华罗庚学校数学教材(六年级上)第14讲 典型试题分析

华罗庚学校数学教材(六年级上)第14讲 典型试题分析
华罗庚学校数学教材(六年级上)第14讲 典型试题分析

本系列共14讲

第十四讲典型试题分析

.文档贡献者:与你的缘

小学数学竞赛实际上就是解题能力的竞赛.多做好题是提高解题能力的有效途径.本讲中精选了各类数学竞赛的一些典型试题进行分析与解答,希望对开拓思路能起一点作用.

例1龟兔赛跑,全程5.2公里,兔子每小时跑20公里,乌龟每小时3公里,乌龟不停地跑,但兔子却边跑边玩,它先跑1分钟后玩20分钟,又跑2分钟然后玩20分钟,再跑3分钟然后玩20分钟,…,问先到达终点的比后到达终点的快多少分钟?分析只要分别求出乌龟和兔子到达终点各用了多少分钟.

解:乌龟到达终点所用时间为:

5.2÷3=(小时)2615也就是:×60=104(分钟)2615

如果兔子不停地跑,那么它到达终点所用时间为:

5.2÷20=

(小时)1350

分为分钟:×60=(分钟)1350785

又由于==1+2+3+4+5+785315535这就说明在前15分钟里,兔子共停下来玩了5次,然后再跑35

分钟,就到达终点了。共用时间:

+20×5=(分钟)315531155

所以乌龟比兔子早到.104=(分钟)311553115

例2下图是两个互相啮合的齿轮,大的是主动轮,小的是从动轮,大齿轮半径为105,小齿轮半径为90.现在两个齿轮的标志线在同一直线上,问大齿轮至少转了多少整圈后,两条标志线又在同一直线上?

分析这道题可以看成下面的问题:

在A 点有甲、乙二人,同时、同速出发分别沿着两条跑道跑圈,问甲沿左边大圈至少跑了多少圈后,乙沿右边小圈跑到了A 点或B 点?

解:由于要求乙到达A 点或B 点,所以乙跑的路程应该是小圆周长一半的倍数;又由于乙与甲跑的路程相等,所以问题就变成了:

大圆周长的至少多少倍是小圆周长一半的倍数?设甲跑了n 圈,则有是整数,约分后可得:210590n ππ?×是整数。21057903

n n ππ?×=这就说明n 至少取3使是整数。73

n 答:主动轮至少转3圈,两条标志线又在一条直线上.

说明:变换问题的叙述方式,往往是发现解题思路的重要手段.例3王师傅在某个特殊岗位上工作,他每上8天班后,就连续

休息两天。如果这个星期六和星期天他休息,那么至少再过几个星期后,他才能又在星期天休息?

分析首先应该计算出至少过了多少天,王师傅又在星期天休息,由于他是连续休息2天,因此可能出现两种情况:星期六和星期天,星期天和星期一.

解:由于王师傅工作8天,休息2天,所以每10天一循环,设过了n个10天又是星期天,那么总天数就是10n天,又由于每过7天是一个星期天,这就要求10n是7的倍数,因此n至少等于7,总天数就是70天;另外一种情况是过了n个10天是星期一,也可以使王师傅在星期天休息,同样的分析可以知道,10n-1是7的倍数,这时n至少等于5,总天数为

10×5-1=49(天).

由于49<70,

所以第二种情况在第一种情况之前出现,这就说明王师傅至少过49天才又在星期天休息,而不难算出49天等于7个星期.答:王师傅至少过7个星期又在星期天休息.

例4祖父现在的年龄是小明年龄的6倍,几年后,祖父的年龄将是小明年龄的5倍,又过几年以后,祖父年龄将是小明年龄的4倍,求祖父今年多少岁?

分析在“年龄问题”中,有一条差不变原理要注意,也就是说无论什么时候,祖、孙二人的年龄差都是一样的.

解:设祖、孙二人今年的年龄分别为x和y,根据已知条件:今

年祖父年龄是小明年龄的6倍,就有:

x-y=5y,

设过a 年后,祖父年龄是小明年龄的5倍,由差不变原理知道:

x-y=4(y+a),

设过b 年后,祖父年龄是小明年龄的4倍,同样道理又有:

x-y=3(y+b),综合上面三个式子有:

5y=4(y+a)

5y=3(y+b).

整理后得:

y=4a

2y=3b,

也就是8a=3b.

从这个式子看出应该有:

a=3,b=8,

从而就有y=4×3=12

x=6×12=72.

答:祖父今年72岁.

说明:事实上,从8a=3b 这个公式看出a 应为3的倍数,b 为8的倍数,如果取a=6、b=16或更大的话,将得出不合常理的结果.

例5下图中8个顶点处标注数字a,b,c,d,e,f,g,h,其中的每一个数都等于相邻三个顶点处数的和的。求:

13

(a+b+c+d)-(e+f+g+h)的值

解:由已知条件得:

3a=b+d+e

3b=a+c+f

3c=b+d+g

3d=a+c+h

把这四式相加,得

3(a+b+c+d)=2(a+b+c+d)+(e+f+g+h)

∴a+b+c+d=e+f+g+h

∴(a+b+c+d)-(e+f+g+h)=0.

例6从1~100这100个不等的数中,每次取出2个数,要使它们的和大于100,有多少种不同的取法?

分析在这100个不等的数中,每次取出2个其中必有一个较小的,又这二数之和要大于100,我们可以枚举较小数的所有可能取值情况来讨论.

解:较小数是1,有1种取法,即(1,100);

较小数是2,有2种取法,即(2,99),(2,100);

较小数是50,有50种取法,即(50,51),(50,52),(50,53),…,(50,100);

较小数是51,有49种取法,即(51,52),(51,53),(51,54),…,(51,100);

较小数是99,有1种取法,即(99,100).

所以共有取法:

1+2+…+49+50+49+…+2+1

=2(1+2+…+49+50)-50

=-50(501)502[]2

+×=2500(种).

例7有A、B、C 三人参加M 项全能比赛,在每一个项目中,第一名、第二名和第三名分别得分P1、P2和P3,它们都是自然数,并且P1>P2>P3,最后计算总分时,A 得22分,B 与C 均得9分,B 跑百米第一,问:

①M 等于多少?

②在跳高比赛中,谁得第二名?

分析我们来分析如何求M,由于题中已知有百米和跳高两项比赛,所以M 至少是2,又由已知条件知有:

M(P 1+P 2+P 3)=22+9×2=40

所以M 是40的约数,M 的可能取值只有2、4、5、8、10、20、40以下只需依次枚举试验,淘汰非解.

解:由于P 1≥3,P 2≥2,P 1≥1,因此M(1+2+3)≤M(P 1+P 2+P 3)=40.也就是M≤6,这样一来M 只有三种可能取值了:2、4、

5.下面我们分别讨论.

如果M=2,这时只有百米和跳高两项比赛,由于B 在百米赛中得分P 1,他的总分只有9分,因此P 1至多等于8,这样A 无论如何也

得不到22分,所以M≠2.

如果M=4,这时有:

P1+P2+P3=10

由于B得了一个第一,所以他至少得分:

P1+3P3

又由于B的总分是9,所以我们有:

P1+3P3≤9

由此不难看出P1不能超过6,又由A得总分22知P1还不能小于6,所以P1=6,这样一来就有P2+P3=4,所以就有P3=1,P2=3.这是不可能的,因为这时A最多得分为6×3+3=21,不够22,因此M ≠4.

排除了以上两种情况,只有M=5.下面我们来分析每个人的得分情况,这时我们有:

P1+P2+P3=8.

由于P1、P2、P3互不相同,所以P3=1,否则的话,左边至少等于2+3+4=9>8.因此就有P1+P2=7.不难发现P1至多等于5,同时又不能小于5,所以P1=5,从而也就有P2=2.我们用下表来表示每个人的名次:且由表可见,C是跳高比赛的第二名.

