论数学的本质

论数学的本质
论数学的本质

论数学的本质

林夏水

本质是一个数学认识论问题。不同时代的哲学家和数学家都从认识论角度提出不同的理论和观点。但随着数学的发展又暴露出它们的片面性或局特别是,当计算机引起数学研究方式的变革时,又提出有关数学本质更深层次的问题,从而推动着人们全面而辩证地认识数学的本质。

学认识的一般性与特殊性

为对客观事物的一种认识,与其他科学认识一样,其认识的发生和发展过程遵循实践——认识——再实践的认识路线。但是,数学对象(量)的和抽象性,又产生与其他科学不同的、特有的认识方法和理论形式。由此产生数学认识论的特有问题。

识的一般性

是研究认识的本质以及认识发生、发展一般规律的学说,它涉及认识的来源、感性认识与理性认识的关系、认识的真理性等问题。数学作为对客的一种认识,其认识论也同样需要探讨这些问题;其认识过程,与其他科学认识一样,也必然遵循实践——认识——再实践这一辩证唯物论的认。

,数学史上的许多新学科都是在解决现实问题的实践中产生的。最古老的算术和几何学产生于日常生活、生产中的计数和测量,这已是不争的历。数学家应用已有的数学知识在解决生产和科学技术提出的新的数学问题的过程中,通过试探或试验,发现或创造出解决新问题的具体方法,归括出新的公式、概念和原理;当新的数学问题积累到一定程度后,便形成数学研究的新问题(对象)类或新领域,产生解决这类新问题的一般方式、概念、原理和思想,形成一套经验知识。这样,有了新的问题类及其解决问题的新概念、新方法等经验知识后,就标志着一门新的数学分支产生,例如,17世纪的微积分。由此可见,数学知识是通过实践而获得的,表现为一种经验知识的积累。

数学经验知识是零散的感性认识,概念尚不精确,有时甚至导致推理上的矛盾。因此,它需要经过去伪存真、去粗取精的加工制作,以便上升为的、系统的理论知识。

识由经验知识形态上升为理论形态后,数学家又把它应用于实践,解决实践中的问题,在应用中检验理论自身的真理性,并且加以完善和发展。社会实践的发展,又会提出新的数学问题,迫使数学家创造新的方法和思想,产生新的数学经验知识,即新的数学分支学科。由此可见,数学作认识,与其他科学认识一样,遵循着感性具体——理性抽象——理性具体的辩证认识过程。这就是数学认识的一般性。

识的特殊性

区分在于研究对象的特殊性。数学研究对象的特殊性就在于,它是研究事物的量的规定性,而不研究事物的质的规定性;而“量”是抽象地存在之中的,是看不见的,只能用思维来把握,而思维有其自身的逻辑规律。所以数学对象的特殊性决定了数学认识方法的特殊性。这种特殊性表现

知识由经验形态上升为理论形态的特有的认识方法——公理法或演绎法,以及由此产生的特有的理论形态——公理系统和形式系统。因此,它不然科学那样仅仅使用观察、归纳和实验的方法,还必须应用演绎法。同时,作为对数学经验知识概括的公理系统,是否正确地反映经验知识呢?解决这个问题与自然科学家不尽相同。特别是,他们不是被动地等待实践的裁决,而是主动地应用形式化方法研究公理系统应该满足的性质:无、完全性和公理的独立性。为此,数学家进一步把公理系统抽象为形式系统。因此,演绎法是数学认识特殊性的表现。

括数学本质的尝试

识的一般性表明,数学的感性认识表现为数学知识的经验性质;数学认识的特殊性表明,数学的理性认识表现为数学知识的演绎性质。因此,认关于感性认识与理性认识的关系在数学认识论中表现为数学的经验性与演绎性的关系。所以,认识数学的本质在于认识数学的经验性与演绎性的系。那么数学哲学史上哲学家是如何论述数学的经验性与演绎性的关系,从而得出他们对数学本质的看法的呢?

学史上最早探讨数学本质的是古希腊哲学家柏拉图。他在《理想国》中提出认识的四个阶段,认为数学是处于从感性认识过渡到理性认识的一个是一种理智认识。这是柏拉图对数学知识在认识论中的定位,第一次触及数学的本质问题。

纪英国经验论哲学家J.洛克在批判R.笛卡尔的天赋观念中建立起他的唯物主义经验论,表述了数学经验论观点。他强调数学知识来源于经验,但属于论证知识的数学不如直觉知识清楚和可靠。

学家兼数学家莱布尼茨在建立他的唯理论哲学中,阐述了唯理论的数学哲学观。他认为:“全部算术和全部几何学都是天赋的”;数学只要依靠则就可以证明全部算术和几何学;数学是属于推理真理。他否认了数学知识具有经验性。

学家康德为了克服唯理论与经验论的片面性,运用他的先验论哲学,从判断的分类入手,论述了数学是“先天综合判断”。由于这一观点带有先调和性,所以它并没有解决数学知识的经验性与演绎性的辩证关系。

后,数学发展进入一个新时期,它的一个重要特点是公理化倾向。这一趋势使大多数数学家形成一种认识:数学是一门演绎的科学。这种观点的表是数学基础学派中的逻辑主义和形式主义。前者把数学归结为逻辑,后者把数学看作是符号游戏。1931年哥德尔不完全性定理表明了公理系统性和数学演绎论的片面性。这就使得一些数学家开始怀疑“数学是一门演绎科学”的观点,提出,数学是一门有经验根据的科学,但它并不排斥。这引起一场来自数学家的有关数学本质的讨论。

斯为了避免数学演绎论与经验论的片面性,从分析数学理论的结构入手,提出数学是一门拟经验科学。他说:“作为总体上看,按欧几里得方式学也许是不可能的,至少最有意义的数学理论像自然科学理论一样,是拟经验的。”尽管拉卡托斯给封闭的欧几里得系统打开了第一个缺口,但经验论实际上是半经验论,并没有真正解决数学性质问题,因而数学家对它以及数学哲学史上有关数学本质的概括并不满意。1973年,数理逻辑.罗宾逊说:“就应用辩证法来仔细分析数学或某一种数学理论(如微积分)而言,在我所读的从黑格尔开始的这方面的著作中,还没有发现经得批判的东西。”因此,当计算机在数学中的应用引起数学研究方式的变革时,特别是当计算机证明了四色定理和借助计算机进行大量试验而创立

何时,再次引起了数学家们对“什么是证明?”“什么是数学?”这类有关数学本质的争论。

学本质的辩证性

一些著名数学家不满意对数学本质的概括,他们开始从数学研究的体验来阐明数学的经验性与演绎性的相互关系。D.希尔伯特说:数学的源泉就维与经验的反复出现的相互作用,冯·诺伊曼说:数学的本质存在着经验与抽象的二重性;R.库朗说:数学“进入抽象性的一般性的飞行,必须和特定的事物出发,并且又返回到具体和特定的事物中去”;而A.罗宾逊则寄希望于:“出现一种以辩证的研究方法为基础的、态度认真的数学”。

根据数学知识的三种形态(经验知识、公理系统和形式系统)及其与实践的关系,具体说明数学的经验性与演绎性的辩证关系。

识是有关数学模型及其解决方法的知识。数学家利用数学和自然科学的知识,从现实问题中提炼或抽象出数学问题(数学模型),然后求模型的(求模型解),并返回实践中去解决现实问题。这一过程似乎是数学知识的简单应用,但事实并非如此。因为数学模型是主观对客观的反映,而识并非一次完成,特别是遇到复杂的问题时,需要修正已有的数学模型及其求解的方法和理论,并经多次反复试验,才能解决现实问题。况且社的发展,使得旧的方法和知识在解决新问题时显得繁琐,甚至无能为力,从而迫使数学家发明或创造新的方法、思想和原理,并在实践中得到反,产生新的数学分支学科。这时的数学知识是在解决实践提出的数学问题中产生的,属于经验知识,具有经验的性质。

