|=1,m=﹣4或﹣5;综上所述,m为±4或±5.【点评】本题考查了绝对值的知识,解题的关键是能够根据题意分类讨论解决问题,难度不大.。

七上绝对值培优专题

七上绝对值培优专题

七年级数学培优专题讲解绝对值培优一、 绝对值的意义:(1)几何意义:一般地,数轴上表示数a 的点到原点的距离叫做数a 的绝对值,记作|a|。

(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。

也可以写成: ()()()||0a a a a a a ⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数二、 典型例题例1.已知a 、b 、c 在数轴上位置如图: 则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( )A .-3aB . 2c -aC .2a -2bD . b例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( )A .是正数B .是负数C .是零D .不能确定符号例3.已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?例4.方程x x -=-20082008 的解的个数是( )A .1个B .2个C .3个D .无穷多个例5.已知|ab -2|与|a -1|互为相互数,试求下式的值:()()()()()()1111112220072007ab a b a b a b ++++++++++例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3. 并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___ .(2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离可以表示为 ________________.说明:(Ⅰ)|a|≥0即|a|是一个非负数; (Ⅱ)|a|概念中蕴含分类讨论思想。

(3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 ___.(4) 满足341>+++x x 的x 的取值范围为 ______ .(5)若1232008x x x x -+-+-++-的值为常数,试求x 的取值范围.例7.若24513a a a +-+-的值是一个定值,求a 的取值范围.例8.已知112x x ++-=,化简421x -+-.例9.若245134x x x +-+-+的值恒为常数,则x 应满足怎样的条件?此常数的值为多少?练习题 1.如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c ++--+的值. b -1 c 0 a 12.已知2x ≤,求32x x --+的最大值与最小值.3.若0abc <,求a b c a b c +-的值4.有理数a ,b ,c ,d 满足1abcdabcd =-,求abcda b c d+++的值.5.试求123...2005x x x x -+-+-++-的最小值6. 已知式子:431744+---+-x x x 的值恒为一个常数,求x 的取值范围。

