不等式的性质(复习课)

合集下载

高考数学总复习 71 不等式的性质及解法课件 新人教B

高考数学总复习 71 不等式的性质及解法课件 新人教B
答案:C
(文)(2011·淄博统考)若 a>0,b>0,则不等式-b<1x
<a 等价于( )
A.-1b<x<0

1 0<x<a
B.-1a<x<b1
C.x<-1a或
1 x>b
D.x<-1b或
1 x>a
解析:由题意知 a>0,b>0,x≠0, (1)当 x>0 时,-b<1x<a⇔x>1a; (2)当 x<0 时,-b<1x<a⇔x<-b1. 综上所述,不等式-b<1x<a⇔x<-b1或 x>1a,故选 D.
答案:D
数的大小比较
[例 2] (1)若 x<y<0,试比较(x2+y2)(x-y)与(x2- y2)(x+y)的大小;
(2)设 a>0,b>0 且 a≠b,试比较 aabb 与 abba 的大小.
•1、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •2、知之者不如好之者,好之者不如乐之者。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、在教师手里操着幼年人的命运,便操着民族和人类的命运。一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。 •5、诚实比一切智谋更好,而且它是智谋的基本条件。 •6、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。2022年1月2022/1/302022/1/302022/1/301/30/2022 •7、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。2022/1/302022/1/30January 30, 2022 •8、教育者,非为已往,非为现在,而专为将来。2022/1/302022/1/302022/1/302022/1/30

不等式的性质基本不等式课件高三数学一轮复习

不等式的性质基本不等式课件高三数学一轮复习
常用变形 ab≤(a+4b)2≤a2+2 b2
举题说法
不等式的性质
1 (1) (多选)已知a,b,c满足c<a<b,且ac<0,那么下列各式一
定成立的是
( BCD
)
A.ac(a-c)>0
B.c(b-a)<0
【解C析.】c因b2为<aa,b2b,c满足c<a<b,且Dac.<a0b,>所a以c c<0,a>0,b>0,a-c>0,b
3.已知 x>1,则 x+x-1 1的最小值为 ( C )
A.1 C.3
B.2 D.4
【解析】因为 x>1,所以 x-1>0,所以 x+x-1 1=(x-1)+x-1 1+1≥2 (x-1)·x-1 1 +1=3,当且仅当 x-1=x-1 1,即 x=2(x=0 舍去)时等号成立,此时 x+x-1 1取最小 值 3.
4.(多选)下列说法正确的是
()
A.若
x<1,则函数 2
y=2x+2x1-1的最小值为-1
B.若实数 a,b,c 满足 a>0,b>0,c>0,且 a+b+c=2,则a+4 1+b+1 c的最小值
是3
C.若实数 a,b 满足 a>0,b>0,且 2a+b+ab=6,则 2a+b 的最大值是 4
D.若实数 a,b 满足 a>0,b>0,且 a+b=2,则a+a21+b+b21的最小值是 1
【解析】设 2α-β=m(α+β)+n(αห้องสมุดไป่ตู้β),则mm+ -nn= =2-,1, 解得mn==3212,,
所以 2α-β
=12(α+β)+32(α-β).
因为 π<α+β<54π,-π<α-β<-π3,所以π2<12(α+β)<58π,-32π<32(α-β)<-π2,所
以-π<12(α+β)+32(α-β)<π8,即-π<2α-β<π8,所以 2α-β 的取值范围是-π,π8.