这个表的填充过程读者应自己独立地作一遍.

例81978年,有个人在介绍自己的家庭时说:我有一儿一女,他们不是双胞胎,儿子年龄的立方,加上女儿年龄的平方,正好是我的出生年,我是在1900年以后出生的,我的儿女都不满21岁,我比我妻子大8岁,请求出全家每个人的年龄.

分析本题的关键在于先确定儿子的年龄,其次是求出女儿的年龄,这可用前面介绍的“筛”法来做到.

解:由于133=2197,所以儿子的年龄一定小于13岁;又由于113=1331,既使加上212=441,也只是1331+441=1772<1900,所以儿子的年龄一定大于11岁,只有12岁了.

设女儿的年龄为x,根据已知条件有:

123+x2>1900

所以x2>1900-123

x2>172

也就是说女儿的年龄大于13岁,又已知这个年龄小于21岁,所以女儿的年龄可能岁数是:

14,15,16,17,18,19,20

如果x=15,那么父亲的出生年数就等于:

123+152=1953

这显然是不合理的(想一想为什么?),同样道理,女儿的年龄也不能是大于15的数,只能是14岁.

这时父亲的出生年数为:

123+142=1924

1978年时的年龄为:

1978-1924=54(岁)

1978年时母亲的年龄为:

54-8=46(岁):

答:(略).

说明:从本题的解答可以发现,运用筛选法解题时,关键是确定筛选的范围,范围越小,筛选的工作量越小.

从上面的几个例子我们看出,用枚举法解题的基本方法是:

按某种规律一一列举问题的有限个解;或者是:把研究对象划分为不重复、不遗漏的若干类一一解决,从而得到原问题的解答.有时为了求出某一答案,若不能直接解得,就可以运用筛选法,也叫排除法,它的做法可以用四句话概括:

确定范围,逐一试验,淘汰非解,求出解答.

在遇到一个较复杂的问题时,一时不知从何下手,有时可先把问题简单化,考虑它的特殊情形.在解决这个特殊情形的过程中,得到启发,从而获得解决原题的方法,这样的解题方法,我们叫作从特殊到一般的分析方法,简单地说就是难的不会,想简单的.例9问5条直线最多将平面分为多少份?

分析直接想五条直线的情况不好想,先研究一些简单的情况,不难知道:

一条直线最多将平面分为2部分;

二条直线最多将平面分为4部分;

三条直线最多将平面分为7部分;

四条直线最多将平面分为11部分;

五条直线的图不易画出,所以很难下结论,分析一下上面特殊情形的结论,看看能不能发现一些规律.

二条直线分平面的4部分恰好是在一条直线分平面的2部分的基础上增添了2部分;三条直线分平面的7部分恰好是在二条直线分平面的4部分的基础上增添了3部分,类似地,四条直线分平面的11部分是在三条直线分平面的7部分的基础上增添4部分,怎样解释这个规律呢?我们以四条直线的情形作为例子.

三条直线将平面分为7部分,新加上一条虚线,由于要求分平面的部分数尽可能多,所以新添虚线不能过实线的交点,这样,虚线与三条实线有三个交点,这三个交点将虚线分为四段,其中的每一段都将所在的平面部分一分为二,所以也就是使所分平面的份数增加4.

解:因为四条直线最多分平面为11部分,添上第五条线,它与前四条线至多有4个交点,这4个交点将第五条线分为5段,其中每一段将所在平面部分一分为二,所以五条直线最多将平面分为11+5=16部分.

说明:仿照前面的分析方法不难分析出n 条直线最多分平面的部分数为:

2+2+3+…+(n-1)+n =(1)

12

n n ++=222

n n ++例10在平面上画20个圆,问这20个圆最多可能将平面分为多少个部分?

分析直接画出20个圆去数当然是行不通的.先考虑一些简单的情况:

一个圆最多分平面为2部分;

二个圆最多分平面为4部分;

三个圆最多分平面为8部分;

当第二个圆在第一个圆的基础上加上去时,第二个圆应与第一个圆有2个交点,这两个交点将新加的圆分为2段,其中每一段弧都将所在平面部分一分为二,所以所分平面部分数在原有2部分的基础上又增添2部分.同样道理,三个圆最多分平面的部分数是在2个圆分平面为4部分的基础上又增加4部分.

解:继续前面的分析过程,画第20个圆时,与前19个圆最多有19×2=38个交点,第20个圆的圆弧被分成为38段,也就是增加了

38个区域,所以20个圆最多分平面的部分数为:

2+1×2+2×2+…+19×2

=2+2(1+2+3+…+19)=2+19(191)

22

×+×=382.

说明:类似的分析我们可以得到计算n 个圆最多分平面部分数的公式:

2+1×2+2×2+…+(n-1)×2

=2+2[1+2+…+(n-1)]

=2+n(n-1)

=n 2-n+2.

例11有70个数排成一排,除两头两个数外,每个数的3倍都恰好等于它两边两个数之和,已知前面两个数是0和1,问最后一个数除以6的余数是多少?

分析直接求第70个数除以6的余数不容易,先求它除以2和除以3的余数.

解:设最后一个数为x,先求x 除以2的余数,列出下表观察规律:

我们发现这列数的规律是:

偶,奇,奇,偶,奇,奇,…

这个规律是可靠的,如果一个数左边两个数都是奇数,那么这个数就是奇数的3倍减去一个奇数,所以这个数一定是偶数,同样可以分析出,如果一个数左边两个数一奇一偶,那么这个数一定是奇数.因为70÷3余1,所以x是偶数,下面来求x除以3的余数,列出下表观察一下这列数除以3余数的规律:

因为每个数的3倍是它两边两个数之和,所以间隔一个数的两个数之和一定是3的倍数.所以不难分析出这列数除以3的余数规律是:0,1,0,2,0,1,0,2,…

又由于70÷4余2,所以第70个数x除以3的余数为1.

我们已经知道x是一个除以3余1的偶数,所以x除以6应该余4.

我们还可以用带余除式推出这个结论,因为x除以3余1,所以x可以写成下式:

x=3k+1(k是自然数)

又因为x是偶数,所以k应是一个奇数,也就是说k被2除余1,写成带余除式就是:

k=2m+1(m是自然数)

综合两个式子就得到

x=3(2m+1)+1=6m+3+1=6m+4

因此,x除以6余4.

说明:本题的解法告诉我们,如果已知一个数除以两个数后各自

的余数,那么应如何去求它除以这两个数的乘积的余数.作为练习请同学们完成下题.

已知某数除以3余2,除以4余3,求这个数除以12的余数是多少?

例1243位同学,他们身上带的钱从8分到5角,钱数互不相同,每个同学都把身上带的全部钱各自买了画片,画片只有两种,3分一张和5分一张,每人都尽量多买5分一张的画片,问他们共买了多少张3分的画片?

分析本题实际上是要将8到50的所有自然数表示成若干个3与若干个5的和,其中5的个数要尽可能多.因为求的是3的个数,所以只要求出8至12的表示中有多少个3即可.

解:我们有:

8=5+3

9=3+3+3

10=5+5

11=5+3+3

12=3+3+3+3.

下面的表示式中3的个数不会再增加,只要在前面的表示中加5就可以了,例如.

13=8+5=5+5+3

14=9+5=3+3+3+5

等等

前五个式子中3的个数为:

1+3+0+2+4=10.

因为43÷5=8余3,所以3的总个数为:

10×8+1+3+0=84.

答:3分的画片共买了84张.

思考:

①本题中如果要求5分画片共买多少张应怎样做?

②如果本题改为让3分画片尽可能多,求5分画片共有多少张,应怎样做?