(完整版)初一数学绝对值经典练习题

(完整版)初一数学绝对值经典练习题

绝对值经典练习1、判断题:⑴、|-a|=|a|.⑵、-|0|=0.11|=-3.⑶、|-322-|-5|.-(-5)?⑷、|a|=4.a=4,那么⑸、如果那么a=4.|a|=4,⑹、如果、任何一个有理数的绝对值都是正数.⑺0.1, 、绝对值小于3的整数有2, ⑻0.⑼、-a一定小于a=b.⑽、如果|a|=|b|,那么⑾、绝对值等于本身的数是正数.、只有1的倒数等于它本身.⑿X=-5.|-X|=5,则、若⒀.、数轴上原点两旁的点所表示的两个数是互为相反数⒁、一个数的绝对值等于它的相反数,那么这个数一定是负数.⒂2、填空题:⑴、当a_____0时,-a?0;1?0;、当a_____0时,⑵a1?、当a_____0时,-0;⑶a0;?|a|时,a_____0、当⑷.a;-a?⑸、当a_____0时,时,-a=a;⑹、当a_____0时,|a|=______;⑺、当a?0_____________________________;⑻、绝对值小于4的整数有|m|____|n|;0,、如果m?n?那么⑼|k|=_____;⑽、当k+3=0时,|a|?|b|,则a____b;b⑾、若a、都是负数,且、|m-2|=1,则m=_________;⑿x=________;、若|x|=x,则⒀__________;⒁、倒数和绝对值都等于它本身的数是|a|=___;|b|=____;、b在数轴上的位置如图所示,则⒂、有理数a2;______⒃、_______,倒数是,绝对值是-2_______的相反数是3;的整数有_____个,其中最小的一个是_____⒄、绝对值小于10;-0.04,这个数是_______⒅、一个数的绝对值的相反数是|a|____|b|;、b互为相反数,则⒆、若a b的关系为__________.、若|a|=|b|,则a和⒇3、选择题:⑴、下列说法中,错误的是_____A.+5的绝对值等于5 B.绝对值等于5 的数是5C.-5的绝对值是5 D.+5、-5的绝对值相等1⑵、如果|a|=| 之间的关系是与那么ab|,bB.a与b互为相反数互为倒数b与A.aC.a?b=-1D.a?b=1或a?b=-1⑶、绝对值最小的有理数是_______A.1 B.0 C.-1 D.不存在⑷、如果a+b=0,下列格式不一定成立的是_______10b≤ D.a≤0时,B.|a|=|b| C.a=-b A.a= b_______那么a<0,⑸、如果0D.-a? C.|a|?0 A.|a|?0 B.-(-a)?0|b|b在数轴上的对应点的位置,分别在原点的两旁,那么|a|与⑹、有理数a、_______之间的大小关系是 D.无法确定 C.|a|=|b| |a|A.?|b| B.|a|?|b|________⑺、下列说法正确的是 B.两个符号不同的数叫互为相反数.一个数的相反数一定是负数AD.-|-2|=-2 C.|-(+x)|=x_______⑻、绝对值最小的整数是不存在 D. C.0 .A-1 B.1_______⑼、下列比较大小正确的是221452) 7 D.-|-7|=-(- A.? B.-(-21)?+(-21) C.-|-10|?8 ?<335236______的负数的个数有⑽、绝对值小于3 D.无数 B.3 A.2 C.4_____、ab为有理数,那么下列结论中一定正确的是⑾、若|b| |a|b,a B.若?则? |b| |a|b,aA.若?则?|b|≠|a|则b,≠a若D. |a|=|b| 则a=b,若C.4、计算下列各题:⑴、|-8|-|-5| ⑵、(-3)+|-3| ⑶、|-9|×(+5)D、15÷|-3|5、填表6、比较下列各组数的大小:1-3.5与⑷、|-3.5|0与-|-9|; ⑶、;⑵、-0.5与|-2.5|;-⑴、-3与27、把下列各数用“?”连接起来:1|- |-3|,-3,5,0,⑴、; 8)](?,--8|,-()[?3121;-6-5,0,⑵、1,432-|-10|,,,-(-5)-(-10)-6|-5|⑶、,.表示整数=-10(-O),求O、?,其中O和?×?|⑷(|+|?|)8、比较下列各组数的大小:1153-0.273 |-);⑵、与--⑴、(-9)与(-8-%50 ⑶、π与-3.14 ⑷、-与|117222绝对值经典练习答案:1.⑴、√⑵、√⑶、×⑷、√⑸、√⑹、×⑺、×⑻、×⑼、×⑽、×⑾、×⑿、×⒀、×⒁、×⒂、×2.⑴? ⑵? ⑶? ⑷≠⑸? ⑹= ⑺-a ⑻±1,±2,±3,0⑼、>⑽3 ⑾? ⑿232⒇相等或互⒆=⒄19 -9 ⒅±0.04 -a3或1 ⒀≧0 ⒁1 ⒂、b ⒃2 2 ?383为相反数C A ⑽D ⑾A ⑸C ⑹D ⑺D ⑻C ⑼D3.⑴B ⑵⑶B ⑷5 ⑷⑶45 ⑵4.⑴3 056.⑴? ⑵? ⑶? ⑷?1;(-8)?|?|-3|?5-??7.⑴(8)?-3?0|- ][?3211 ?0?;1-6⑵?-5342)-10;?-|-10|?-6-|-5|?|-5|?-(⑶1 5 或-5,-5,-1 -15 1 11 5 5⑷,,或,,或,,⑴?8. ⑵?⑶?⑷?。

人教版七年级数学有理数-绝对值知识总结及练习题(附答案)