经验性向演绎性转化第一部分讲过,数学经验知识具有零散性和不严密性,有待于上升或转化为系统的理论知识;而数学对象的特殊性使得这种取特殊的途径和方法——公理法,产生特有的理论形态——公理系统。所以,数学的经验性向演绎性的转化,具体表现为经验知识向作为理论形理系统的转化。

统是应用公理方法从某门数学经验知识中提炼出少数基本概念和公理作为推理的前提,然后根据逻辑规则演绎出属于该门知识的命题构成的一个统。它是数学知识的具体理论形态,是对数学经验知识的理论概括。就其内容来说,是经验的;但就其表现形式来说,是演绎的,具有演绎性质。学成果(一般表现为定理)不能靠归纳或实验来证实,而必须通过演绎推理来证明,否则,数学家是不予承认的。

统就其对经验知识的概括来说,是理性认识对感性认识的抽象反映。为了证实这种抽象反映的正确性,数学家采取两种解决办法。一是让理论回,通过实际应用来检验、修改理论。欧几里得几何的不严密性就是通过此种方法改进的。二是从理论上研究公理系统应该满足的性质:无矛盾性、和公理的独立性。这就引导数学家对公理系统的进一步抽象,产生形式系统。

统是形式化了的公理系统,是由形式语言、公理和推理规则组成的。它是应用形式化方法从不同的具体公理系统中抽象出共同的推理形式,构成式系统;然后用有穷推理方法研究形式系统的性质。所以,形式系统是撇开公理系统的具体内容而作的进一步抽象,是数学知识的抽象理论形态。的是形式推理的方法,表现其知识形态的演绎性。

演绎性向经验性的转化这除了前面说过的认识论原因外,对公理系统和形式系统的研究也证实了这种转化的必要性。哥德尔不完全性定理严格证

理系统的局限性:(1 )形式公理系统的相容性不可能在本系统内得到证明,必须求助于更强的形式公理系统才能证明。而相容性是对公理系统的要求,那么在找到更强的形式公理系统之前,数学家只能像公理集合论那样,让公理系统回到实践中去,通过解决现实问题而获得实践的支持。如果包含初等算术的形式公理系统是无矛盾的,那么它一定是不完全的。这就是说,即使形式系统的无矛盾性解决了,它又与不完全性相排斥。全性”是指,在该系统中存在一个真命题及其否定都不可证明(称为不可判定命题)。所以,“不完全性”说明,作为对数学经验知识的抽象的统,不可能把属于该门数学的所有经验知识(命题)都包括无遗。对于“不可判定命题”的真假,只有诉诸实践检验。因此,这两种情况说明,公理系统的无矛盾性和不可判定命题,必须让数学的理论知识返回到实践接受检验。

见,数学的认识过程是:在解决现实问题的实践基础上获得数学的经验知识;然后上升为演绎性的理论知识(公理系统和形式系统);再返回到,通过解决现实问题而证实自身的真理性,完善或发展新的数学知识。这是辩证唯物论的认识论在数学认识论上的具体表现,反映了数学本质上知识的经验性与演绎性在实践基础上的辩证统一。

学是一门演算的科学

学的本质是经验性与演绎性在实践基础上的辩证统一,那么能否对数学的本质进一步作出哲学概括呢?即用简洁的语言表达数学的本质,就像拉说的“数学是拟经验的科学”那样。为此,本文提出,数学是一门演算的科学(其中“演”表示演绎,“算”表示计算或算法,“演算”表示演对矛盾的对立统一)。在此,必须说明三点:何以如此概括?“演算”能否反映数学研究的特点以及能否反映数学本质的辩证性?

如此概括?

从理论上讲,数学本质是数学观的一个重要问题,而数学观与数学方法论是统一的,所以可以通过方法论来分析数学观。数学认识对象的特殊性数学认识方法的特殊性。这种特殊性表现在,数学研究除了像自然科学那样仅仅采用观察、实验、归纳的方法外,还必须采用演绎法。因此,可研究数学认识方法来反映数学认识的本质。

从事实上看,数学知识的经验性表明数学是适应社会实践需要而产生的,是解决实际问题的经验积累。社会实践提出的数学问题都要求给出定量,而要作出定量的回答就必须进行具体的计算,所以计算表征了数学经验知识的特点。而对于各种具体的计算方法及其一般概括的“算法”(包、原理、法则),也都可以用“算”来概括、反映数学知识的经验性在方法论上的计算或算法特点。同时,数学知识的演绎性反映数学认识在方的演绎特点,所以,可以用“演”来反映数学知识的演绎性。因此,我们可以用“演算”来反映数学本质的经验性与演绎性。

为避免概括数学本质的片面性。自从数学分为应用数学与纯粹数学以后,许多数学家认为,数学来源于经验是很早以前的事,现在已经不是了,成一门演绎科学了。而一般人也接受这种观点。但这样强调数学的演绎性特点,却忽视了数学具有经验性质的一面。为了避免这种片面性,这里过数学方法论来概括和反映数学的本质。

算”反映了数学研究的特点

究对象的特殊性产生了数学研究特有的问题:计算与证明。它们成为数学研究的两项主要工作。关于“证明”。数学对象的特殊性使得数学成果自然科学成果那样通过实验来证实,而必须通过逻辑演绎来证明,否则数学家是不予承认的。所以,数学家如何把自己的成果表达成一系列的演(即证明)就成为重要工作。证明成为数学研究工作的重要特点。关于“计算”。数学本身就是起源于计算,即使数学发展到高度抽象理论的今不能没有计算。数学家在证明一个定理之前,必须经过大量的具体计算,进行各种试验或实验,并加以分析、归纳,才能形成证明的思路和方法。这时候,才能从逻辑上进行综合论证,表达为一系列的演绎推理过程,即证明。从应用数学来看,更是需要大量的计算,所以人们才发明各种计在电子计算机广泛应用的今天,计算的规模更大了,以致在数学中出现数值实验。因此,计算成为数学研究的另一项重要工作。

计算与证明”是数学研究的两项主要工作和特点,那么“数学是演算的科学”这一概括是否反映出这一特点?“证明”是从一定的前提(基本概理)出发,按照逻辑规则所进行的一种演绎推理。而“演(绎)”正可以反映“证明”这一特点。而“算”显然更可以直接反映“计算”或“算其特点。由此可见,“演算”反映了数学研究的计算和证明这两项基本工作及其特点。

”与“算”的对立统一反映数学性质的辩证性

从数学发展的宏观来看。数学史告诉我们,数学起源于“算”,即起源于物体个数、田亩面积、物体长度等的计算。要计算就要有计算方法,当算方法积累到一定数量的时候,数学家就进行分类,概括出适用于某类问题的计算公式、法则、原理,统称为算法。所以数学的童年时期叫做算表现为一种经验知识。当欧几里得建立数学史上第一个公理系统时,才出现“演绎法”。此后,“演”与“算”便构成了数学发展中的一对基本推动着数学的发展。这在西方数学思想史中表现最为突出。大致说来,在欧几里得以前,数学思想主要是算法;欧几里得所处的亚历山大里亚前学主要思想已由算法转向演绎法;从亚历山大里亚后期到18世纪,数学主要思想再次由演绎法转向算法;19世纪到20世纪上半叶,数学主要思算法转向演绎法;电子计算机的应用促进了计算数学的发展及其与之交叉的诸如计算流体力学、计算几何等边缘学科的产生以及数学实验的出现。又使算法思想重新得到发展,成为与演绎法并驾齐驱的思想。可以预言,随着计算机作为数学研究工具地位的确立,算法思想将成为今后相当长期数学的主要思想。算法思想与演绎思想在数学发展过程中的这种更迭替代,从一个侧面体现了“演”与“算”这对矛盾在一定条件下的相互转以,有的数学史工作者从方法论的角度把数学的发展概括为算法倾向与演绎倾向螺旋式交替上升的过程。