例13有十个人各拿一只提桶同时到水龙头前排队打水.设水龙头注满第一个人的桶需要1分钟,注满第二个人的桶需要2分钟,…,如此下去.问:

①当只有一个水龙头时,应如何安排这十个人的次序,使他们总的费时为最少?这时间等于多少分钟?

②当只有两个水龙头可用时,应如何安排这十个人的次序,使他们总的花费时间为最少?这时间等于多少分钟?

分析①我们用A1,A2,…,A9,A10分别表示第一,第二,…,第九,第十个人,先考虑只有A1、A2两个人的情形.

如果A1在前,A2在后,总共花费的时间为:

1×2+2×1=4(分钟).

如果A2在前,A1在后,总共花费的时间为:

2×2+1×1=5(分钟).

因此,对两个人的情况,提小桶的人在前,提大桶的人在后,总共花费的时间最少,由此就不难知道十个人如何排列,总费时最少.

②先考虑只有A1,A2,A3,A4四个人的情况.这时候可能的排列方法有以下几种:

总费时=1×1+2×3+3×2+4×1=17(分钟)

总费时=2×1+1×3+3×2+4×1=15(分钟)

总费时=3×1+1×3+2×2+4×1=14(分钟)

总费时=4×1+1×3+2×2+3×1=14(分钟)

总费时=1×2+2×1+3×2+4×1=14(分钟)

总费时=1×2+3×1+2×2+4×1=13(分钟)

通过比较发现,第6种方法最合理(甲龙头A1A4、乙龙头A2A3

费时与第6种方法一样多),下面就来分析十个人的排列方法.解:①根据两个人的排队顺序规律,不难推测出多于2人的排队方法应是从A1开始,按由小到大的顺序排队.因为在多于2人的排队方法中,如有二人不是从小到大排列,只要交换这二人的位置,总费时必然减少,所以本题十个人的排队方法为:

A1,A2,…,A9,A10

总共花费时间为:

1×10+2×9+3×8+4×7+5×6+6×5+7×4+8×3+9×2+10×1

=(1×10+2×9+3×8+4×7+5×6)×2

=220(分钟).

②根据四个人的排队规律,不难分析出十个人的排队规律为:

甲龙头:A1,A3,A5,A7,A9

乙龙头:A2,A4,A6,A8,A10

总共花费时间:

1×5+3×4+5×3+7×2+9×1+2×5+4×4+6×3+8×2+10×1 =125(分钟)。

习题十四

1.计算

①3.85--②4×7.38×2.521751

7③×23④2719284111193153563

????⑤ 3.9×10.5÷(1.4×0.9×52)

2.某项工程,甲队独做12天完成,乙队独做24天完成,若按整日安排两队工作,且两队合作的天数尽可能少,怎样安排才能使这项工作恰好10天完成,这样两队合做了几天?

3.有一辆汽车,以某一固定的速度从甲地行驶至乙地,如果每小时比原定的行驶速度快6公里,就可以早到5分钟;如果每小时比原定的行驶速度慢5公里,就要迟到6分钟,求甲、乙两地的距离?

4.一项工程甲独做50天可以完成,乙独做75天完成,现在二人合做,但中途乙因事离开了几天,从开工后40天把这个工程做完,问乙中途离开几天?

5.从1到1988的自然数中,每次取两个不同的数,要使它们的和大于1988共有多少种取法?

6.A,B 二人的对话如下:

A 问:你有几个孩子?

B 答:3个.

A 问:他们的年龄各是多少?

B 答:他们的年龄的积是36,和恰好等于你家门牌号.

A说:你的条件还不够.

B说:老大现在上小学,其余两个还没上学.

请根据对话判断:三个孩子的年龄分别为多少岁?

7.有一串数,第一个数是1989,第二个数是1988,以后每个数是它前边两个数的差(以大减小),问这串数的第1989个数是多少?

8.有一天,三个小朋友在图书馆相会,其中一个说:“现在我每隔一天来一次.”第二个说:“我每隔两天来一次.”第三个说他每隔三天来一次,管理员告诉他们说,每逢星期三闭馆,小朋友说,如果预定来的日子正好是闭馆日,那就次日来,从今天开始,他们按这个规律去图书馆,下一次在星期一他们三人又在图书馆相聚,问上次谈话是星期几?

华罗庚学校数学课本二年级

华罗庚学校数学课本二 年级 标准化管理部编码-[99968T-6889628-J68568-1689N]

华罗庚学校数学课本:二年级 上册 第一讲速算与巧算 一、“凑整”先算 1.计算:(1)24+44+56 (2)53+36+47 解:(1)24+44+56=24+(44+56) =24+100=124 这样想:因为44+56=100是个整百的数,所以先把它们的和算出来. (2)53+36+47=53+47+36 =(53+47)+36=100+36=136 这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来. 2.计算:(1)96+15 (2)52+69 解:(1)96+15=96+(4+11)

=(96+4)+11=100+11=111 这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算. (2)52+69=(21+31)+69 =21+(31+69)=21+100=121 这样想:因为69+31=100,所以把52分拆成21与31之和,再把 31+69=100凑整先算. 3.计算:(1)63+18+19 (2)28+28+28 解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19) =60+20+20=100 这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算. (2)28+28+28 =(28+2)+(28+2)+(28+2)-6 =30+30+30-6=90-6=84

这样想:因为28+2=30可凑整,但最后要把多加的三个2减去. 二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变 计算:(1)45-18+19 (2)45+18-19 解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46 这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1. (2)45+18-19=45+(18-19) =45-1=44 这样想:加18减19的结果就等于减1. 三、计算等差连续数的和 相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如: 1,2,3,4,5,6,7,8,9 1,3,5,7,9

华罗庚的小故事6篇

华罗庚的小故事6篇 篇一:严格要求学生 华罗庚先生一直很重视青年数学人才的培养,为了培养更多人才,他在清华园里的数学研究所开办了数学讨论班。 我国着名数学家王元先生那时就曾拿着苏步青和陈建功教授的推荐信来找华罗庚先生,希望能拜他为师。王元从小喜爱数学,一直非常仰慕华罗庚先生,立志要拜华罗庚先生为师。华罗庚先生看了推荐信后,并没有表示立即收他为徒,而是把他叫到黑板前给他出了个题目。王元一时发懵,思索半天没有想出答案。华罗庚先生严厉批评了他,并且罚他在黑板前站了两个小时。当天晚上,王元用心演算,第二天把结果报告给华罗庚先生。华罗庚先生听了十分高兴,后来又出了几道题。王元都顺利做出,华罗庚先生这才答应收下这个学生。 华罗庚先生对学生们严格要求,他每天黎明即起,然后去敲学生们宿舍的门,接着是和学生们讨论问题或授课,一干就是一天。有时睡到半夜,他忽然爬起来,穿上衣服又去逐个敲学生们的房门:“别睡了,别睡了,白天的题目还得再讲一讲!??”就这样,华罗庚先生忘我地工作,他对学生们说:“如果自己的脑子里没有问题了,就不是数学家了!”在老师的严格教导下,这些20多岁的小伙子,兢兢业业,勤奋不息,即使假日也不休息。 华罗庚先生选择学生时从不以貌取人,他在给广州中山大学作学术报告时,在听讲的学生中,有一位拄着双拐的残疾青年名叫陆启铿,他听了华罗庚先生的报告后,便产生了一个大胆的念头:毕业后能分配到北京,在华罗庚先生的指导下搞研究。这个想法在旁人看来简直有点异想天开,当时华罗庚先生是万人仰慕的大数学家,不知有多少四肢健全的人以作华罗庚先生的学生为荣,他怎会收下像陆启铿这样的残疾青年呢?陆启铿反复思考之后,终于鼓足勇气给华罗庚先生写了一封信。他很快收到回信。在华罗庚的悉心指导下,陆启铿后来成为颇有造诣的数学家。 篇二:尊师重教 华罗庚1931年去清华大学工作后,每年寒暑假都会回乡,总要登门看望他的老