1.2.4绝对值定义:一般地,在数轴上表示 数a 的点与原点的距离叫做数a 的绝对值,记作︱a ︱。

1)一个正数的绝对值是它本身;2)零的绝对值是零;3)一个负数的绝对值是它的相反数。

即:4)任何一个有理数的绝对值都是非负数,(即0和正数.)在数轴上表示的两个数,右边的数总要 大于 左边的数。

也就是:1)、负数 < 0,0 < 正数,正数大于负数.2)、两个负数,绝对值大的 反而小 .练习:1、判断下列说法是否正确:(1)有理数的绝对值一定是正数;(2)如果两个数的绝对值相等,那么这两个数相等;(3)符号相反且绝对值相等的数互为相反数;(4)一个数的绝对值越大,表示它的点在数轴上越靠右;(5)一个数的绝对值越大,表示它的点在数轴上离原点越远。

(7)若a =b ,则|a|=|b|。

(8)若|a|=|b|,则a =b 。

(9)若|a|=-a ,则a 必为负数。

(10)互为相反数的两个数的绝对值相等。

(11)一个数的绝对值是 2 ,则这数是2 。

(12)|5|=|-5|。

(13)|-0.3|=|0.3|。

(14)|3|>0。

(15)|-1.4|<0。

例1、已知052=++-y x ,求x,y 的值。

例2、若3=x ,则x=___。

例3、下列说法中,错误的是( )A 、一个数的绝对值一定是正数B 、互为相反数的两个数的绝对值相等C 、绝对值最小的数是0D 、绝对值等于它本身的数是非负数作业:1化简:=--5___;=--)5(___;=+-)21(_2比较下列各对数的大小:-(-1)___-(+2);)3.0(--___31-; 2--___-(-2)。

4、已知a=-2,b=1,则b a -+得值为___。

5、下列结论中,正确的有( )①符号相反且绝对值相等的数互为相反数;②一个数的绝对值越大,表示它的点在数轴上离原点越远;③两个负数,绝对值大的它本身反而小;④正数大于一切负数;⑤在数轴上,右边的数总大于左边的数。

专题三:绝对值(基础专题);人教版七年级上学期培优专题讲练(含答案)

专题三:绝对值(基础专题)一.选择题1.若a=﹣5,|a|=|b|,则b的值等于()2.下列判断正确的是()A.若|a|=|b|,则a=b B.若|a|=|b|,则a=﹣bC.若a=b,则|a|=|b|D.若a=﹣b,则|a|=﹣|b|3.有下列结论:①|a|一定是正数;②只有两个数相等时,它们的绝对值才相等;③绝对值最小的数是0;④在数轴上表示﹣a的点一定在原点的左边;⑤有理数分为正有理数和负有理数;其中正确的结论的个数为()A.1个B.2个C.3个D.4个4.如图,四个有理数在数轴上的对应点分别为点M,P,N,Q,若点P,Q表示的有理数互为相反数,则图中表示绝对值最大的有理数的点是()A.点M B.点P C.点N D.点Q二.填空题5.若a>0,b<0,化简a+3b﹣|a|+|2b|得.6.绝对值不大于3的整数是______________.绝对值小于2015的所有整数之积为_____.7.数轴上到原点的距离小于3的整数的个数为x,不大于3的正整数的个数为y,绝对值等于3的整数的个数为z,则x+y+z=_____.三.解答题8.已知|x﹣4|+|y+2|=0,求x与y的值.9.已知|x﹣4|+|5﹣y|=0,求12(x+y)的值.10.若|a|=4,|b|=2,且a,b异号,求a与b的值.11.有理数a,b,c在数轴上的对应点如图所示.(1)在横线上填入“>”或“<”:a______0;b______0;c______0;|c|______|a|.(2)试在数轴上找出表示﹣a,﹣b,﹣c的点;(3)试用“<”将a,﹣a,b,﹣b,c,﹣c,0连接起来.12.已知数a ,b 表示的点在数轴上的位置如图所示.(1)在数轴上表示出a ,b 的相反数的位置,并将这四个数从小到大排列;(2)若数b 与其相反数相距16个单位长度,则b 表示的数是多少?(3)在(2)的条件下,若数a 与数b 的相反数表示的点相距4个单位长度,则a 表示的数是多少?【参考答案】1。

初一绝对值练习题及答案

初一绝对值练习题及答案(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--初一绝对值练习题及答案初一数学上册学习资料第三讲绝对值绝对值是有理数中非常重要的组成部分,它其中相关的基本思想及数学方法是初中数学学习的基石,希望同学们通过学习、巩固对绝对值的相关知识能够掌握要领。