从数学研究的微观来看。“演”中有“算”,这充分表明了我们上面所分析的“证明”中包含着“计算”,包含着“算”向“演”转化。“算”演”,这充分表现在算术和代数中。算术和代数表现为“算”,但是,算术和代数的“算”,并不是自由地计算,而是要遵循基本的四则运算及,即计算要按照一定的计算规则,就像证明要遵守推理规则一样。所以“算”中包含着“演”,包含着“演”向“算”的转化。“演”与“算”对立统一更充分地体现在计算机的数值计算和定理证明中。这种“算”与“演”的对立统一关系,从一个侧面反映了数学的经验性与演绎性的辩,反映了数学性质的辩证性。

述,既然“演算”概括了数学研究的特点,反映了数学的经验性与演绎性及其辩证关系,我们就有理由把它作为对数学本质的概括,说“数学是算的科学”。

中国古今26位著名数学家的故事[001]

中国古今26位著名数学家的故事 1.赵爽,三国时期东吴的数学家。曾注《周髀算经》,《周髀算经注》 中有一篇《勾股圆方图注》全文五百余字,并附有数幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。 2.朱世杰(公元1300年前后)朱世杰数学代表作有《算学启蒙》(1299) 和《四元玉鉴》(1303)。 3.祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问 题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。 4.祖冲之(429-500),中国南北朝时代南朝数学家、天文学家、物理学 家。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。 5.杨辉,字谦光,钱塘(今杭州)人,中国古代数学家和数学教育家, 生平履历不详。(一)主要著述 《详解九章算法》,《日用算法》,《乘除通变本末》,《田亩比类乘除捷法》,《续古摘奇算法》,其中后三种为杨辉后期所著,一般称之为《杨辉算法》。 6.熊庆来(1893—1969),字迪之,云南弥勒人,他是中国近代数学研 究和教育的奠基人。 7.许宝騄(19l0.9.10一1970.12.18)是中国数学家,生卒于北京.许宝騄是中国概率统计领域内享有国际声誉的第一位数学家。他的主要工作是在数理统计和概率论两个方面。 8.徐光启(公元1562—1633年)字子先,编写了著名的《农政全书》。《几何原本》是我国最早第一部自拉丁文译来的数学著作还有《数理精蕴》。 9.吴学谋是中国数学家,生于广西柳州。 10.汪莱(1768一1813),是中国古代数学家,《参两算经》的最早的数学作品。1796一1798年,汪莱先后与自己的同乡好友巴树谷、江玉讨论数学,完成《弧三角形》和《勾股形》两部书稿。1789年,巴树谷将此两书合为一帙刊行,取名《衡斋算学》,这就是汪莱数学著作的最早刊本。

数学思想是指人们对数学理论和内容的本质的认识,数学方法

数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,数学思想”和“数学方法”之间,没有严格的界限,实际上两者的本质是相同的,差别只是站在不同的角度看问题。通常混称为“数学思想方法”。常见的数学四大思想为:函数与方程、转化与化归、分类讨论、数形结合.运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种积累达到一种程度时就会产生飞跃,从而上升为数学思想,比如,我们用代数知识去解决某一几何问题(或用几何知识去解某一代数问题)就是数形结合法,当其在整个几何,(或代数)体系中发挥重要作用时,就自然升华为数形结合思想,因此,人们通常将数学思想与数学方法看成一个整体概念——数学思想方法。 二、初中数学教材中的主要数学思想方法 纵观初中数学教材,涉及到的思想方法主要有: 1、符号与换元思想方法 使用符号化语言和在其中引进变元是数学高度抽象的要求,它能够使数学研究的对象更加准确、具体、形象简明,更易于揭示对象的本质,一套形式化的数学语言极大地简化加速思维过程,例如公式(a +b)(a-b)=a2-b2就是采用符号化语方来表述,当a、b代的任意数、单项式、多项式等代数式都成立,这样的字母表示“换元”,初中教材中的公式、法则、运算律等绝大多数都是用含有变元及符号组合,来表示某一般规律和规则的,这种用符号表达的过程,反映了思维的概括性和简洁性。

2、化归思想方法 化归思想方法是用一种联系、发展、运动与变化的观点去认识问题,而不是用孤立、静止的眼光去看待问题,它是通过观察、联想、类比等手段,把问题进行变换、转化、直到化为已经解决或容易解决的问题。教材中几乎处处都隐含着化归思想,如把有理数的减法运算转化为加法运算,除法运算转化为乘法运算,最后转化为算术数的运算;把一元一次方程转化为最简方程;把异分母转化为同分母;将多元方程转化为一元方程;将高次方程化为低次方程;将分式方程化为整式方程;将无理方程化为有理方程;把求负数立方根问题转化为求正数立方根的问题;把不能直接查表的数转化为可以直接查表的数;把复杂图形转化为基本图形;把多边形转化为三角形或特殊四边形等等。 3、分类思想方法 分类思想方法是一种依据数学对象本质属性的相同点和差异点,将数学对象区分为不同种类的数学思想方法。数学分类须满足两点要求:①相称性,即保证分类对象既不重复又不遗漏。②同一性,即每次分类必须保持同一的分类标准。(注意同一数学对象,也可有不同的分类标准)在教材中有许多处体现分类思想方法如在概念的形成中有:有理数的概念、绝对值的概念等;在定理的证明中有:圆周角定理的证明、弦切角定理的证明等;在运算的法则中有:一元一次不等式(组)的解法、一元二次方程根的判别等,在图形(像)的性质中有:点、直线、圆之间的位置关系、函数图像的性质等,可见,分类

数学的奥秘:本质与思维-考试85分

? 《数学的奥秘:本质与思维》期末考试(20)
姓名: 班级:继续教育
成绩: 85.0 分
一、 单选题(题数:50,共 50.0 分)
1
假如你正在一个圆形的公园里游玩,手里的公园地图掉在了地上,问:此时你能否在地图上 找到一点,使得这个点下面的地方刚好就是它在地图上所表示的位置?()(1.0 分)
0.0 分
? A、

? B、
没有
? C、
需要考虑具体情况
? D、
尚且无法证明
我的答案:B
2
若 均为 的可微函数,求
1.0 分
? A、
的微分。()(1.0 分)

? B、
? C、
? D、
我的答案:A
3
下列关于 分)
1.0 分
? A、


? B、
)的说法正确的是()。(1.0

? C、
? D、
不确定
我的答案:A
4
已知
,则
0.0 分
? A、
1
? B、
0.1
? C、
0
? D、
0.2
我的答案:C
5
方程

1.0 分
=()。(1.0 分) 有无实根,下列说法正确的是?()(1.0 分)

? A、
没有
? B、
至少 1 个
? C、
至少 3 个
? D、
不确定
我的答案:B
6
函数 在 是
1.0 分
? A、
上连续,那么它的 Fourier 级数用复形式表达就 ,问其中 Fourier 系数 的表达式是?(1.0 分)
? B、
? C、