等式性质、不等式性质与基本不等式复习课公开课教案教学设计课件资料

等式性质、不等式性质与基本不等式复习课公开课教案教学设计课件资料

等式性质、不等式性质与基本不等式复习课公开课教案教学设计课件资料第一章:等式性质的复习与探究1.1 等式的概念与基本性质回顾等式的定义和基本性质(如交换律、结合律、分配律等)。

通过示例和练习,让学生熟悉等式的应用和解题方法。

1.2 等式的变形与解复习等式的变形规则,如两边加减乘除相同的数等。

讲解等式解的定义和求解方法,通过例题展示解题步骤和技巧。

第二章:不等式性质的复习与探究2.1 不等式的概念与基本性质回顾不等式的定义和基本性质(如传递性、同向不等式的可加性等)。

通过示例和练习,让学生熟悉不等式的应用和解题方法。

2.2 不等式的变形与解复习不等式的变形规则,如两边加减乘除相同的数等。

讲解不等式解的定义和求解方法,通过例题展示解题步骤和技巧。

第三章:基本不等式的复习与探究3.1 基本不等式的概念与性质回顾基本不等式的定义和性质,如算术平均数不小于几何平均数等。

通过示例和练习,让学生熟悉基本不等式的应用和解题方法。

3.2 基本不等式的证明与应用讲解基本不等式的证明方法,如使用AM-GM不等式等。

探讨基本不等式在实际问题中的应用,如优化问题、经济问题等。

第四章:等式与不等式的综合应用4.1 等式与不等式的联立讲解等式与不等式的联立解法,如解方程组和不等式组。

通过例题和练习,让学生熟悉解题步骤和技巧。

4.2 等式与不等式的应用问题分析等式与不等式在实际问题中的应用,如几何问题、物理问题等。

通过例题和练习,让学生熟悉解题思路和方法。

第五章:复习与练习5.1 等式性质的复习与练习总结等式的性质和解题方法,进行复习和练习。

提供练习题,让学生自主练习和巩固知识点。

5.2 不等式性质的复习与练习总结不等式的性质和解题方法,进行复习和练习。

提供练习题,让学生自主练习和巩固知识点。

5.3 基本不等式的复习与练习总结基本不等式的性质和解题方法,进行复习和练习。

提供练习题,让学生自主练习和巩固知识点。

第六章:等式与不等式的转换6.1 等式到不等式的转换讲解如何将等式转换为不等式,以及在不同情况下如何处理不等式的符号变化。

不等式复习教案人教版

不等式复习教案人教版
- 不等式的定义:用“<”、“>”、“≤”、“≥”表示两个实数的大小关系。
- 不等式的性质:
- 性质1:不等式的两边同时加减同一个数或式子,不等号的方向不变。
- 性质2:不等式的两边同时乘除同一个正数,不等号的方向不变。
- 性质3:不等式的两边同时乘除同一个负数,不等号的方向改变。
② 不等式的解法
- 重点知识点:解一元一次不等式、解不等式组、解含绝对值的不等式。
- 含绝对值不等式 |2x - 3| ≤ 1 的解集。
十.反思改进措施
(一)教学特色创新
1. 引入实际案例,激发学生学习兴趣:通过引入生活中的实际案例,如购物折扣、水池水量等,让学生感受到不等式的实际应用,提高学生的学习兴趣。
2. 分组讨论与合作,促进学生互动:通过分组讨论和合作解决问题的方式,鼓励学生之间相互交流和合作,促进学生的互动和团队合作能力。
3. 信息化资源:网络教学资源、数学软件、教育应用程序等。
4. 教学手段:讲解、示范、练习、讨论、小组合作、投影展示等。
5. 教学辅助工具:数轴、不等式图形展示工具等。
6. 教学评价工具:习题、测验、课堂表现评估等。
五、教学流程
一、导入新课(用时5分钟)
同学们,今天我们将要学习的是《不等式复习》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要比较两个数大小的情况?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索不等式的奥秘。
3. 不等式的解法
(1)解一元一次不等式:通过移项、合并同类项等步骤求解。
(2)解不等式组:分别解每个不等式,然后根据不等式的性质确定解集。