华罗庚学校数学课本电子版

华罗庚学校数学课本电子版 第一讲认识图形(一) 1.这叫什么?这叫“点”。 用笔在纸上画一个点,可以画大些,也可以画小些。点在纸上占一个位置。 2.这叫什么?这叫“线段”。 沿着直尺把两点用笔连起来,就能画出一条线段。线段有两个端点。 3.这叫什么?这叫“射线”。 从一点出发,沿着直尺画出去,就能画出一条射线。射线有一个端点,另一边延伸得很远很远,没有尽头。 4.这叫什么?这叫“直线”。 沿着直尺用笔可以画出直线。直线没有端点,可以向两边无限延伸。 5.这两条直线相交。 两条直线相交,只有一个交点。 6.这两条直线平行。 两条直线互相平行,没有交点,无论延伸多远都不相交。 7.这叫什么?这叫“角”。 角是由从一点引出的两条射线构成的。这点叫角的顶点,射线叫角的边。角分锐角、直角和钝角三种。 直角的两边互相垂直,三角板有一个角就是这样的直角。教室里天花板上的角都是直角。 锐角比直角小,钝角比直角大。

习题一 1.点(1)看,这些点排列得多好! (2)看,这个带箭头的线上画了点。 2.线段下图中的线段表示小棍,看小棍的摆法多有趣! (1)一根小棍。可以横着摆,也可以竖着摆。 (2)两根小棍。可以都横着摆,也可以都竖着摆,还可以一横一竖摆。 (3)三根小棍。可以像下面这样摆。 3.两条直线 哪两条直线相交?哪两条直线垂直?哪两条直线平行?

4.你能在自己的周围发现这样的角吗? 第二讲认识图形(二) 一、认识三角形 1.这叫“三角形”。 三角形有三条边,三个角,三个顶点。 2.这叫“直角三角形”。 直角三角形是一种特殊的三角形,它有一个角是直角。它的三条边中有两条叫直角边,一条叫斜边。 3.这叫“等腰三角形”。 它也是一种特殊的三角形,它有两条边一样长(相等),相等的两条边叫“腰”,另外的一条边叫“底”。 4.这叫“等腰直角三角形”或叫“直角等腰三角形”。它既是直角三角形,又是等腰三角形。

华罗庚学校数学课本:二年级

华罗庚学校数学课本:二年级 上册 第一讲速算与巧算 一、“凑整”先算 1.计算:(1)24+44+56 (2)53+36+47 解:(1)24+44+56=24+(44+56) =24+100=124 这样想:因为44+56=100是个整百的数,所以先把它们的和算出来. (2)53+36+47=53+47+36 =(53+47)+36=100+36=136 这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来. 2.计算:(1)96+15 (2)52+69 解:(1)96+15=96+(4+11)

=(96+4)+11=100+11=111 这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算. (2)52+69=(21+31)+69 =21+(31+69)=21+100=121 这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算. 3.计算:(1)63+18+19 (2)28+28+28 解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19) =60+20+20=100 这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算. (2)28+28+28 =(28+2)+(28+2)+(28+2)-6

=30+30+30-6=90-6=84 这样想:因为28+2=30可凑整,但最后要把多加的三个2减去. 二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变 计算:(1)45-18+19 (2)45+18-19 解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46 这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1. (2)45+18-19=45+(18-19) =45-1=44 这样想:加18减19的结果就等于减1. 三、计算等差连续数的和 相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如: 1,2,3,4,5,6,7,8,9

华罗庚学校数学课本(6年级下册)第01讲 列方程解应用题

第一讲列方程解应用题 这一讲学习列方程解应用题. 例1甲乙两个数,甲数除以乙数商2余17.乙数的10倍除以甲数商3余45.求甲、乙二数. 分析被除数、除数、商和余数的关系:被除数=除数×商+余数.如果设乙数为x,则根据甲数除以乙数商2余17,得甲数=2x+17.又根据乙数的10倍除以甲数商3余45得10x=3(2x+17)+45,列出方程. 解:设乙数为x,则甲数为2x+17. 10x=3(2x+17)+45 10x=6x+51+45 4x=96 x=24 2x+17=2×24+17=65. 答:甲数是65,乙数是24. 例2电扇厂计划20天生产电扇1600台.生产5天后,由于改进技术,效率提高25%,完成计划还要多少天? 思路1: 分析依题意,看到工效(每天生产的台数)和时间(完成任务需要的天数)是变量,而生产5天后剩下的台数是不变量(剩余工作量).原有的工效:1600÷20=80(台),提高后的工效:80×(1+25%)=100(台).时间有原计划的天数,又有提高效率后的天数,因此列出方程的等量关系是:提高后的工效x所需的天数=剩下台数. 解:设完成计划还需x天. 1600÷20×(1+25%)×x=1600-1600÷20×5 80×1.25x=1600-400 100x=1200 x=12.

答:完成计划还需12天. 思路2: 分析“思路1”是从具体数量入手列出方程的.还可以从“率”入手列方程.已知“效率提高25%”是指比原效率提高25%.把原来效率看成 解:设完成计划还要x天. 答:完成计划还需12天. 例3有一项工程,由甲单独做,需12天完成,丙单独做需20天完成.甲、乙、丙合作,需5天完成.如果这项工程由乙单独做,需几天完成? 工作总量. 解:设乙单独做,需x天完成这项工程.

华罗庚的故事

华罗庚的故事 有一次,他跟邻居家的孩子一起出城去玩,他们走着走着;忽然看见路旁有座荒坟,坟旁有许多石人、石马。这立刻引起了华罗庚的好奇心,他非常想去看个究竟。于是他就对邻居家的孩子说:?那边可能有好玩的,我们过去看看好吗?? 邻居家的孩子回答道:?好吧,但只能呆一会儿,我有点害怕。?胆大的华罗庚笑着说:?不用怕,世间是没有鬼的。?说完,他首先向荒坟跑去。 两个孩子来到坟前,仔细端详着那些石人、石马,用手摸摸这儿,摸摸那儿,觉得非常有趣。爱动脑筋的华罗庚突然问邻居家的孩子:?这些石人、石马各有多重?? 邻居家的孩子迷惑地望着他说:"我怎么能知道呢?你怎么会问出这样的傻问题,难怪人家都叫你‘罗呆子’。? 华罗庚很不甘心地说道:?能否想出一种办法来计算一下呢??邻居家的孩子听到这话大笑起来,说道:?等你将来当了数学家再考虑这个问题吧!不过你要是能当上数学家,恐怕就要日出西山了。?

华罗庚不顾邻家孩子的嘲笑,坚定地说:?以后我一定能想出办法来的。? 当然,计算出这些石人、石马的重量,对于后来果真成为数学家的华罗庚来讲,根本不在话下。 金坛县城东青龙山上有座庙,每年都要在那里举行庙会。少年华罗庚是个喜爱凑热闹的人,凡是有热闹的地方都少不了他。有一年华罗庚也同大人们一起赶庙会,一个热闹场面吸引了他,只见一匹高头大马从青龙山向城里走来,马上坐着头插羽毛、身穿花袍的?菩萨?。每到之处,路上的老百姓纳头便拜,非常虔诚。拜后,他们向?菩萨?身前的小罐里投入钱,就可以问神问卦,求医求子了。 华罗庚感到好笑,他自己却不跪不拜?菩萨?。站在旁边的大人见后很生气,训斥道: ?孩子,你为什么不拜,这菩萨可灵了。? ?菩萨真有那么灵吗??华罗庚问道。 一个人说道:?那当然,看你小小年纪千万不要冒犯了神灵,否则,你就会倒楣的。?