中国当代著名数学家介绍

中国当代著名数学家介绍 1.国际著名数学大师,沃尔夫数学奖得主,陈省身 1931年入清华大学研究院,1934军获硕士学位.1934年去汉堡大学从Blaschke学习.1937年回国任西南联合大学教授.1943年到1945年任普林斯顿高等研究所研究员.1949年初赴美,旋任芝加哥大学教授.1960年到加州大学伯克利分校任教授,1979年退休成为名誉教授,仍继续任教到1984年.1981年到1984年任新建的伯克利数学研究所所长,其后任名誉所长。陈省身的主要工作领域是微分几何学及其相关分支.还在积分几何,射影微分几何,极小子流形,网几何学,全曲率与各种浸入理论,外微分形式与偏微分方程等诸多领域有开拓性的贡献.陈省身本有极多荣誉,包括中央研究院院士(1948).美国国家科学院院士(1961)及国家科学奖章(1975),伦敦皇家学会国外会员(1985),法国科学院国外院士’(1989),中国科学院国外院士等。荣获1983/1984年度Wolf奖,及1983年度美国科学会Steele奖中的终身成就奖. 2.享有国际盛誉的大数学家,新中国数学事业发展的重要奠基人,华罗庚 华罗庚是一位人生经历传奇的数学家,早年辍学,1930年因在《科学》上发表了关于代数方程式解法的文章,受到熊庆来的重视,被邀到清华大学学习和工作,在杨武之指引下,开始了数论的研究。1936年,作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应美国普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年开始,他为伊利诺伊大学教授。1950年回国,先后任清华大学教授,中国科学院数学研究所所长,数理化学部委员和学部副主任,中国科学技术大学数学系主任、副校长,中国科学院应用数学研究所所长,中国科学院副院长、主席团委员等职。还担任过多届中国数学会理事长。此外,华罗庚还是第一、二、三、四、五届全国人民代表大会常务委员会委员和中国人民政治协商会议第六届全国委员会副主席。华罗庚是在国际上享有盛誉的数学家,他的名字在美国施密斯松尼博物馆与芝加哥科技博物馆等著名博物馆中,与少数经典数学家列在一起。他被选为美国科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。又被授予法国南锡大学、香港中文大学与美国伊利诺伊大学荣誉博士。华罗庚在解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等广泛数学领域中都作出卓越贡献。由于华罗庚的重大贡献,有许多用他他的名字命名的定理、引理、不等式、算子与方法。他共发表专著与学术论文近三百篇。华罗庚还根据中国实情与国际潮流,倡导应用数学与计算机研制。他身体力行,亲自去二十七个省市普及应用数学方法长达二十年之久,为经济建设作出了重大贡献。 3.仅次于哥德尔的逻辑数学大师,王浩 1943年于西南联合大学数学系毕业。1945年于清华大学研究生院哲学部毕业。1948年获美国哈佛大学哲学博士学位。1950~1951年在瑞士联邦工学院数学研究所从事研究工作1951~1953年任哈佛大学助理教授。1954~1961年在英国牛津大学作第二套洛克讲座讲演,又任逻辑及数理哲学高级教职。1961~1967 年任哈佛大学教授。1967年后任美国洛克斐勒大学教授,主持逻辑研究室工作。1985年兼任中国北京大学名誉教授。1986年兼任中国清华大学名誉教授。50年代初被选为美国国家科学院院士,后又被选为不列颠科学院外国院士,美籍华裔数学家、逻辑学家、计算机科学家、哲学家。 4.著名数学家力学家,美国科学院院士,林家翘 1937年毕业于清华大学物理系。1941年获加拿大多伦多大学硕士学位。1944年获美国加州理工学院博士学位。1953 年起先后担任美国麻省理工学院数学教授、学院教授、荣誉退休教授。林家翘教授曾获:美国机械工程师学会Timoshenko奖,美国国家科学院应用数学和数值分析奖,美国物理学会流体力学奖。他是美国国家文理学院院士(1951),美国国

数学理解的本质

数学理解的本质 认知心理学家将知识在学习者头脑中的呈现和表达方式称为知识的表征.对知识的理解与知识的表征密切相关,事实上,对一个事物本质的理解,就是指该事物的性质以一定的方式在学习者头脑中呈现并能迅速提取.基于此,我们将理解解释为对知识的正确、完整、合理的表征. 根据对数学知识的分类,数学理解应涵盖对陈述性知识、程序性知识及过程性知识的理解等3个方面. (1)对陈述性知识的理解. 陈述性知识以命题、表象、线性排序等3种形式作为基本表征单位.命题相当于头脑中的一个观念,一个命题被看作是陈述性知识的最小单元.一个命题不是孤立的,它与其它命题相互联系组成命题网络.表象表征是对事物的知觉特征的保留,是一种连续的,模拟的表征.线性排序是对一系列元素所作的线性次序的编码.在人的知识表征中往往组合了命题、表象及线性排序,从而形成对知识的综合表征—_一图式.Anderson[8]认为:“图式是对范畴的规律性做出编码的一种形式.这些规律性既可以是知觉性的,也可以是命题性的.”显然,图式包容了命题网络,因为命题网络并不对可以知觉的规律性做出编码.Gagne 隅】对图式的特征作了更细致的刻画:①图式含有变量;②图式可按层级组织起来,也可以嵌入另一图式之中;③图式能促进推论. 对数学陈述性知识的理解是从知识的基本单元表征,到形成命题网络,再到获得图式的过程.许多学者认为,所谓对一个陈述性数学知识的理解就是在个体头脑中建立了该对象的一个命题网络.这种界定将知觉表征排除在外,有偏颇的一面,笔者认为,对一个陈述性数学知识的理解,是指学习者获得了该对象的图式. (2)对程序性知识的理解. 程序性知识是由陈述性知识转化而来的,是陈述性知识的动态成分.与静态的陈述性知识不同,程序性知识以“产生式”这种动态形式来表征.所谓产生式指一条“条件——行动”规则,即一个产生式总是对某一或某些特定的条件满足时才发生的某种行为的一种程序.当一个产生式的行动成为另一个产生式的条件时,这2个产生式便建立了相互的联系,若一组产生式有这种相互联系,便形成一个产生式系统,产生式系统代表了人从事某一复杂行为的程序性知识.对数学知识而言,其二重性表现得尤为突出,这种二重性或称为概念性知识和方法性知识(Hiebert& Carpenter) ,或称为对象和过程(Thompson 等),其本质就是陈述性知识和程序性知识.一个数学概念既包含结果也包含过程,如“加法”:a+b,既代表2个集合中的元素合并或添加起来的过程,又代表合并或添加后的结果.因而,对数学知识的理解就不仅包括对静态的、结果的陈述性知识的理解,而且还包括对动态的程序性知识的理解. 既然程序性数学知识的表征是产生式和产生式系统,因此,程序性数学知识的理解就应解释为学习者对产生式和产生式系统的获得.特别地,我们认为对程序性知识中的策略性知识,其表征是一种双向产生式.双向产生式是一种具有双重功能的指令,它既能指令在具备什么样的条件下会有什么动作,又能指令在不同的情形中选用不同的产生式.换言之,学习者不仅知道“如果?那么?”,而且还应知道在什么条件下去使用这个“如果?那么?”.综上所述,学习者对程序性数学知识的理解,是指他建立了双向产生式和产生式系统. (3)对过程性知识的理解. 过程性知识与程序知识的共通之处是2者都是动态型知识,但2者的内涵是不同的.其一,过程性知识是指个体对数学知识发生发展过程的体验性知识,当然包含对陈述性知识及程序性知识获得的体验,其动态性贯穿于知识学习的全过程.而程序性知识是进行某项操作活动的程序,它是陈述性知识经过内化而得,其动态性表现在学习过程中的知识应用阶段.其二,程序性知识通过一定量的练习后可以习得甚至形成自动化技能,但过程性知识难以通过练习去习得.其三,程序性知识往往是针对某个知识点而言的,而过程性知识则是关注知识点之间的关系. 我们将过程性知识的表征分为2个层面,一是关系表征,二是观念表征.关系表征指个体对知识发展过程中知识之间存在某些关系的体悟.具体地说,它相当于陈述性知识的命题网络中连结命题的连线,以