高二复习不等式的基本性质与基本不等式课件

高二复习不等式的基本性质与基本不等式课件
(2)求y的最值.
解答
解: 设污水处理池的长为 x m, 总造价为y元,则 y=400· (2x+200/x×2)+248· (2×200/x)+80×200 =800x+259200/x+16000.
259200 16000 ≥ 2 800x x
当且仅当800x=259200/x, 即x=18时,取等号。 答:池长18m,宽100/9 m时, 造价最低为30400元。
=(x2-1)(x4-1)=(x2-1)(x2-1)(x2+1) =(x2-1)2(x2+1). 当x=±1时,x6+1=x4+x2; 当x≠±1时,x6+1>x4+x2.
1 a 2 1 (a 1)(a 1) (2)a a a a 当-1<a<0或a>1时, a 1 ; a 1 当a<-1或0<a<1时, a ; a 当a=±1时, a 1 . a
X
当且仅当x=6 2 时,S有最大值108-72 2
课堂小结 1.公式的正用、逆用和变形用; 2.公式条件:正、定、等; 3.构造“和定”或“积定”求最值。 4.应用题:弄清题意,建立模型
3.利用基本不等式求最值问题
已知x>0,y>0,则 (1)如果积xy是定值p,那么当且仅当_____时,x+y x=y
2 p 有最___值是______.(简记:积定和最小) 小
(2)如果和x+y是定值p,那么当且仅当____时,xy有最 x=y
p2 ____值是______.(简记:和定积最大) 大 4
2
a=b (2)等号成立的条件:当且仅当______时取等号.

不等式的性质(复习课)

不等式的性质(复习课)

定理5 补充
若a>b>0 则n a >n b (n ∈N且 n>1)
11
若a>b且ab>0 则 <
ab
定理:若a、b∈R,那么 a2+b2≥2ab (当且仅当a=b取“=”)
定理:如果是a、b正数,那么
a
2
b

a b(当且仅当a=b取“=”)
(1) 两个定理中条件的区别 (2)两个定理的结构特征及应用 (3)要注意“=”的取到,事实上在“=”处是一种边界情况
v
2两火车的间距不得ຫໍສະໝຸດ 于 2 0 千米,那么这批物资全部到
达灾区最少需要 ( B )小时
(A) 5 (B)10 (C)15 (D)20

安全柜 ;
之色/马开那双凌厉の眸子所过之处/这些人忍不住后退壹步/到最后开始溃败咯起来/马开就站在那里/以壹双眼睛/逼の这些人四处逃窜/这种威势/让为首の几佫人惊恐不已/就算荒原の最出名の凶人/都不可能凭借着目光让这些久经战斗の人溃败/可面前这佫少年做到咯/几佫人在见到马开目光落 在它们身上后/它们也再无战意/随着众人壹起逃离/钟薇见到这壹幕/忍不住向马开の侧脸/马开此刻の侧脸拾分坚毅/这种坚毅/让她の有些呆滞/感受到马开身体传来の温热/钟薇那绝美の脸蛋上/飘扬起无端の绯红/醉人美艳/"再坚持几滴/就能到器宗の实力范围咯/到时候/我们就安全咯/"马开背 着钟薇/对着她说道/"嗯/"钟薇点头道/"不过刀疤皇从那壹战后/就壹直没有出现/它见过你身上の不少好东西/肯定不会放过你/怕确定还有什么算计/它能有什么算计?无非确定找壹些强悍の人围杀我/"马开回答道/"它不来倒好/来の话先杀咯它/你不要轻敌/它见过你青莲の恐怖/要确定它还敢再来 /肯定会有把握/"钟薇对马开说道/&

不等式复习课件(职高)