(完整word版)华罗庚学校数学课本:一年级(上册)

华罗庚学校数学课本 一年级 上册 刘彭芝主编子悦爸整理

目录 第一讲认识图形(一) (1) 习题一 (2) 第二讲认识图形(二) (4) 习题二 (7) 第三讲认识图形(三) (8) 习题三 (9) 第四讲数一数(一) (11) 习题四 (12) 习题四解答 (14) 第五讲数一数(二) (15) 习题五 (16) 习题五解答 (18) 第六讲动手画画 (20) 习题六 (21) 第七讲摆摆看看 (23) 习题七 (24) 习题七解答 (25) 第八讲做做想想 (27) 习题八 (27) 习题八解答 (29) 第九讲区分图形 (31) 习题九 (32) 习题九解答 (33) 第十讲立体平面展开 (35) 习题十 (36) 第十一讲做立体模型 (37) 习题十一 (38) 第十二讲图形的整体与部分 (39)

习题十二 (40) 习题十二解答 (42) 第十三讲折叠描痕法 (43) 习题十三 (44) 习题十三解答 (44) 第十四讲多个图形的组拼 (46) 习题十四 (47) 习题十四解答 (48) 第十五讲一个图形的等积变换 (50) 习题十五 (51) 习题十五解答 (52) 第十六讲一个图形的等份分划 (54) 习题十六 (55) 习题十六解答 (56) 第十七讲发现图形的变化规律 (58) 习题十七 (59) 习题十七解答 (61)

第一讲认识图形(一) 1.这叫什么?这叫“点”。 用笔在纸上画一个点,可以画大些,也可以画小些。点在纸上占一个位置。 2.这叫什么?这叫“线段”。 沿着直尺把两点用笔连起来,就能画出一条线段。线段有两个端点。 3.这叫什么?这叫“射线”。 从一点出发,沿着直尺画出去,就能画出一条射线。射线有一个端点,另一边延伸得很远很远,没有尽头。 4.这叫什么?这叫“直线”。 沿着直尺用笔可以画出直线。直线没有端点,可以向两边无限延伸。 5.这两条直线相交。 两条直线相交,只有一个交点。 6.这两条直线平行。 两条直线互相平行,没有交点,无论延伸多远都不相交。 7.这叫什么?这叫“角”。

数学家华罗庚的故事_3000字

数学家华罗庚的故事_3000字 作文初中作文高中作文小学作文作文网 在中国,有一位数学家是家喻户晓的,这就是华罗庚,人们往往把这个名字当作"数学家"、"自学成才"和"聪明"的代名词。随着"华罗庚金杯"少年数学邀请赛的广泛开展.这位当代中国的传奇数学家在少年儿童中也广为知晓了。 华罗庚于1910年11月12日出生在江苏省金坛县。1924年从金坛中学初中毕业后,因家境贫寒,年仅14岁的华罗庚便在父亲经营的小杂货铺里当伙计。他的中学老师王维克很欣赏他的数学才华,鼓励他继续自学数学。19岁那年,华罗庚突然染上伤寒,此后在腿部留下了残疾。

在病痛和贫困面前,华罗庚没有失望,反而更加迷恋数学,他四处寻找数学书自修。在那个小镇上只有三本数学书可用,一本代数、一本几何以及一本50页的微积分。他贪婪地把它们读得烂透,并尝试写些论文,投寄到《科学》、《学艺》等刊物发表。1929年华罗庚发表了他的第一篇论文"Sturm氏定理之研究"(《科学》第14卷第4期)。1930年l 2月他又在《科学》第15卷第2期上发表了苏家驹之代数的五次方程解法不能成立之理由》,文中指出,苏家驹的解法中把一个13阶行列式算错了。 这后一篇论文引起了清华大学数学系的重视,系主任熊庆来是"慧眼识英雄"的伯乐。1931年,华罗庚经他的同乡唐培经教员引荐,被破例录用为清华大学数学系的图书管理员,这为他的学习创造了有利条件。不到一年半的光景,华罗庚旁听了数学系的全部课程,打下了坚实的现代数学基础。在杨武之教授(杨振宁之父)指导下,两年之中,华罗庚写出了一批很有质量的数论论文。凭藉他的天赋和雄厚的学力,1933年,华罗庚被清华大学破格聘为助教。一个乡间来的青年人,只有初中文凭,居然能登上中国最高学府的讲台,这简直是一个奇迹。1934-1936年,华罗庚在杨武之等教授的关心下,深入研究数论,他阅读丁许多当时国际上数论权

华罗庚学校数学教材(五年级上)第11讲 简单的抽屉原理

本系列共15讲 第十一讲简单的抽屉原理 . 文档贡献者:与你的缘 把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里。尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果。如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果。由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果。道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了。由此得到: 抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。 如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理。不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。 比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔…等十二种生肖)相同。怎样证明

这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚。事实上,由于人数(13)比属相(12)多,因此至少有两个人属相相同(在这里,把13个人看成13个“苹果”,把12种属相看成12个“抽屉”)。 应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。 例1:有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子。请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 分析与解答首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉,把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉,由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。 例2:一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的? 分析与解答扑克牌中有方块、梅花、黑桃、红桃4种花色,

小学三年级华罗庚学校数学课本(奥数)[doc]

上册华罗庚学校数学课本:三年级 下册 第一讲速算与巧算(一)第二讲速算与巧算(二) 第三讲上楼梯问题 第四讲植树与方阵问题 第五讲找几何图形的规律 第六讲找简单数列的规律 第七讲填算式(一) 第八讲填算式(二) 第九讲数字谜(一) 第十讲数字谜(二) 第十一讲巧填算符(一) 第十二讲巧填算符(二) 第十三讲火柴棍游戏(一)第十四讲火柴棍游戏(二)第十五讲综合练习题第一讲从数表中找规律 第二讲从哥尼斯堡七桥问题谈起第三讲多笔画及应用问题 第四讲最短路线问题 第五讲归一问题 第六讲平均数问题 第七讲和倍问题 第八讲差倍问题 第九讲和差问题 第十讲年龄问题 第十一讲鸡兔同笼问题 第十二讲盈亏问题 第十三讲巧求周长 第十四讲从数的二进制谈起 第十五讲综合练习

上册 第一讲速算与巧算(一) 一、加法中的巧算 1.什么叫“补数”? 两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。 如:1+9=10,3+7=10, 2+8=10,4+6=10, 5+5=10。 又如:11+89=100,33+67=100, 22+78=100,44+56=100, 55+45=100, 在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89 的“补数”.也就是说两个数互为“补数”。 对于一个较大的数,如何能很快地算出它的“补数”来呢?一 般来说,可以这样“凑”数:从最高位凑起,使各位数字相加 得9,到最后个位数字相加得10。 如:87655→12345,46802→53198, 87362→12638,… 下面讲利用“补数”巧算加法,通常称为“凑整法”。 2.互补数先加。 例1巧算下面各题: ①36+87+64 99+136+101 ③1361+972+639+28 解:①式=(36+64)+87 =100+87=187 ②式=(99+101)+136 =200+136=336 ③式=(1361+639)+(972+28) =2000+1000=3000 3.拆出补数来先加。 例2 ①188+873 ②548+996 9898+203 解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061 ②式=(548-4)+(996+4) =544+1000=1544 ③式=(9898+102)+(203-102) =10000+101=10101 4.竖式运算中互补数先加。 如: 二、减法中的巧算 1.把几个互为“补数”的减数先加起来,再从被减数中减去。例 3 300-73-27 ②1000-90-80-20-10 解:①式= 300-(73+27) =300-100=200 ②式=1000-(90+80+20+10) =1000-200=800 2.先减去那些与被减数有相同尾数的减数。 例4 4723-(723+189) ②2356-159-256 解:①式=4723-723-189 =4000-189=3811 ②式=2356-256-159 =2100-159 =1941 3.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。 例5 ①506-397 ②323-189 ③467+997 ④987-178-222-390 解:①式=500+6-400+3(把多减的3再加上) =109 ②式=323-200+11(把多减的11再加上) =123+11=134 ③式=467+1000-3(把多加的3再减去) =1464 ④式=987-(178+222)-390 =987-400-400+10=197 三、加减混合式的巧算 1.去括号和添括号的法则 在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即: a+(b+c+d)=a+b+c+d a-(b+a+d)=a-b-c-d a-(b-c)=a-b+c 例6①100+(10+20+30) ②100-(10+20+3O) ③100-(30-10) 解:①式=100+10+20+30 =160 ②式=100-10-20-30 =40 ③式=100-30+10 =80 例7计算下面各题: ①100+10+20+30 ②100-10-20-30 ③100-30+10 解:①式=100+(10+20+30) =100+60=160 ②式=100-(10+20+30) =100-60=40