绝对值的定义及性质绝对值简单的绝对值方程化简绝对值式,分类讨论绝对值几何意义的使用绝对值的定义:绝对值的性质:绝对值的非负性,可以用下式表示|a|=若|a|=a,则;若|a|=-a,则;任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,若|a|=|b|,则|ab|= ;|ab|= ;|a|2= = ;|a+b||a|+|b| |a-b|||a|-|b|| |a|+|b||a+b||a|+|b||a-b|[例1]绝对值大于而小于的整数有多少个若ab <0,b<>0,b<<0,b><0下列各组判断中,正确的是A.若|a|=b,则一定有a=b B.若|a|>|b|,则一定有a>bC. 若|a|>b,则一定有|a|>|b|D.若|a|=b,则一定有a2=设a,b是有理数,则|a+b|+9有最小值还是最大值其值是多少[巩固] 绝对值小于的整数有哪些它们的和为多少[巩固] 有理数a与b满足|a|>|b|,则下面哪个答案正确>b = [巩固] 若|x-3|=3-x,则x的取值范围是____________[巩固] 若a>b,且|a| <>0 <0 >0[巩固] 设a,b是有理数,则-8-|a-b|是有最大值还是最小值其值是多少[例2]若3|x-2|+|y+3|=0,则若|x+3|+2=0,求2+2=0,则;若|x-a|+2=0,则;若|x-a|+|x-b|=0,则;已知x是有理数,且|x|=|-4|,那么x=____已知x是有理数,且-|x|=-|2|,那么x=____已知x是有理数,且-|-x|=-|2|,那么x=____如果x,y表示有理数,且x,y满足条件|x|=5,|y|=2,|x-y|=y-x,那么x+y的值是多少巩固|x|=4,|y|=6,求代数式|x+y|的值3解方程:|x5|50 |4x+8|=1 |3x+2|=-1y的值是多少x4n)的值 yx已知|x-1|=2,|y|=3,且x与y互为相反数,求1 3x2xy4y的值若已知a与b互为相反数,且|a-b|=4,求aabb a2ab1的值已知a=-1|2a4b2,b=-13,求|24|a2b|2|4b3|2a3||的值若|a|=b,求|a+b|的值化简:|a-b|化简:|π| |8-x|有理数a,b,c在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b| C B 0 A已知a,b,c在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|数a,b在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||若a b0,化简|a|-|b|+|a+b|+|ab|若-2≤a≤0,化简|a+2|+|a-2|已知x0,|y|>|z|>|x|,求|x+z|+|y+z|-|x-y|的值如果0 已知x 若a ||3a|a|若abc≠0,则abc|a||b||c|的所有可能值有理数a,b,c,d,满足|abcd||a||b||c||d| abcd1,求abcd的值化简|x+5|+|2x-3|化简:|2x-1|求|m|+|m-1+|m-2|的值例1求下列各数的绝对值:-38;;a; 3b;a-2; a-b.例2判断下列各式是否正确:|-a|=|a|;-|a|=|-a|;若|a|=|b|,则a=b;若a=b,则|a|=|b|;若|a|>|b|,则a>b;若a>b,则|a|>|b|;若a>b,则|b-a|=a-b.例3判断对错.如果一个数的相反数是它本身,那么这个数是0.如果一个数的倒数是它本身,那么这个数是1和0.如果一个数的绝对值是它本身,那么这个数是0或1.如果说“一个数的绝对值是负数”,那么这句话是错的.如果一个数的绝对值是它的相反数,那么这个数是负数.例已知2+|b+3|=0,求a、b.例5填空:若|a|=6,则a=______;若|-b|=,则b=______;若x+|x|=0,则x是______数.例判断对错:没有最大的自然数.有最小的偶数0.没有最小的正有理数.没有最小的正整数.有最大的负有理数.有最大的负整数-1.没有最小的有理数.有绝对值最小的有理数.