把握数学本质,以不变应万变

把握数学本质,以不变应万变我们要想解决一个数学问题,关键要把握题中的数学本质,在千变万化中找寻到其中不变的量,求出这些不变的量,然后利用这些不变的量解决最终的问题,以不变应万变。下面,本文主要以“牛吃草”问题为例,阐述解决问题时的“以不变应万变”。 一、“牛吃草”问题 牛吃草问题也称牛顿问题,最早是伟大的数学家、物理学家牛顿在《普通算术》中提出来的。形如:牧场上有一片匀速生长的草地,可供10头牛吃20天,或者15头牛吃10天。问:可供25头牛吃几天?解决这类问题时,难点是草的总量在不断变化,其中包括草的增加:每天新长的和草的减少:每天被牛吃掉的,而且牛的数量在变化,每天被吃掉的草的量也有所不同。因此解题的关键是想办法从变化中找到不变的量,以不变应万变。我们不难发现,主要有以下这些不变的量:(1)牧场上原有的草的量;(2)每天新长出的草是不变的(匀速生长);(3)每头牛每天的吃草量是不变的。求出这些不变的量,以不变应万变,问题就容易解决了。 我们不妨假设每头牛每天吃草的量为1份,从而我们可以求出10头牛吃20天的草量为:10×20=200(份);15头牛吃10天的草量为15×10=150(份)。200份草=原有的

草+20天新长的草;150份草=原有的草+10天新长的草。两者都包含原有的草,区别在于新长的草量,为什么前者会比后者多出200-150=50(份)的草?我们不难发现,是因为前者比后者多长了20-10=10(天),也就是说多长的10天的草量就是那多出的50份草,从而可以求出每天新长的草量为:(200-150)÷(20-10)=5(份)。最后利用“每天新长的草量为5份”这个不变的量求出最后一个不变的量:原有的草量。可利用10头牛吃20天的草量为200份求出原有的草量为:200-5×20=100(份);或者也可用15头牛吃10天的草量为150份求出原有的草量为:150-5×10=100(份)。至此,所有不变的量都已经求出,以这些不变的量应对千变万化的问题,就容易多了。最后要求可供25头牛吃几天,主要有两种想法:(1)25头牛吃草每天消耗25份草,同时每天会新增5份草,也就是说每天净减少25-5=20(份),原有的100份草,100÷20=5(天)就被吃完;(2)由于每天新增5份草,我们可以让其中的5头牛专门去吃每天新增的草,自给自足,剩下的25-5=20(头)牛只能吃原有的100份草,100÷20=5(天)吃完。两种想法略有不同,但列式相同,其本质也一样。 至此,整道题就解完了。解决这类问题的关键是想办法从变化中找到不变的量,然后求出这些不变的量,最后利用这些不变的量再求出最终的问题。

数学教学中数学本质的揭示

数学教学中数学本质的揭示 摘要:中学数学课堂教学一般比较重视数学技能的训练,“精讲多练”已成为数学课堂教学的主要形式。对学生而言,这种做法的必然结果是:强化了技能操作却忽视了对数学基本原理和数学思想方法的理解掌握。忽视了对数学本质的理解,对数学的认识只停留在一个较低的水平。中学数学教学应该呈现数学的本质,感悟数学的精神,应该跳出题海,回归本源。 关键词:数学教学;本质;揭示 现在的教学目标,除知识技能目标之外,还要注意知识的发生过程,提出了过程性目标,这是完全正确的。但是,比呈现数学过程更高的要求是体现数学本质:对基本数学概念的理解,对数学思想方法的把握,对数学特有思维方式的感悟以及对数学美的鉴赏等。一些粗浅、拖沓的“过程”往往不能反映出数学的真正价值,反而白白浪费了时间。 新加坡数学教育家李秉彝先生说过,数学教育必须做到八个字:“上通数学,下达课堂”。所谓上通数学,就是必须理解数学知识的内涵,揭示数学的本质。但是在如今的公开课的展示及其评价中,教师多半聚焦在教育理念的体现、教学方式的选择、课堂气氛的营造、学生举手发言的热烈等方面。至于数学内容的表达、数学本质的揭示、数学价值的呈现,则往往有所缺失。其实,内容决定形式,学生是否能够掌握数学内容,是评价课堂教学是否成功的主要标志。因此,教师在备课时,需要思考如何挖掘教材内容的数学本质。 一、透过现象看本质 数学本质往往隐藏在数学形式表达的后面,需要由教师的数学修养加以揭示。例如,在数学中平面直角坐标系的本质是什么?浅层的理解是用一对数确定点的位置,于是初中数学教学中的大量案例,都把坐标系的价值理解为“位置”的确定,许多教案的内容也都要求在教室里开展“第几排第几座”的游戏。事实上,这种低级的生活化活动,根本不能增加对坐标系的理解。用一对数确定位置,是地理课的任务,连语文课也都会处理几排几座这样的问题,所以这样的活动没有鲜明的学科特点,更没有触及数学概念的本质,我认为平面坐标系的本质则在于用“数”所满足的方程来表示点的运动轨迹,即“数形结合”的思想。引入坐标系的第一节课,拿位置确定作为铺垫可以,更重要的是要引导学生观察和思考:两个坐标一样的点是什么图形?两个坐标都是正数的点构成什么区域?横坐标是零的点是什么图形?这样就有数学味道了,也更深层次的触及了数学的本质。 二、数学操作活动要体现本质 新的数学课程标准中将基本数学活动经验纳入了数学教学的目标之中,这使得学生在数学学习中不仅获得了客观性的知识,还形成了属于学生自己的主观性知识,有助于学生对数学的真正理解,在许多教学设计中,也都注意到了数学活

中国著名数学家

中国有哪些著名的数学家有 张丘建、朱世杰、贾宪、秦九韶、李冶、刘徽、祖冲之、胡明复、冯祖荀、姜立夫、陈建功、熊庆来、苏步青、江泽涵、许宝騄、华罗庚、陈省身、林家翘、吴文俊、陈景润、丘成桐、冯康、周伟良、萧荫堂、钟开莱、项武忠、项武义、龚升、王湘浩、伍鸿熙、严志达、陆家羲、苏家驹、王菊珍、谷超豪、王元、潘承洞、魏宝社、高扬芝、徐瑞云、王见定、吕晗等等。1.祖冲之 祖冲之(429-500),字文远。出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。 祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。 由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。其主要著作有《安边论》《缀术》《述异记》《历议》等。 2.华罗庚 华罗庚(1910.11.12—1985.6.12),出生于江苏常州金坛区,祖籍江苏丹阳。数学家,中国科学院院士,美国国家科学院外籍院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。中国第一至第六届全国人大常委会委员。 他是中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,并被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。国际上以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、“华—王方法”等。 向左转|向右转