华罗庚学校数学教材(五年级下)第10讲 逻辑推理(一)

本系列共15讲 第十讲逻辑推理(一) . 文档贡献者:与你的缘 由于数学学科的特点,通过数学的学习来培养少年儿童的逻辑推理能力是一种极好的途径。为了使同学们在思考问题时更严密更合理,会有根有据地想问题,而不是凭空猜想,这里我们专门讨论一些有关逻辑推理的问题。 解答这类问题,首先要从所给的条件中理清各部分之间的关系,然后进行分析推理,排除一些不可能的情况,逐步归纳,找到正确的答案。 例1公路上按一路纵队排列着五辆大客车,每辆车的后面都贴上了该车的目的地的标志。每个司机都知道这五辆车有两辆开往A市,有三辆开往B市;并且他们都只能看见在自己前面的车的标志。调度员听说这几位司机都很聪明,没有直接告诉他们的车是开往何处的,而让他们根据已知的情况进行判断。他先让第三个司机猜猜自己的车是开往哪里的。这个司机看看前两辆车的标志,想了想说“不知道”。第二辆车的司机看了看第一辆车的标志,又根据第三个司机的“不知道”,想了想,也说不知道。第一个司机也很聪明,他根据第二、三个司机的“不知道”,作出了正确的判断,

说出了自己的目的地。 请同学们想一想,第一个司机的车是开往哪儿去的?他又是怎样分析出来的? 解:根据第三辆车司机的“不知道”,且已知条件只有两辆车开往A市,说明第一、二辆车不可能都开往A市(否则,如果第一、二辆车都开往A市,那么第三辆车的司机立即可以断定他的车一定开往B市)。 再根据第二辆车司机的“不知道”,则第一辆车一定不是开往A 市的(否则,如果第一辆车开往A市,则第二辆车即可推断他一定开往B市)。 运用以上分析推理,第一辆车的司机可以判断,他一定开往B 市。 例2李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛。事先规定,兄妹二人不许搭伴。 第一盘:李明和小华对张虎和小红; 第二盘:张虎和小林对李明和王宁的妹妹; 请你判断:小华、小红和小林各是谁的妹妹? 解:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹

数学奇才华罗庚的故事

数学奇才华罗庚的故事 学习啦在此整理了数学奇才华罗庚的故事,供大家参阅,希望大家在阅读过程中有所收获!数学奇才华罗庚的故事篇1数学家华罗庚小时候刻苦学习,然而,华罗庚却被叫去看店。 有一次,有个妇女去买棉花,华罗庚正在算一个数学题,那个妇女说要包棉花多少钱?然而勤学的华罗庚却没有听见,就把算的答案答了一遍,那个妇女尖叫起来:“怎么这么贵?,这时的华罗庚才知道有人来买棉花,就说了价格,那妇女便买了一包棉花走了。 华罗庚正想坐下来继续算时,才发现:刚才算题目的草纸被妇女带走了。 这下可急坏了华罗庚,于是不顾一切地去追,一个黄包师傅便让他坐车追,终于追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我,那妇女生气地说:“这可是我花钱买的,可不是你送的。 华罗庚急坏了,于是他说:“要不这样吧!我花钱把它买下来。 正在华罗庚伸手掏钱之时,那妇女好像是被这孩子感动了吧!不仅没要钱还把草纸还给了华罗庚。 这时的华罗庚才微微舒了口气。 回家后,又计算起来……数学奇才华罗庚的故事篇2中学毕业后,他因交不起学费被迫失学。 回到家乡,一面帮父亲干活,一面继续顽强地读书自学。 不久,又身染伤寒,病势垂危。

在床上躺了半年之后,病虽然痊愈,却留下了终身的残疾——左腿的关节变形,瘸了。 当时,他只有19岁,在那迷茫、困惑,近似绝望的日子里,他想起了双腿后著兵法的孙膑。 “古人尚能身残志不残,我才只有19岁,更没理由自暴自弃,我要用健全的头脑,代替不健全的双腿!青年华罗庚就是这样顽强地和命运抗争。 白天,他拖着病腿,忍着关节剧烈的疼痛,拄着拐杖一颠一颠地干活,晚上,他油灯下自学到深夜。 1930年,他的论文在《科学》杂志上发表了,这篇论文惊动了清华大学数学系主任熊庆来教授。 以后,清华大学聘请华罗庚当了助理员。 在名家云集的清华园,华罗庚一边做助理员的工作,一边在数学系旁听,还用四年时间自学了英文、德文、法文、发表了十篇论文。 数学成绩不好引起华罗庚的警觉,他暗下决心,一定要赶上去。 于是,一有空他就抱着数学课本看,寻找数学题来做,渐渐地对数学产生了兴趣。 有一天,数学老师李月波把课讲完,亮出了一道趣味题让大家去做。 题目是:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?当其他同学还在冥思苦想时,华罗庚却很快举手

华罗庚学校数学教材(五年级上)第07讲 行程问题

本系列共15讲 第七讲行程问题 .文档贡献者:与你的缘 在这一讲中,我们将要研究的是行程问题中一些综合性较强的题目。为此,我们需要先回顾一下已学过的基本数量关系: 路程=速度×时间 总路程=速度和×时间 路程差=速度差×追击时间 例1:小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合。问:小华解这道题用了多长时间? 分析:这道题实际上是一个行程问题。开始时两针成一直线,最后两针第一次重合。因此,在我们所考察的这段时间内,两针的路程差为30分格,又因为时针每小时走5分格,即它的速度为12 1 分格/分钟,而分针的速度为1分格/分钟,所以,当它们第一次重合时,一定是分针从后面追上时针。这是一个追击问题追及时间就是小明的解题时间。 解:30÷(1-)=30÷=32(分钟)121121111 8例2:甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,

丙每分钟走40米。甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇。求A、B两地间的距离。 画图如下: 分析:结合上图,如果我们设甲、乙在点C相遇时,丙在D点,则因为过15分钟后甲、丙在点E相遇,所以C、D之间的距离就等于(40+60)×15=1500米。 又因为乙和丙是同时从点B出发的,在相同的时间内,乙走到C点,丙才走到D点,即在相同的时间内乙比丙多走了1500米,而乙与丙的速度差为50-40=10(米/分),这样可求出乙从B到C的时间为1500÷10=150分钟,也就是甲、乙二人分别从A、B出发到C点相遇的时间是150分钟,因此,可求出A、B的距离。 解:(1)甲和乙15分钟的相遇路程: (40+60)×15=1500米 (2)乙和丙的速度差: 50-40=10(米/分)