例比较下列每组数的大小,在横线上填上适当的关系符号|-|______-|100|;-______-|-3|;-[-]_______0;当a<3时,a-3______0;|3-a|______a-3.例8在数轴上画出下列各题中x的范围:|x|≥4;|x|<3;2<|x|≤5.例求绝对值不大于2的整数;已知x 是整数,且<|x|<7,求x.例10解方程:已知|14-x|=6,求x; *已知|x+1|+4=2x,求x. *例11 化简|a+2|-|a-3| 1,解:|-38|=38;|+|=;∵a<0,∴|a|=-a;∵b>0,∴3b>0,|3b|=3b;∵a<2,∴a-2<0,|a-2|=-=2-a;说明:分类讨论是数学中的重要思想方法之一,当绝对值符号内的数无法判断其正、负时,要化去绝对值符号,一般都要进行分类讨论.分析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判数一个结论是错误的,只要能举出反例即可.如第小题中取a=1,则-|a|=-|1|=-1,而|-a|=|-1|=1,所以-|a|≠|-a|.同理,在第小题中取a=-1,b=0,在第、小题中取a=5,b=-5等,都可以充分说明结论是错误的.要证明一个结论正确,须写出证明过程.如第小题是正确的.证明步骤如下:此题证明的依据是利用|a|的定义,化去绝对值符号即可.对于证明第、、小题要注意字母取零的情况. 2,解:其中第、、、小题不正确,、、、小题是正确的.说明:判断一个结论是正确的与证明它是正确的是相同的思维过程,只是在证明时需要写明道理和依据,步骤都要较为严格、规范.而判断一个结论是错误的,可依据概念、性质等知识,用推理的方法来否定这个结论,也可以用举反例的方法,后者有时更为简便. 3,解:T. F.-1的倒数也是它本身,0没有倒数. F.正数的绝对值都等于它本身,所以绝对值是它本身的数是正数和0. T.任何一个数的绝对值都是正数或0,不可能是负数,所以这句话是错的. F.0的绝对值是0,也可以认为是0的相反数,所以少了一个数0.说明:解判断题时应注意两点:必须“紧扣”概念进行判断;要注意检查特殊数,如0,1,-1等是否符合题意.分析:根据平方数与绝对值的性质,式中2与|b+3|都是非负数.因为两个非负数的和为“0”,当且仅当每个非负数的值都等于0时才能成立,所以由已知条件必有a-1=0且b+3=0.a、b即可求出. 4,解:∵2≥0,|b+3|≥0,又2+|b+3|=0 ∴a-1=0且b+3=0∴a =1,b=-3.说明:对于任意一个有理数x,x2≥0和|x|≥0这两条性质是十分重要的,在解题过程中经常用到.分析:已知一个数的绝对值求这个数,则这个数有两个,它们是互为相反数.,解:∵|a|=6,∴a=±6;∵|-b|=,∴b=±;∵x+|x|=0,∴|x|=-x.∵|x|≥0,∴-x≥0∴x≤0,x是非正数.说明:“绝对值”是代数中最重要的概念之一,应当从正、逆两个方面来理解这个概念.对绝对值的代数定义,至少要认识到以下四点: 6,解:T. F.数的范围扩展后,偶数的范围也随之扩展.偶数包含正偶数,0,负偶数,所以0不是最小的偶数,偶数没有最小的. T. F.有最小的正整数1. F.没有最大的负有理数. T. T. T.绝对值最小的有理数是0.分析:比较两个有理数的大小,需先将各数化简,然后根据法则进行比较.,解:|-|>-|100|;->-|-3|;-[-]<0;当a<3时,a-3<0,|3-a|>a-3.说明:比较两个有理数大小的依据是:①在数轴上表示的两个数,右边的数总比左边的数大,正数大于0,大于一切负数,负数小于0,小于一切正数,两个负数,绝对值大的反而小.②两个正分数,若分子相同则分母越大分数值越小;若分母相同,则分子越大分数值越大;也可将分数化成小数来比较.绝对值综合练习题一姓名___________ 1、有理数的绝对值一定是 A、正数B、整数 C、正数或零 D、自然数、绝对值等于它本身的数有 A、0个B、1个C、2个 D、无数个、下列说法正确的是A、—|a|一定是负数 B只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数、比较 1112 、3 、4 的大小,结果正确的是 A、11 1 1 12 <3 <4 B、12 <4 <3 C、1<1<1 D、1<1<14 2 3 3 2 4 5、若|a|=|b|,则a=b。