对数学教学本质的认识

对数学教学本质的基本认识 “数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”这里,强调了数学教学是一种活动,是教师和学生的共同活动。 一、数学教学过程是教师引导学生进行数学活动的过程。学生要在数学教师指导下,积极主动地掌握数学知识、技能,发展能力,形成积极、主动的学习态度,同时使身心获得健康发展。数学活动可以从以下两个方面加以理解。 1、数学活动是学生经历数学化过程的活动。数学活动就是学生学习数学,探索、掌握和应用数学知识的活动。简单地说,在数学活动中要有数学思考的含量。数学活动不是一般的活动,而是让学生经历数学化过程的活动。当儿童通过模仿学会计数时,当他们把两组具体对象的集合放在一起而引出加法规律时,这实质上就是数学化的过程。 2、数学活动是学生自己建构数学知识的活动。数学学习是学生在学数学,学生应当成为主动探索知识的“建构者”,决不只是模仿者。无论教师的教还是学生的学都要在学生那里体现,不懂得学生能建构自己的数学知识结构,不考虑学生作为主体的教,不会有好的效果。实际上,教师的教总要在学生那里得到体现与落实,是学生在吸收、消化、理解、掌握、运用知识。离开了学生积极主动的学习,数学教师讲得再好也会经常出现“教师讲完了,学生仍不会”的现象,教学对于指导学生建构数学知识应当具有重要的引导和指导作用,教

师教学工作的目的应是引导学生进行有效地建构数学知识的活动。 二、数学教学过程是教师和学生之间互动的过程。教学过程是师生间进行平等对话的过程。在教学中,教师首先应考虑的是要充分调动学生的主动性与积极性,引导学生开展观察、操作、比较、概括、猜想、推理、交流等多种形式的活动,使学生通过各种数学活动,掌握基本的数学知识和技能,初步学会从数学的角度去观察事物和思考问題,产生学习数学的愿望和兴趣。教师在发挥组织、引导作用的同时,又是学生的合作者和好朋友,而非居高临下的管理者。教师的这些作用至少可以在下面的活动中体现出来。 1、教师引导学生投入到学习活动中去。教师要调动学生的学习积极性,激发学生的学习动机;当学生遇到困难时,教师应该成为一个鼓励者和启发者;当学生取得进展时,教师应充分肯定学生的成缋,树立其学习的自信心;当学习进行到一定阶段时,教师要鼓励学生进行回顾与反思。 2、教师要了解学生的想法,有针对性地进行指导,起到“解惑”的作用;教师要鼓励不同的观点,参与学生的讨论;教师要评估学生的学习情况,以便对自己的教学做出适当的调整。 3、教师要为学生的学习创造一个良好的课堂环境,引导学生开展数学活动。教师在数学教学中应经常启发学生思考:“你是怎么知道这个结果的?”而不只是要求学生模仿和记忆。教师应了解学生的真实想法,并以此作为教学的实际出发点,为学生的学习活动提供一个良好的环境,真正发挥引导者的作用。

把握数学本质几点看法和做法

“把握数学本质”的几点看法和做法 石狮石光华侨联合中学陈润生 (4月9日) 一、问题的提出: 曾经问过几个数学比较优秀的学生这样几个简单的问题,题目和学生的回答如下: (1)什么叫做点在第二象限? 学生甲:一脸茫然,不知所云? 学生乙:画出第二象限的一个点,指给我看。 (2)什么叫做两圆外切? 学生甲:画出两圆外切的图形,指给我看。 学生乙:有唯一公共点,且一个圆在另一个圆的外部的两个圆的位置关系。 我也茫然!我不能说他们是错的,但我觉得这样的数学仅能是“意犹未尽的数学”。思其原因:学生了解到的仅是对于数学知识的外在理解,而未能很好地把握数学的本质! 我惊叹:“哑巴几何(说不出来的几何)”好可怕! 我思考:我们要怎么引导学生抓住数学的本质,实现数学的教育目标? 二、问题的思考 新课程明确提出:淡化形式,注重实质。数学的学习仅仅了解数学知识的外在形式是不够的,而更深层次的必需抓住它的

本质所在。正如,我们认识一个人,并不应仅仅认识其穿一件衣服下的“他”,而应认识的实实在在的“他”(包括化完妆后的“他”)。数学的外在形式很多,正如人可以穿好几套衣服一样,但它的实质却永远不会变(你就是你),教会学生“透过现象看本质”、“外显和内含相呼应”、“用内含来解释外显”是我们应该引导学生完成的一件很重要的任务。 三、问题的探索: 如何实现抓住数学的本质呢?下面几方面可以进行探索: 1.要让学生明确数学的表现形式是多样的,有外部的表现形式(往往还是有很多种),也有内在本质的东西,仅仅了解数学的外部表现是远远不够的,数学的学习和研究实质上就是要抓住数学本质、应用数学的本质。 2.要让学生具有“翻译”能力——“等价翻译”的能力,这是数学知识实现有“外在形式”转化为“内在形式(本质)”的手段和途径。也就是要让学生“听懂话中之意”! 3.要创设情境,让学生体会到“抓住数学本质,才是抓住数学”的道理。要体现出抓住数学本质的重要性。 4.要让数学的“外在形式”与“内在本质”达到统一。让学生透过外表看本质,由本质问题解释外显现象。 如关于《三角形稳定性》的教学,可以按以下环节,层层递进,抓住和应用数学本质,达到数学的本质与各种外显的统一: ①三角形的三边确定,则三角形就能稳定不变;

数学的本质与其对数学教学的意义

随着数学课程改革的不断深入和发展,数学教育中的许多深层次问题也越来越引起广大教育工作者的重视。“数学是什么?”“数学来自于哪里?”这些涉及数学本质的问题就是诸多深层次问题中的重要问题。正确理解数学的本质对于树立正确的数学教育观念、对于数学课程改革的继续发展均有着巨大的现实指导意义。一、数学是什么?作为一个现代人,不知道“数学”的人恐怕不多,但能将数学是什么解释得很清楚的人恐怕也不是很多。其实,即使作为专业的数学工作者,由于各自的认识与经历不同,对数学是什么的回答也有相当大的差异。1.“数学是研究现实世界的空间形式和数量关系的科学”众所周知,关于数学的这个定义是恩格斯提出来的。事实上,恩格斯的这个定义,很多年以来,就是国内和国际数学界与哲学界公认的最权威的定义,最新版(2005年版)的《现代汉语词典》仍然是这样来定义数学的——“研究现实世界的空间形式和数量关系的学科”。20世纪以来,新的数学分支不断产生,纯数学越来越抽象,它与现实世界之间的距离似乎越来越远;同时,应用数学在现实世界中的涉及面空前广泛且越来越广泛,数学的研究对象似乎不仅仅是空间形式与数量关系;而且,有不少研究者从自己的认识出发,提出了关于数学的多种定义。于是乎,近些年有人就认为恩格斯给数学所下的定义过时了或“远远不够了”。这样的认识是片面的,因为事实并非如此。匡继昌先生深刻分析了“数学是什么”,认为“数学的定义应该反映数学研究的对象及其本质属性”,“只有从唯物辩证法的哲学高度,才能认清现实世界的数量关系和空间形式不是固定不变的,而是其内涵不断加深,外延不断拓广的”,所以,“恩格斯关于‘数学是什么’的论断并未过时”。2.数学是系统化了的常识这是国际著名数学家和数学教育家弗赖登塔尔的观点。他认为数学的根源是普通常识,作为常识的数学,随着语言从说话到阅读和写作的不断进步与发展,也不断地进步与发展着。如数概念的获得,主要是由口头语言中相应的数词来支持的(如从一个人、一支笔、……,得到“1”),在这个过程中,首先是数学思想的语言表达。普通常识是有等级的,普通常识由经验上升成规律后,这些规律再次成为普通常识,即较高层次的常识。弗赖登塔尔曾经说过:“为了真正的数学及其进步,普通的常识必须要系统化和组织化。如同以前一样,普通常识的经验被结合成为规律(比如加法的交换律),并且这些规律再次成为普通的常识,即较高层次的常识。作为更高层次数学的基础——一个巨大的等级体系,是由于非凡的相互影响的力量来建立的。”3.数学是人为规定的一套语言、符号系统这是部分数学史家们的看法。持这种观点的人虽然不多,但很有代表性,它给了我们认识“数学是什么”的一个新角度。翻开一部数学史,除了早期的数学与生活有着非常高的关联度,还需借助现实的生活事实去解释外,后来的数学就越来越关注自己的“语言、符号”了。这种现象最早可追溯到欧几里得的《几何原本》,到了现代,数学的这种特性表现得更加充分。当然,数学作为人为规定的一套语言、符号系统,必须要有一定的条件。通俗点讲,就是这套语言、符号系统必须能自圆其说,高雅点讲,这套系统必须是完备的。举例来说,如果你规定1+1=3,在此基础上去构造一套语言、符号系统,并且能自圆其说,也许一个新的数学分支就诞生了。数学史上不乏这样的先例。如伽罗瓦的群论,康托尔的集合论等等,当初他们出现在数学家们的眼前时,并不为大家所认可。但事实证明,这些是数学,而且是非常重要的数学。由于康托尔的集合论在自圆其说方面有一点小小的问题,从而导致了历史上的一次严重的数学危机。随着这一危机的解决,集合论变得更加完备,数学的基础变得更加稳固。集合论的创立是数学史上的一个巨大成就,以至于今天的小学数学教学中,都必须渗透集合论的思想,从而提高学生的数学认知能力。