综合练习
基础练习题
通过解老师提供的练习题,检验一下自己对不等 式的掌握程度吧!
提高练习题
来挑战一下自己吧!这些练习题将考验您的不等 式应用能力。
总结
1 知识点回顾
通过本次课程,您已经全面回顾了职高数学中的各种不等式。
2 学习建议
继续做题,不断积累,加油!
二元不等式的应用 之一是约束条件。 例如,当一个工程 需要满足多个条件 时,可以将这些条 件用二元不等式表 示出来。
三元不等式
三元不等式是三个 变量之间的不等式。 三元不等式在最值 和优化问题中经常 用到。
三元不等式的应 用
三元不等式的应用 之一是优化问题。 例如,当需要最小 化或最大化某个函 数时,可以将函数 与三元不等式组合 起来,以实现优化。
绝对值不等式的定义
绝对值表示一个数到0的距离。绝对值不等式是指包含绝对值的不等式,通常在求解问题时要将绝 对值拆开讨论。
绝对值不等式的解法
绝对值不等式的解法是将绝对值拆开讨论,每一种情况有不同的解法。
多元不等式
二元不等式
二元不等式是两个 变量之间的不等式。 二元不等式在生活 和工作中经常用到。
二元不等式的应 用
如果a>b,则a+c>b+c(c为任意数)
一元一次不等式
一元一次不等式的解法
使用图像法或非图像法求解一元一次不等式
一元一次不等式的应用
一元一次不等式的应用之一是求最值
一元二次不式
1
一元二次不等式的解法
使用图像法或非图像法求解一元二次不等式
2
一元二次不等式的应用
一元二次不等式的应用之一是求区间
绝对值不等式
不等式复习课件(职高)

人教高中数学必修一B版《不等式》等式与不等式说课复习(不等式及其性质)


课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
已知-1<x<4,2<y<3.
(1)求 x-y 的取值范围;
(2)求 3x+2y 的取值范围.
【解】 (1)因为-1<x<4,2<y<3,所以-3<-y<-2,所以
-4<x-y<2.
(2)由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,所以 1<3x+2y<18.
栏目 导引
第二章 等式与不等式
■名师点拨
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
(1)推论 1 表明,不等式中的任意一项都可以把它的符号变成相
反的符号后,从不等式的一边移到另一边.
(2)推论 2 表明,两个同向不等式的两边分别相加,所得到的不
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
________.
解析:M-N=x2+x-4x+2=x2-3x+2=(x-1)(x-2), 又因为 x<1,所以 x-1<0,x-2<0,所以(x-1)(x-2)>0,所 以 M >N.

2.1 不等式的基本性质课件-2023届广东省高职高考数学第一轮复习第二章不等式


A.x2>y2
B.ax>ay
C.x+5>y+5
D.x+2y>3y
【解析】 B选项中,当a=0时,ax=ay,故选项B不成立.
2.a、b、c 为实数,且 c≠0,下列命题中正确的是( D ) A.a>b⇒ac>bc B.ac<bc⇒a<b C.a>b⇒1a<1b D.a>b⇒ca2>cb2 【解析】 利用不等式的性质或举反例进行判断,取 a=2、b=-1、c=-1 来检验,对 A 有ac<bc,故 A 错;对 B 有 a>b,故 B 错;对 C 有a1>1b,故 C 错;对 D,∵ c≠0,∴ c12>0,由不等式的性质知,选项 D 正确.
【融会贯通】 比较大小. (1)( 2+ 3)2 与 4+2 6; (2)2x2+5x+6 与(x+3)(x+2),x∈R. 解:(1)∵( 2+ 3)2-(4+2 6)=(5+2 6)-(4+2 6)=1>0,∴( 2+ 3)2 >(4+2 6). (2)∵(2x2+5x+6)-(x+3)(x+2)=(2x2+5x+6)-(x2+5x+6)=x2≥0, ∴(2x2+5x+6)≥(x+3)(x+2).
2.1 不等式的基本性质
知识点1 知识点2 知识点3 知识点4 知识点5
1.不等式的概念 用不等号“≠、>、<、≥、≤”表示不等关系的式子叫做不等 式.如:f(x)>g(x),f(x)≤g(x),等等.
知识点1 知识点2 知识点3 知识点4 知识点5
2.几个恒不等式 任意实数的平方不小于0,即a2≥0. 任意实数的绝对值不小于0,即|a|≥0.
B.必要非充分条件
C.充要条件
D.既非充分也非必要条件
【解析】 根据不等式的性质可知,a>3 且 b>3⇒a+b>6 成立,a>3 且 b