华罗庚学校数学教材(五年级下)第03讲 巧求表面积

本系列共15讲 第三讲巧求表面积 . 文档贡献者:与你的缘 我们已经学习了长方体和正方体,知道长方体或正方体六个面面积的总和叫做长方体或正方体的表面积。如果长方体的长用a表示、宽用b表示、高用h表示,那么,长方体的表面积=(ab+ah +bh)×2。如果正方体的棱长用a表示,则正方体的表面积=6a2。对于由几个长方体或正方体组合而成的几何体,或者是一个长方体或正方体组合而成的几何形体,它们的表面积又如何求呢?涉及立体图形的问题,往往可考查同学们的看图能力和空间想象能力。小学阶段遇到的立体图形主要是长方体和正方体,这些图形的特点都是可以从六个方向去看,特别是求表面积时,就是上下、左右和前后六个方向(有时只考虑上、左、前三个方向)的平面图形的面积的总和。有了这个原则,在解决类似问题时就十分方便了。 例1在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(下图),求这个立体图形的表面积。

分析我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面。这样这个立体图形有表面积就可以分成这样两部分: 上下方向:大正方体的两个底面;侧面:小正方体的四个侧面 大正方体的四个侧面。 解:上下方向:5×5×2=50(平方分米) 侧面:5×5×4=100(平方分米) 4×4×4=64(平方分米) 这个立体图形的表面积为: 50+100+64=214(平方分米) 答:这个立体图形的表面积为214平方分米。 例2下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为厘米的正方体小洞,第三个正方体小洞的1 2

华罗庚学校数学教材六年级上比和比例

华罗庚学校数学教材六年级上比和比例 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

本系列共14讲 第二讲比和比例 . 文档贡献者:与你的缘 在应用题的各种类型中,有一类与数量之间的(正、反)比例关系有关.在解答这类应用题时,我们需要对题中各个量之间的关系作出正确的判断。 成正比或反比的量中都有两种相关联的量.一种量(记作x)变化时另一种量(记作y)也随着变化.与这两个量联系着,有一个不变的量(记为k).在判断变量x与y是否成正、反比例时,我们要紧紧抓住这个不变量k.如成正比例;如果k是y与x的积,即在x 变化时,y与x的积不变:xy=k,那么y与x成反比例.如果这两 个关系式都不成立,那么y与x不成(正和反)比例. 下面我们从最基本的判断两种量是否成比例的例题开始. 例1下列各题中的两种量是否成比例成什么比例 ①速度一定,路程与时间. ②路程一定,速度与时间. ③路程一定,已走的路程与未走的路程. ④总时间一定,要制造的零件总数和制造每个零件所用的时间. ⑤总产量一定,亩产量和播种面积. ⑥整除情况下被除数一定,除数和商. ⑦同时同地,竿高和影长. ⑧半径一定,圆心角的度数和扇形面积.

⑨两个齿轮啮合转动时转速和齿数. ⑩圆的半径和面积. (11)长方体体积一定,底面积和高. (12)正方形的边长和它的面积. (13)乘公共汽车的站数和票价. (14)房间面积一定,每块地板砖的面积与用砖的块数. (15)汽车行驶时每公里的耗油量一定,所行驶的距离和耗油总量. 分析以上每题都是两种相关联的量,一种量变化,另一种量也随着变化,那么怎样来确定这两种量成哪种比例或不成比例呢关键是能否把两个两种形式,或只能写出加减法关系,那么这两种量就不成比例.例如①×零件数=总时间,总时间一定,制造每个零件用的时间与要制造的零件总数成反比例.③路程一定,已走的路程和未走的路程是加减法关系,不成比例. 解:成正比例的有:①、⑦、⑧、(15) 成反比例的有:②、④、⑤、⑥、⑨、(11)、(14) 不成比例的有:③、⑩、(12)、(13). 例2一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间之比依次是4∶5∶6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间分析要求此人走完全程用了多少时间,必须根据已知条件先求出此人走上坡路用了多少时间,必须知道走上坡路的速度(题中每小

华罗庚的事迹_精选资料全面版

《华罗庚的事迹》 华罗庚的事迹(1): 1910年11月12日,华罗庚生于江苏省金坛县。他家境贫穷,决心努力学习。上中学时,在一次数学课上,老师给同学们出了一道著名的难题:今有物不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何?大家正在思考时,华罗庚站起来说:23他的回答 使老师惊喜不已,并得到老师的表扬。从此,他喜欢上了数学。 华罗庚上完初中一年级后,因家境贫困而失学了,只好替父母站柜台,但他仍然坚持自学数学。经过自我不懈的努力,他的《苏家驹之代数的五次方程式解法不能成立的理由》论文,被清华大学数学系主任熊庆来教授发现,邀请他来清华大学;华罗庚被聘为大学教师,这在清华大学的历史上是破天荒的事情。 1936年夏,已经是杰出数学家的华罗庚,作为访问学者在英国剑桥大学工作两年。而此 时抗日的消息传遍英国,他怀着强烈的爱国热忱,风尘仆仆地回到祖国,为西南联合大学讲课。 华罗庚十分注意数学方法在工农业生产中的直接应用。他经常深入工厂进行指导,进行数学应用普及工作,并编写了科普读物。 华罗庚也为青年树立了自学成才的光辉榜样,他是一位自学成才、没有大学毕业文凭的数学家。他说:不怕困难,刻苦学习,是我学好数学最主要的经验,所谓天才就是靠坚持不断的努力。 华罗庚还是一位数学教育家,他培养了像王元、陈景润、陆启铿、杨乐、张广厚等一大批卓越数学家。为了培养青年一代,他为中学生编写了一些课外读物。 华罗庚的事迹(2): 华罗庚的故事:在数学上加倍用功 中学毕业后,他因交不起学费被迫失学。回到家乡,一面帮父亲干活,一面继续顽强地读书自学。不久,又身染伤寒,病势垂危。在床上躺了半年之后,病虽然痊愈,却留下了终身的残疾左腿的关节变形,瘸了。当时,他只有19岁,在那迷茫、困惑,近似绝望的日子里,他 想起了双腿后著兵法的孙膑。古人尚能身残志不残,我才只有19岁,更没理由自暴自弃,我 要用健全的头脑,代替不健全的双腿!青年华罗庚就是这样顽强地和命运抗争。白天,他拖着病腿,忍着关节剧烈的疼痛,拄着拐杖一颠一颠地干活,晚上,他油灯下自学到深夜。 1930年,他的论文在《科学》杂志上发表了,这篇论文惊动了清华大学数学系主任熊庆 来教授。以后,清华大学聘请华罗庚当了助理员。在名家云集的清华园,华罗庚一边做助理员的工作,一边在数学系旁听,还用四年时光自学了英文、德文、法文、发表了十篇论文。 数学成绩不好引起华罗庚的警觉,他暗下决心,必须要赶上去。于是,一有空他就抱着数学课本看,寻找数学题来做,渐渐地对数学产生了兴趣。 有一天,数学老师李月波把课讲完,亮出了一道趣味题让大家去做。题目是:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?当其他同学还在冥思苦想时,华罗庚却很快举手回答:23!李老师颇为惊讶,走过来询问:你看过《孙子算经》,它是中 国的?剩余定理?,传到西方后被称做?孙子定理?。老师又问:是你自我算的,那你说说,你

华罗庚学校数学教材(六年级下)第14讲-关于空间想象力的综合训练题

本系列共14 讲 第十四讲关于空间想象力的综合训练题 . 文档贡献者:WINNER 1.将下图中的硬纸片沿虚线折起来,便可以作成一个正方体.问这个正方体的2号面的对面是几号面? 2.有一个长方体,它的正面和上面的面积之和是 209,如果它的长、宽、高都是质数,求这个长方体的体积. 3.有一个正方体,边长是 5.如果它的左上方截去一个边长分别是5、3、2的长方体(如下图),求它的表面积减少的百分比是多少? 4.有三个大小一样的正方体,将接触的面用胶粘接在一起成下图的形状,表面积比原来减少了16平方厘米.求所成形体的体积. 5.如下图,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长为2厘米的正方形,然后沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?