中国著名当代数学家介绍 (2)

中国著名当代数学家介绍 1.国际著名数学大师,沃尔夫数学奖得主,陈省身 1931年入清华大学研究院,1934军获硕士学位.1934年去汉堡大学从Blaschke 学习.1937年回国任西南联合大学教授.1943年到1945年任普林斯顿高等研究所研究员.1949年初赴美,旋任芝加哥大学教授.1960年到加州大学伯克利分校任教授,1979年退休成为名誉教授,仍继续任教到1984年.1981年到1984年任新建的伯克利数学研究所所长,其后任名誉所长。陈省身的主要工作领域是微分几何学及其相关分支.还在积分几何,射影微分几何,极小子流形,网几何学,全曲率与各种浸入理论,外微分形式与偏微分方程等诸多领域有开拓性的贡献.陈省身本有极多荣誉,包括中央研究院院士(1948).美国国家科学院院士(1961)及国家科学奖章(1975),伦敦皇家学会国外会员(1985),法国科学院国外院士’(1989),中国科学院国外院士等。荣获1983/1984年度Wolf 奖,及1983年度美国科学会Steele奖中的终身成就奖. 2.享有国际盛誉的大数学家,新中国数学事业发展的重要奠基人华罗庚 华罗庚是一位人生经历传奇的数学家,早年辍学,1930年因在《科学》上发表了关于代数方程式解法的文章,受到熊庆来的重视,被邀到清华大学学习和工作,在杨武之指引下,开始了数论的研究。1936年,作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应美国普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年开始,他为伊利诺伊大学教授。1950年回国,先后任清华大学教授,中国科学院数学研究所所长,数理化学部委员和学部副主任,中国科学技术大学数学系主任、副校长,中国科学院应用数学研究所所长,中国科学院副院长、主席团委员等职。还担任过多届中国数学会理事长。此外,华罗庚还是第一、二、三、四、五届全国人民代表大会常务委员会委员和中国人民政治协商会议第六届全国委员会副主席。华罗庚是在国际上享有盛誉的数学家,他的名字在美国施密斯松尼博物馆与芝加哥科技博物馆等著名博物馆中,与少数经典数学家列在一起。他被选为美国科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。又被授予法国南锡大学、香港中文大学与美国伊利诺伊大学荣誉博士。华罗庚在解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等广泛数学领域中都作出卓越贡献。由于华罗庚的重大贡献,有许多用他他的名字命名的定理、引理、不等式、算子与方法。他共发表专著与学术论文近三百篇。华罗庚还根据中国实情与国际潮流,倡导应用数学与计算机研制。他身体力行,亲自去二十七个省市普及应用数学方法长达二十年之久,为经济建设作出了重大贡献。 3.仅次于哥德尔的逻辑数学大师,王浩 1943年于西南联合大学数学系毕业。1945年于清华大学研究生院哲学部毕业。1948年获美国哈佛大学哲学博士学位。1950~1951年在瑞士联邦工学院数学研究所从事研究工作1951~1953年任哈佛大学助理教授。1954~1961年在英国牛津大学作第二套洛克讲座讲演,又任逻辑及数理哲学高级教职。1961~1967 年任哈佛大学教授。1967年后任美国洛克斐勒大学教授,主持逻辑研究室工作。1985年兼任中国北京大学名誉教授。1986年兼任中国清华大学名誉教授。50年代初被选为美国国家科学院院士,后又被选为不列颠科学院外国院士,美籍华

对数学理解的再认识

对数学理解的再认识 作者:黄燕玲等文章来源:数学教育学报 摘要:现代心理学将知识分为陈述性知识和程序性知识 2 大类,根据数学知识的特征,我们将数学知识分为结果性知识和过程性知识 2 类,其中结果性知识包括陈述性知识和程序性知识.因而,数学理解就应指对陈述性知识、程序性知识和过程性知识的理解.图式的获得、产生式系统的建构、关系和观念表征的完善分别是陈述性知识理解、程序性知识理解、过程性知识理解的本质. 关键词:数学理解;陈述性知识;程序性知识;过程性知识 中图分类号:G421 文献标识码:A 文章编号:1004–9894(2002)03–0040–04 “数学理解”已成为当今数学教育研究的一个热点[1~4].纵观这些研究,可以发现有一个明显的缺陷,即缺乏对数学过程性知识理解的探究,本文旨在对这一问题作初步探索. 1.数学理解”的研究概述 1.1 两种学习理论对“理解”的阐释 行为主义把学习解释为刺激与反应之间的联结,认为学习过程是一种试误过程,在不断的尝试与错误中逐渐形成联结.在行为主义看来,刺激与反应的联结受到练习和使用的次数增多而变得越来越强,反之,变得越弱.因而,行为主义学习观强调技能训练,实现技能由“自觉地执行”向“自动地执行”的转化,于是,个体对知识的理解就是记忆概念、规则和方法,并能迅速提取并用于解决问题.显然,行为主义将知识理解定位在知识记忆的层面上,而不对“机械性记忆”和“在理解基础上的记忆”加以区别.事实上,行为主义只关注人的外部行为,不研究人的内部思维过程,因而不可能对“知识的理解”作深入探讨. 现代认知心理学认为理解的实质是学习者以信息的传输、编码为基础,根据已有信息建构内部的心理表征、并进而获得心理意义的过程.Mayer 给出了学习者的理解过程模式[5],如图1 所示. 在这一模式中,个体的理解分为3 个阶段:第一阶段,各种信息经过注意的“过滤”,部分信息经过感觉登记进入短时记忆.第二阶段是编码阶段,进入短时记忆的信息没有得到复述和加工的部分很快消退,得到及时复述和进一步加工的信息进入长时记忆.第三阶段是表征的重新建构和整合阶段.当信息进入长时记忆后,一方面,使已有图式的一些节点和相应的区域被激活,从而使已经得到编码的信息获得了心理意义;另一方面,新信息的纳入又使已有的图式发生相应的变化,形成新的知识网络和认知结构.由于认知心理学是从人的内部心理去探索人类的学习规律,从而对知识理解的解释就更加深刻和合理. 1.2 对数学理解的研究 对数学理解的研究主要集中在几个方面. (1)数学理解的界定.Hiebert 和Carpenter[1]认为:“一个数学的概念或方法或事实被理