七年级数学上--绝对值练习及提高习题

七年级数学上 --有理数--绝对值练习一一、填空题:1、│32│=,│-32│= 。

2、+│+5│= ,+│-5│=,-│+5│=,-│-5│=。

3、│0│= ,+│-0│= ,-│0│= 。

4、绝对值是621,符号是“-”的数是 ,符号是“+”的数是 。

5、-0.02的绝对值的相反数是 ,相反数的绝对值是 。

6、绝对值小于3.1的所有非负整数为。

7、绝对值大于23小于83的整数为。

8、计算2005(2004|20052004|)-+-的结果是。

9、当x=时,式子||52x -的值为零。

10、若a ,b 互为相反数,m 的绝对值为2,则a ba b m+++=。

11、已知||||2x y +=,且,x y 为整数,则||x y +的值为。

12、若|8||5|0a b -+-=,则a b -的值是。

13、若|3|a -与|26|b -互为相反数,则2a b +的值是。

14、若||3x =,||2y =,且x y >,求x y +的值是。

15、如图,化简:2|2||2|a b +-+-=。

16、已知|(2)||3|||0x y z +-+++=,则x y z ++=。

17、如图, 则||||||||a b a b b a --++-=。

18、已知||a b a b -=-,且||2009a =,||2010b =,则a b -的值为。

19、若||5a =,2b =-,且0ab >,则a b +=。

20、若0ab <,求||||||a b ab a b ab ++的值为。

21、绝对值不大于2005的所有整数的和是,积是。

22、若2|3|(2)0m n -++=,则2m n +的值为。

23、如果0m >,0n <,||m n <,那么m ,n ,-m ,-n 的大小关系是。

24、已知1=a ,2=b ,3=c ,且c b a >>,那么c b a -+=. 25、已知5=x ,1=y ,那么=+--y x y x _________.26、非零整数m 、n 满足05=-+n m ,所有这样的整数组),(n m 共有______组. 二、选择题27.a 表示一个有理数,那么.( )A.∣a ∣是正数B.-a 是负数C.-∣a ∣是负数D.∣a ∣不是负数 28.绝对值等于它的相反数的数一定是( )A.正数B. 负C.非正数D. 非负数 29.一个数的绝对值是最小的正整数,那么这个数是( )A.-1B.1C.0D.+1或-1 30. 设m,n 是有理数,要使∣m ∣+∣n ∣=0,则m,n 的关系应该是( )A. 互为相反数B. 相等C. 符号相反D. 都为零 31、设a 为有理数,则2005||a -的值是( ) A. 正数 B. 负数 C. 非正数 D. 非负数 32、若一个数的绝对值是正数,则这个数是( )A. 不等于0的有理数B. 正数C. 任何有理数D. 非负数 33、若||5x =,||3y =,则x y +等于( )A. 8B. 8±C. 8和2D. 8±和2± 34、如果0a >,且||||a b >,那么a b -的值是( )A. 正数B. 负数C. 正数或负数D. 0 35、已知0m >,0n <,则m 与n 的差是( )A. ||||m n -B. (||||)m n --C. ||||m n +D. (||||)m n -+36、下列等式成立的是( )A .||||0a a +-= B. 0a a --= C. ||||0a a --= D. ||0a a --= 37、如果||0m n -=,则m ,n 的关系( )A. 互为相反数B. ||m n =±且0n ≥C. 相等且都不小于0D. m 是n 的绝对值 38、已知||3x =,||2y =,且0x y ⋅<,则x y +的值等于( )A. 5或-5B. 1或-1C. 5或-1D. -5或- 39、使||10a a+=成立的条件是( ) A. 0a > B. 0a < C. 1a = D. 1a =± 40、c b a 、、是非零有理数,且0=++c b a ,那么abcabc c c b b a a +++的所有可能值为( ) A .0 B . 