不等式复习课

不等式的性质1 不等式两边加(或减)同 一个数(或式子),不等号的方向不变.
如果a b,
那么a c b c.
不等式的性质2 不等式两边乘(或除以) 同一个正数,不等号的方向不变.
如果a b, c 0, a b 那么ac bc(或 ). c c
不等式的性质3 不等式两边乘(或除以) 同一个负数,不等号的方向改变.
一个工程队原定在10天内至少要挖土 600m³ ,在前两天一共完成了12m³ , 由于整个工程调整工期,要求提前两 天完成挖土任务。问以后几天内,平 均每天至少要挖土多少m³ ?
2.学校图书馆搬迁,有15万册图书, 原准备每天在一个班级的劳动课上, 安排一个小组同学帮助搬运图书,两 天共搬了1.8万册。如果要求在一周 内搬完,设每个小组搬运图书数相同, 则在以后五天内,每天至少安排几个 小组搬书?
解不等式,并把解集表示在数轴上:
(1)3(2x+7)>23 (2)12-4(3x-1)≤2(2x-16)
x 3 < 2 x 5 -1 (3) 3 5 2 x 1 3x 1 5 (4) ≥ 12 3 2
P134
解: 39.98≤ V ≤40.02.
解:设蛋白质的含量为x g, 由题意,得 x ≥300×0.6% x ≥1.8 答:蛋白质的含量不小于1.8 g.
(5) x的
2
3
与y的0.5的和是非正数;
2
3
x+0.5y≤0
(6) a的平方与3的差不大于a与5的和.
a² ≤a+5 -3
(7)m与n的平方和是非负数;
m² +n² ≥0
你认为是这样吗 ?
小辉在学了不等式的基本性质这一节后,他
觉得很容易;并用很快的速度做了一道填空题,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 b
(B) 1 > ab
1 a
(C)|a|>|b| (D)a2>b2 2、a、b是任意实数,且a>b,则
(D )
b
(A)a2>b2
(B) < 1
a
(C)lg(a-b)> 0
(D)

1 2
a


1 2
b
3、a、b、c、d是任意实数,且a>b,c>d,则下列
结 ห้องสมุดไป่ตู้正确的是
(4) x、y>0,x+y ≥ 2 xy
(正数x、y的积xy为定值,当x=y时,和x+y有最小值)
x、y>0,xy≤