把握数学本质 实现有效教学

把握数学本质实现有效教学 摘要:在讲解二项式定理中的一个例题时,从给出的解法中发现,学生还不会运用已学过的知识,或者想不到运用二项式展开式通项公式解决问题,这一现象非常普遍。本文通过分析三个普遍存在的教学设计,结合中职生的现状,认为立足数学基础,把握数学本质,可以达到数学课有效教学的目的。 关键词:职校数学立足基础有效教学 一、问题的提出 1.解题讲解 (中职数学教材拓展模块3.2二项式定理)例3求的二项展开式的常数项。 教材解答过程: 解:由于, 故,解得m=5。 所以二项式展开式中的第5项是常数项, 为 2.讲解例题时学生的情况 在讲解例题时,一部分学生无从下手,一部分学生对看上去十分复杂的题目(10次方,以前从来没见过!)吓得不敢尝试。小部分学生想到按照二项式展开式将其展开,可

是就是没有学生想到用二项式的通项公式这种最“简单的方法”来解题。 3.评析 如此多的学生想不到应用刚刚讲过的二项式通项公式(),原因何在?教师是如何讲授公式的?学生是如何记忆公式的?所采用的方法是否有效?笔者认为有必要弄清楚以上的问题,有利于在以后的教学中采取有针对性的措施和方法,切实提高公式的学习效率。 二、普遍使用的教学设计 1.设计1 教师引导学生阅读教科书,并提出两个问题:一是观察(a+b)2,(a+b)3,(a+b)4的展开式系数有什么规律?二是尝试写出(a+b)n的展开式,写出展开式的第m+1项,即通项公式讲解例1、例2、例3。 2.设计2 教师板演分别将(a+b)2,(a+b)3,(a+b)4展开,利用初中接触过的“杨辉三角”观察展开式系数的规律,给出(a+b)n的展开式和第m+1项。 评析:这两种设计都是定位于公式的学习与应用,教师引导学生努力分析和总结公式的规律,寻找好的记忆技巧,追求灵活运用等解题能力的提高。但记忆技巧的形成要建立在学生对公式本质深刻认识的基础上,不然,随着时间

(完整版)数学的本质是什么

数学的本质是什么?落实到小学阶段有哪些? 核心提示:——读《小学数学课堂的有效教学》的收获我们在听课或与教师交流中发现个别老师数学素养不高,从而影响了教学效果,甚至,个别老师的课达到了不能再进步的程度,是不是多做高初中的题,或多做奥数题就可以解决这类问题呢?好像也不行?设究竟是什么阻碍了该教师的的专业成长的步伐,答案肯定是教师个人的数学素养。数学素养... ——读《小学数学课堂的有效教学》的收获 我们在听课或与教师交流中发现个别老师数学素养不高,从而影响了教学效果,甚至,个别老师的课达到了不能再进步的程度,是不是多做高初中的题,或多做奥数题就可以解决这类问题呢?好像也不行?设究竟是什么阻碍了该教师 的的专业成长的步伐,答案肯定是教师个人的数学素养。数学素养到底是什么?我认为数学素养就是对数学本质的理解和把握。那么,数学学科的本质是什么呢?落实到小学阶段有哪些呢?我思考了很久,但限于自己的水平只能有一些零碎的不成熟,不全面地认识。寒假期拜读了《小学数学课堂的有效教学》一书,对书中刘加霞老师关于这个问题的观点,感同身受,相见恨晚,受益匪浅。因此特别摘录下来学习。 数学学科本质1:对基本数学概念的理解 所谓“对基本数学概念的理解”是指了解为什么要学习这一概念,这一概念的现实原型是什么,这一概念特有的数学内涵、数学符号是什么,以这一概念为基础是否能构建“概念网络图”。 小学阶段涉及的数学概念都是非常基本、非常重要的,“越是简单的往往越是本质的”,因此对小学阶段的基本数学概念内涵的理解是如何学习数学、掌握数学思想方法、形成恰当的数学观、真正使“情感、态度、价值观”目标得以落实的载体。基本概念非常重要,学生经历不同的“学习过程”将导致学生对概念的理解达到不同的水平。 小学数学的基本概念主要有:数(个人理解加进)十进位值制、单位(份)、用字母表示数、四则运算;位置、变换、平面图形;统计观念。 数学学科本质2:对数学思想方法的把握 基本数学概念的背后往往蕴含重要的数学思想方法。数学的思想方法极为丰富,小学阶段主要涉及哪些数学的思想方法呢?这些思想方法如何落实呢?作者的基本观点是:在学习概念和解决问题中落实。

把握数学本质_培养数学思维

把握数学本质,加深数学思维 12数教 何志勇 11号 【摘要】数学是用数来揭示自然规律的科学。数学本质就是用数学的眼光认识世界,揭示数学规律,总结数学方法,形成数学思想,提炼数学精神,并从上述活动中得到思想、心灵的升华。突出数学本质教学,就是要求我们在教学过程中,让学生理解数学概念,把握数学思想,感悟数学特有的数学思维方式,追求数学精神。对数学本质的理解与把握决定了一个数学老师的教学观和教学效果,因为有什么样的价值观就有什么样的行为方式,有什么样的行为方式就有什么样的行动结果。 【关键词】数学本质 数学思维 数学思想 数学理性思维 学生现状一:“一根铁丝剪去2 5的长度,还剩0.6米。”这是北师大版教材五年级上册练习题。影响学生对它的正确性的判断直接因素:对分数意义的理解:把“单位1”平均分成几份,表示这样的一份或几份的数。如果学生能非常深刻去领悟分数的意义,对于它的正确性是不可能有任何疑义。 学生现状二:一个三角形和一个平行四边形同底,且面积相等,已知三角形的高是3.4分米,则平行四边形的高是( )分米。面对类似这种需要分析的题目,学生便束手无策。 面对这些学生,我开始思考:如何改善这样的被动与狭隘?影响学生思维深刻的因素是什么?如果改变学习方式,让学生充分感受数学知识的本质与形成过程,是否会有较大的改观?突然脑中忽闪一个词:数学本质。或许这才是影响老师教学,学生学习数学的主要因素吧! 首先我们得弄清楚的问题:数学本质到底是什么? 数学是用数来揭示自然规律的科学。数学本质就是用数学的眼光认识世界,揭示数学规律,总结数学方法,形成数学思想,提炼数学精神,并从上述活动中得到思想、心灵的升华。 对数学本质的理解与把握决定了一个数学老师的教学观和教学效果,因为有什么样的价值观就有什么样的行为方式,有什么样的行为方式就有什么样的行动结果。 作为数学内容的本真意义,这需要我们对具体内容进行深入挖掘,一层一层地追问。隐藏在客观事物背后的是什么数学、数学规律?这个数学知识的本质属性是什么?统摄具体数学知识与技能的数学思想方法是什么? 所以我认为如果一个老师懂得去深刻理解、挖掘数学本质,该是学生多大的一种服气和幸运。

相关文档
最新文档