1或1- C .2或2- D .0或2- 三、解答题:41.化简:(1)1+∣-31∣= (2)∣-3.2∣-∣+2.3∣=(3)-(-│-252│)= (4)-│-(+3.3│)=(5)-│+(-6)│ = (6)-(-|-2|)=(7)|43211-|= (8)||56||65-÷ =(9)-(|-4.2|×|+|75)= (10)|-2|-|+1|+|0|=42.(1)若|a+2|+|b-1|=0,则a= b=;(2)若|a|=3,|b|=2,且a+b<0,则a-b=______________.七年级数学上 --有理数--绝对值练习一一、选择题1、 如果m>0, n<0, m<|n|,那么m ,n ,-m , -n 的大小关系( )A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m 2、绝对值等于其相反数的数一定是( ) A .负数 B .正数 C .负数或零 D .正数或零3、下列说法中正确的是( ) A .一定是负数B .只有两个数相等时它们的绝对值才相等C .若则与互为相反数 D .若一个数小于它的绝对值,则这个数是负数4、给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有〖 〗A .0个B .1个C .2个D .3个5、如果,则的取值范围是〖 〗 A .>O B .≥O C .≤O D .<O6、绝对值不大于11.1的整数有〖 〗 A .11个 B .12个C .22个D .23个7、绝对值最小的有理数的倒数是( )A 、1 B 、-1 C 、0 D 、不存在 8、在有理数中,绝对值等于它本身的数有( )A 、1个B 、2个C 、3个D 、无数多个 9、下列数中,互为相反数的是( ) A 、│-32│和-32 B 、│-23│和-32 C 、│-32│和23 D 、│-32│和32 10、下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值 一定是正数11、│a │= -a,a 一定是( )A 、正数 B 、负数 C 、非正数 D 、非负数12、下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学7上:绝对值分类讨论思想,8道培优拓展练习题,考试
经典常见
七年级上册数学,有理数里的绝对值,是整个初中数学的重点和基础。

但很多同学,都觉得绝对值,特别难理解。

前天和昨天,发了绝对值有关的两个专题。

点我的头像,点文章列表,就可以看到。

《数学7上:10道绝对值化简计算,常见经典考试真题》、《绝对值的和有最小值,怎么求x的取值范围?13道练习题》。

今天发第三个专题,《数学7上:绝对值分类讨论思想,8道培优拓展,经典考试常见题型》。

例1、分类讨论a的取值,a≥0是,|a|=a,a<0时,|a|=-a.
这是绝对值分类讨论思想,基础考试题型。

相信大家,应该没有问题。

例2、根据题意,分类讨论a和b的取值。

然后,再分类讨论,代入求值。

例3、根据题意,分别讨论a,b,c的取值可能,然后,再分类讨论,代入求值。

例4、这一类题,怎么办?很多同学看到脑壳就晕。

请看详细解题步骤。

一个原则,分类讨论,这几个数是为正数,或者为负数的几种情况,然后分类讨论。

例5、这题和第4题类似,也是需要分类讨论a和b,为正数或者为负数的情况。

但是不同点是,式子有一项是bc。

所以,请看详细解题步骤,对比归纳。

例6,这题和第4题,第5题类似,请看详细解题步骤,找出相同点和异同点。

这样子,逐步练习,逐步提升。

学会总结和归纳。

数学的学习,就不会那么难了。

例7,例8。

这两个题,和第4,第5,第6属于同一个系列。

相同的解题步骤,要根据题意,分类讨论.
方老师选的这些例题,只是想告诉大家,数学的学习,一定要勤于总结,富于思考,多归纳类似的题型,那么随它考试怎么出题,都没有问题。

这是七年级上册数学,绝对值基础知识巩固和培优的第三部分。

前天,和昨天发的前两个部分,点我头像,点文章列表,可以看到。

相关文档
最新文档