x
2
y
2

(正数x、y的和x+y为定值,当x=y时,积xy有最大值)
;/naotanzz 脑瘫儿的症状 婴儿脑瘫症状 脑瘫症状表现是什么呢 ;
注意:
1、应用上述结论可以求一些函数的最大(小) 值,但要满足以下条件:
一“正”二“定”三“相等”
2、有的函数可以直接看出积或和为定值, 有的就需要通过变形把它变为积或和为 定值,然后再利用上述结论来求函数的 最(小)值
二、例题分析:
1、如果a<b<0,则下列不等式中不成立的是( B )
(A)1a>
不等式的性质(复习课)
一、基础知识
1、两个数的大小关系
a>b a-b>0 a<b a-b<0 a=b a-b=0
2、比较两个数的大小的方法
作差 变形 判断符号 得出结论
3、作差之后变形,那么结果尽量变成
常数、完全平方、因式积的形式
4、不等式的性质
定理1(对称性) 若a>b则b<a;若b<a则a>b
定理2(传递性) 若a>b且b>c; 则a>c
定理3 推论
若a>b 则 a+c>b+c 若a>b 且 c>d 则 a+c>b+d
定理4
推论1 推论2
若a>b且 c>0 则 ac>bc 若a>b且 c<0 则 ac<bc 如果a>b>0 且c>d>0 则ac>bd 若a>b>0 则 an>bn (n ∈N且 n>1)
戈林曾问过一名瑞士军官:“听说你们只有50万国防军,那么,如果我派百万大军进入贵国,你们将怎么办?”答曰:“简单。我们就每人开两枪!” 妙!一句话,就亮出了克敌制胜的信心!再看一件真人真事。 上个世纪50年代,林语堂先生曾应邀在美国哥伦比亚大学讲授中国文化 课。一位心怀恶意、轻视中国的女生曾故意在课堂上问林语堂:“你总是说你们中国好,难道我们美国就没有一样东西比中国强?”林语堂笑了笑,说:“当然有,美国的抽水马桶就比中国的好。”立刻赢得满堂的笑声和喝彩声! 妙!又是一句话!就捍卫了中国人的尊严! 能用一句 话表达出尊严与豪迈的人,让人佩服。而它的故事也常常是百姓所乐于传诵的。 168、从小学习“控制自己” 奥斯丁是我的一位美国朋友的孩子,6岁时就上了学。 奥斯丁上学没多久,父母就发现了他的变化。不小心碰了妹妹,他马上就会说“对不起”。家里来了客人,他会像主 人一样与客人握手,还要说一句“见到你很高兴”。坐车的时候,他还会提醒爸爸一定要系好安全带。这些当然都是他在学校里学到的。 奥斯丁的母亲认为,让孩子掌握这些基本的生活常识和行为规范是人生的基础课,要比多认些单词、多学点算术更重要。后来,我又看到奥斯丁从学校里 带回的一张漫画。那张漫画的上方写着“保持镇静”几个大字,下面是一道公式:1+3+10=镇静。漫画中有个大头娃娃在讲解这个公式,“1”是告诉你自己,“要镇静,放松!”;“3”指的是深呼吸三次;“10”的意思是“开始慢慢地从1数到10”。画的最下方写着“保持镇静使我能够采取负 责任的行动。”奥斯丁的母亲告诉我,这是学校里老师讲“自我控制”时发的,老师要孩子们在生气的时候按着这个公式来控制自己的情绪。 “自我控制”听起来似乎是一个成年人的话题。而在美国的中小学教育中,它其实已经成了一个重要内容。 ? 169、谁是最忠诚的人 1942 年3月,希特勒下令搜捕德国所有的犹太人,68岁的贾迪?波德默召集全家商讨对策,最后想出一个没有办法的办法,向德国的非犹太人求助,争取他们的保护。接下来是选择求生的对象。两个儿子认为,应该向银行家金?奥尼尔求助,因为他是在波德默家族的资助下发家的,一直把波德默家族视 为恩人。在不同的场合,他也曾多次表示,如果有什么需要帮助的,尽管找他。 68岁的老人却不赞成这种意见,他认为应该向拉尔夫?