6.一个正方体形的纸盒中恰好能放入一个体积为 628 立方厘米 的圆柱体(下图).问纸盒的容积有多大?(圆周率取为 3.14). 7.一个高为 30 厘米,底面为边长是 10 厘米的正方形的长方体水 桶,其中装有 1 容积的水。现在向桶中投入边长为 2 厘米×2 厘米×3 2 厘米的长方体石块,问需要投入多少块这种石块才能使水面恰与桶高 相齐? 8,有两种不同形状的纸板,一种是正方形的,另一种是长方形 的,正方形纸板的总数与长方形纸板的总数之比是 1∶2。用这些纸 板做成一些竖式和横式的无盖纸盒,正好将纸板用完。问在所做的纸 盒中,竖式纸盒的总数与横式纸盒的总数之比是多少? 9.如下图,在棱长为 3 的正方体中由上到下,由左到右,由前到 后,有三个底面积是 1 的正方形高为 3 的长方体的洞,求所得形体的 表面积是多少? 10.将边长为 10 的正方体木块六个面都染上红色后,锯成边长为

中国华罗庚学校数学课本习题

( “方法为上”六年级数学学习辅导 )中国华罗庚学校数学课本习题. 第一章分数应用题 第一节 分数应用题的基本类型 例1、一桶油,第一次用去1/3,正好是4升,第二次又用去这桶油的1/4,还剩多少升? 例2、某工厂计划生产一批零件,第一次完成计划的1/2, 第二次完成计划的3/7,第三次生产450个,结果超出计划的1/4,计划生产零件多少个? 例3、王师傅四天完成一批零件,第一天和第二天共做了54个,第二,第三和第四天共做了90个。已知第二天做的个数占这批零件的1/5.这批零件一共有多少个? 例4、六(1)班男生的一半和女生的1/4共16人,女生的一半和男生的1/4共16人。六一班学生共有学生多少人? 同步精练 1、一个粮食仓库,原来存有一批粮食,运走2/3后,又运来5.6吨,这时现有存粮是原来存粮的4/5,粮仓现有存粮多少吨? 2、一辆汽车从甲地开往乙地,行了全程的8/15后,超过终点1又1/5千米,甲乙两地全程是多少千米? 3、两袋大米,乙袋比甲袋重12千克。如果从甲袋倒入乙袋6千克,这时甲袋大米重量是乙袋大米的5/8.两袋大米原来共有多少千克? 4、两堆煤,从甲堆煤运走1/4,乙堆煤运走一部分后剩下3/5,这这时甲堆重量是乙队重量的3/5,甲队原有120吨,乙队原有多少吨? 5、一条水渠,第一天挖了25米,第二天挖了余下的2/5,这这时剩下的与挖好的正好相等。这条水渠有多长? 6、一个粮仓,原来存有一批粮食,运走 32后,又运来5.6吨,这是现有存粮是原来存粮的54,粮库原有存粮多少吨? 7、一种石英表,先涨价 101,然后降价101,这时售价49.5元,原价是多少元? 8、小红读一本书,第一天读了全书的 32,第二天读了余下的4 1,两天共读30页,这本书共有多少页?

华罗庚学校数学课本6上

华罗庚学校数学课本(六年级·修订版) 上册 第一讲工程问题 第二讲比和比例 第三讲分数、百分数应用题(一) 第四讲分数、百分数应用题(二) 第五讲长方体和正方体 第六讲立体图形的计算 第七讲旋转体的计算 第八讲应用同余解题 第九讲二进制小数 第十讲棋盘中的数学(一) 第十一讲棋盘中的数学(二) 第十二讲棋盘中的数学(三) 第十三讲棋盘中的数学(四) 第十四讲典型试题分析

第一讲工程问题 工程问题是应用题中的一种类型.在工程问题中,一般要出现三个量:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量). 这三个量之间有下述一些关系式: 工作效率×工作时间=工作总量, 工作总量÷工作时间=工作效率, 工作总量÷工作效率=工作时间. 为叙述方便,把这三个量简称工量、工时和工效. 例1一项工程,甲乙两队合作需12天完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成? 答:甲、乙、丙三队合作需10天完成. 说明:我们通常把工量“一项工程”看成一个单位.这样,工效就用工

例2师徒二人合作生产一批零件,6天可以完成任务.师傅先做5 天 批零件各需几天? 工 效和.要求每人单独做各需几天,首先要求出各自的工效,关键在于把师傅先做5天,接着徒弟做3天转化为师徒二人合作3天,师傅再做2天. 答:如果单独做,师傅需10天,徒弟需15天. 例3一项工程,甲单独完成需12天,乙单独完成需9天.若甲先做若干天后乙接着做,共用10天完成,问甲做了几天? 分析解答工程问题时,除了用一般的算术方法解答外,还可以根据题目的条件,找到等量关系,列方程解题。 解:设甲做了x天.那么, 两边同乘36,得到:3x+40-4x=36,

华罗庚的数学故事

华罗庚的数学故事 著名数学家华罗庚在学习中,既肯下苦功,又善动脑筋。他十四岁的时候,有一次,数学老师王维克在课堂上给同学们出了这样一道题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”此题出自古代的《孙子算经》,意思是说:有一种东西,不知道数量,如果三个三个地去数它,最后剩二;五个五个地去数它,最后剩三;七个七个地去数它,最后剩二。问这种东西共有多少。王老师刚把题读完,华罗庚的答案就脱口而出了:“二十三!”“怎么,你看过《孙子算经》?”王老师惊诧地问。华罗庚回答说:“我不知道《孙子算经》这本书,更没有看过。”“那你是怎么算出来的?”王老师又问。华罗庚有板有眼地答道:“我是这样想的,三个三个地数,余二,七个七个地数,余二,余数都是二,那么,总数就可能是三乘七加二,等于二十三,二十三用五去除,余数又正好是三,所以,二十三就是所求的数了。”“啊——”王老师简直被惊呆了,“算得巧,算得巧!” 4 数学家华罗庚的小故事三1930年的一天,清华大学数学系主任熊庆来,坐在办公室里看一本《科学》杂志。看着看着,不禁拍案叫绝:“这个华罗庚是哪国留学生?”周围的人摇摇头,“他是在哪个大学教书的?”人们面面相觑。最后还是一位江苏籍的教员想了好一会儿,才慢吞吞地说:“我弟弟有个同乡叫华罗庚,他哪里教过什么大学啊!他只念过初中,听说是在金坛中学当事务员。”熊庆来惊奇不已,一个初中毕业的人,能写出这样高深的数学论文,必是奇才。他当即做出决定,将华罗庚请到清华大学来。从此,华罗庚就成为清华大学数学系助理员。在这里,他如鱼得水,每天都游弋在数学的海洋里,只给自己留下五、六个小时的睡眠时间。说起来让人很难相信,华罗庚甚至养成了熄灯之后,也能看书的习惯。他当然没有什么特异功能,只是头脑中一种逻辑思维活动。他在灯下拿来一本书,看着题目思考一会儿,然后熄灯躺在床上,闭目静思,开始在头脑中做题。碰到难处,再翻身下床,打开书看一会儿。就这样,一本需要十天半个月才能看完的书,他一夜两夜就看完了。华罗庚被人们看成是不寻常的助理员。第二年,他的论文开始在国外着名的数学杂志陆续发表。清华大学破了先例,决定把只有初中学历的华罗庚提升为助教。几年之后,华罗庚被保送到英国剑桥大学留学。可是他不愿读博士学位,只求做个访问学者。因为做访问学者可以冲破束缚,同时攻读七、八门学科。他说:“我到英国,是为了求学问,不是为了得学位的。”华罗庚没有拿到博士学位。在剑桥的两年内,他写了20篇论文。论水平,每一篇都可以拿到一个博士学位。其中一篇关于“塔内问题”的研究,他提出的理论被数学界命名为“华氏定理”。华罗庚以一种热爱科学,勤奋学习,不求名利的精神,献身于他所热爱的数学研究事业。]

相关文档
最新文档