本内特、一位木材商人求助。波德默家族的人是跟本内特打工起家的,现在虽然很少往来,但心理上从没断绝过对他感激和思念。 第二天一早,两个儿 子出发了。在路上,二儿子说,我不能去本内特先生那儿,上次我见他时,他还提那700吨木材的事。要去,你去吧!我 要去求奥尼尔。最后,二儿子去了银行家那儿,大儿子去了木材商的家。 1948年7月,大儿子艾森?波德默辗转回到德国,他从纳粹档案中查到这么一条记录:银行家 金?奥尼尔来电,家中闯入一年轻男子,疑是犹太人。一年后,他又于奥斯维辛集中营的死亡档案中,查到他父亲、母亲、妻子、弟妻及6个孩子的名字。他们是在他和弟弟分手后第4天被捕的。 1950年1月,艾森?波德默定居美国。2003年12月4日去世,终年83岁,留下一部回忆录。回忆录主 要讲述,他在木材商本内特的帮助之下,怎样偷渡日本,保全性命的。该书的封面上写着:献给父亲贾迪?波德默先生!封底写着:许多人认为,要赢得他人的忠诚,最好的办法是给其恩惠。其实,这是对人性的误解,在现实中真正对你忠诚的,都是曾经给过你恩惠的人。 170、节俭是资源 在世界各国,节约已经成为一种潮流,一些国家保护资源的意识已经融入每个人生活中的每一个细节。也许有人会说,节约是生产力低下的产物,在物质日益丰富的今天,重提节约似乎不太合乎时宜;还有人会问,消费是刺激生产的牵引机,是现代化列车不可缺少的火车头,倡导向节约型社会 转型将会造成生产停滞不前、市场不旺,事实上这种认识是片面的。从去年开始的席卷全国的能源紧张态势,让越来越多的人明显感受到中国经济正饱受资源短缺的约束之痛,这是一个非常危险的信号。 对于每一名国人来说,我们手中都紧握着珍贵的“资源”:如果13亿人每人少用一双一次性 木筷,意味着成千上万亩森林免遭砍伐厄运;假若采用节能光源,照明用电量将下降60%,一年可节约740亿千瓦时电能,相当于节约2989万吨标准煤。可见,珍惜和节约资源,成之毁之,爱之损之都在于每个人的行动之中。 171、止谤莫如自修 张恨水先生曾写过一篇《为人应当接受批评》 ,他说:“生平很少和人打笔墨官司,就是人家指出我的名姓来教训一顿,我也不曾回复一个字。这样做,我并非怯懦,也并非过分的容忍。我有个感想,我错了,止谤莫如自修。我不错,最好借事实来答复。 这是一个办法,也许不适于他人,但至少我自己,在做人上纠正了不少错误。而 三十年来的写作生涯,略有寸进,一大半也就是根据别人的批评而得的。”恨水先生对待批评的态度,很值得当今文化人学习。 172、没有鳔,就运动肌肉 鱼在水中游动,需要不断调节沉浮。而鱼一般有一个储气的器官——鳔,需要上浮时鳔膨胀,需要下沉时鳔收缩,非常自如。同是 水中生物,鲨鱼就没有鳔,为了完成沉浮,它只能依靠肌肉的运动。由于重力的作用,只要它停下来,身子就会下沉,所以它只能做大海里的行者,永不停息地游弋。 作为水中运动生物,没有鳔可以说是不幸的。然而正是由于这一先天的不足,才成就了鲨鱼的“海洋霸主”地位。因为不停 地游弋,它身体异常强壮,从而成为了极具战斗力的水中杀手。而那些有鳔的鱼类,生存条件可谓得天独厚,却无一不成为了鲨鱼的猎物。 某些条件不如别人,不见得就是坏事。只要奋力拼搏,不断创造条件,劣势也能变成优势,从这种意义上来说,不足有时反而能成就强者——在克服不 足的过程中,人会变得日益强大。 173、心灵的掌声 在我上高中一年级的时候,班里有位叫英子的女孩,总爱蜷缩在教室的一角。上课前,她早早就已来到教室里,下课后,她总是最后一个离开教室。后来我们才知道,她的腿因为患小儿麻痹症而残疾了,她不愿意让人看到她走路的姿 势。 一天,老师让同学们走上讲台讲述一个小故事。轮到英子讲演的时候,全班40多双眼睛一齐投向了那个角落。英子立刻把头低了下去。老师是刚调来的,还不了解英子的情况。 英子犹豫了一会儿,慢慢地站了起来。我们注意到英子的眼圈儿红了。在全班同学的注视下,英子终于 一摇一晃地走上了讲台。就在刚刚站定的那一刻,不知是在谁的带动下,骤然间响起了一阵掌声,那掌声热烈、持久。 掌声渐渐平息,英子也定了定情绪。当她结束讲演的时候,班里又响起了一阵掌声。 自从那次讲演以后,英子不再那么忧郁了,高二那年,她代表我们学校参加了全 国奥林匹克数学竞赛,还获了奖。3年后,英子被的一所大学破格录取。后来,英子给我来信说:“我永远不会忘记那一次掌声。” 174、奢侈病 奢侈病,是美国康奈尔大学经济学、伦理学与公共政策教授罗伯特正在研究的现代病,专指无节制的挥霍。 罗伯特发现,一名美国CEO 需要拥有一栋15000平方英尺的住宅,仅仅是因为与其地位相同的企业老板们都拥有如此规模的住宅。假如他购买一所小一些的房子,除了会在公众面前大丢面子之外,还将面临人们对企业运营状况产生猜疑的风险。但是,如果所有CEO都将自己的宅第规模缩小的话,他们内心的窘迫便会一扫而 光。 其实,每个CEO都希望自己购买的房子面积更小一些。毕竟,房子大了就不得不雇员工进行维护,并且需要额外的管理,这是一件相当棘手的事情。 如果奢侈病只是富人们自己发烧,那么它也许还只是社会上的一道风景线。但是,上层的消费失控行为就像一种病毒,它影响并大量 激发人们追求奢华的狂热,对中等甚至低收入家庭的消费模式也起到了倡导和改变作用。在某种程度上,我们所有的人都受到了感染。 人们为什么会无节制地、炫耀性地消费呢?这是因为人们“关注相对处境”超过了“关注实际处境”。 是的,如果你的年收入10万元,你和年收入8万 元的人在一起,一定很幸福;但是和年收入15万元的人在一起,你就会觉得悲哀。如果其他的人都送99朵玫瑰给女朋友,你就不好意思只送11朵了。但是,我的一个朋友告诉我,她嫁给她老公是因为那年情人节,他非常窘迫地送给她一盒只有3颗的巧克力和一朵玫瑰。 其实,一朵玫瑰也可 以代表爱情。 175、不一样的旅游 刘先生20世纪80年代初就移民比利时,后来一直从事导游工作,接待的主要是国内游客。他向我介绍说,“国内游客的一个特点,就是安排的景点越多越好。去的景点越多越是觉得你这个导游好,来不及看没关系,只要到那里拍上一张照片就心满意足 了。” 克莱尔是我的英国朋友,今年38岁,她从小姑娘时起就跟父母去意大利的南部小城度假,每年都住在相同的旅馆,租海滩上同样的椅子。我好奇地问克莱尔,你整天躺在那里什么也不干有什么意思?她反驳说:“什么叫什么也不干,我在晒着太阳,当然你也可以游泳,打沙滩排球。 再说,你为什么一定要干点什么呢?你上班不是一直在干着什么吗?度假的目的就是什么也不干。” 欧洲人渴望不同的自我,公事私事分得清清楚楚,度假就度假,跟工作完全没有关系。中国人旅游是工作的延伸,外出手机一定带着,和单位随时保持联系,有的还带着笔记本,早晨起来第 一件事上网了解一下国内外最新动态。 国人旅游爱省事儿,他们大多选择跟团旅游,原因就是,人家都给你安排好了,多省事儿。而西方人喜欢自己决定行程和路线,讨厌别人的操作和安排,他们往往把旅行中的困难看作是旅行的一部分。西方人与中国人的旅游差异,还体现在对标志性景 点的态度。去纽约不到自由女神像,去埃及不到金字塔,去荷兰不看大风车,对于中国人来说等于没到过那些地方。我在巴黎遇到一位美国游客,他告诉我说,埃菲尔铁塔没什么好看的,我在电视里看过无数遍。 如果你留心,就会发现老外出门都要带一本厚厚的旅游介绍书籍。相比之下,
相关文档
最新文档