山东省青岛市2015年中考数学试卷(解析版)
2015年中考真题精品解析 数学(日照卷)精编word版(原卷版)

一、选择题(1-8小题每小题3分,9-12小题每小题3分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()2.的算术平方根是()B. ±2C.D. ±3.计算(﹣a3)2的结果是()A. a5B. ﹣a5C. a6D. ﹣a64.A. 众数是35B. 中位数是34C. 平均数是35D. 方差是65.小红在观察由一些相同小立方块搭成的几何体时,发现它的右视图、俯视图、左视图均为如图,则构成该几何体的小立方块的个数有()A. 3个B. 4个个 D. 6个6.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A. ①②B. ②③C. ①③D. ②④7.不等式组的解集在数轴上表示正确的是()8.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A. 24﹣4πB. 32﹣4πC. 32﹣8πD. 169.A. 20%B. 40%C. ﹣220%D. 30%10.如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD的值()A. B. C. D.11.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A. 36B. 45C. 55D. 6612.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B (4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A. ①②③B. ①③④C. ①③⑤D. ②④⑤二、填空题(每小题4分,共16分)13.若=3﹣x,则x的取值范围是.14.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.15.如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015= .16.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为.三、解答题(本大题共6小题,共64分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)(1)先化简,再求值:(+1),其中a=;(2)已知关于x,y的二元一次方程组的解满足x+y=0,求实数m的值.18.(9分)为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C跑步,D 跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.19.(10分)如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.(1)填空:甲、丙两地距离千米.(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.20.(10分)如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF 绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN.(1)求证:AM=BN;(2)当MA∥CN时,试求旋转角α的余弦值.21.(12分)阅读资料:如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为.综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.①证明AB是⊙P的切点;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.22.(14分)如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?一、选择题(1-8小题每小题3分,9-12小题每小题3分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()【答案】D考点:轴对称图形.2.的算术平方根是()±2 C. D. ±【答案】C考点:算术平方根.3.计算(﹣a3)2的结果是()A. a5B. ﹣a5C. a6D. ﹣a6【答案】C考点:幂的乘方与积的乘方.4.A. 众数是35B. 中位数是34C. 平均数是35D. 方差是6【答案】B考点:1.方差;2.加权平均数;3.中位数;4.众数.5.小红在观察由一些相同小立方块搭成的几何体时,发现它的右视图、俯视图、左视图均为如图,则构成该几何体的小立方块的个数有()A. 3个B. 4个个 D. 6个【答案】B考点:由三视图判断几何体.6.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A. ①②B. ②③C. ①③D. ②④【答案】B考点:正方形的判定.7.不等式组的解集在数轴上表示正确的是()【答案】A考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.8.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A. 24﹣4πB. 32﹣4πC. 32﹣8πD. 16【答案】A考点:扇形面积的计算.9.A. 20%B. 40%C. ﹣220%D. 30%【答案】A考点:一元二次方程的应用.10.如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD的值()A. B. C. D.【答案】D考点:解直角三角形.11.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A. 36B. 45C. 55D. 66【答案】B故选B.考点:完全平方公式.12.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B (4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A. ①②③B. ①③④C. ①③⑤D. ②④⑤【答案】C考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.二、填空题(每小题4分,共16分)13.若=3﹣x,则x的取值范围是.【答案】x≤3考点:二次根式的性质与化简.14.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.【答案】考点:1.正方形的性质;2.等边三角形的性质;3.含30度角的直角三角形15.如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015= .【答案】2026考点:根与系数的关系.16.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为.【答案】6+2.【解析】学科网考点:反比例函数图象上点的坐标特征.三、解答题(本大题共6小题,共64分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)(1)先化简,再求值:(+1),其中a=;(2)已知关于x,y的二元一次方程组的解满足x+y=0,求实数m的值.【答案】(1)a﹣1,﹣1;(2)m=4.考点:1.分式的化简求值;2.二元一次方程组的解.18.(9分)为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C跑步,D 跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.【答案】(1)60(人),40%,(2).考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图.19.(10分)如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.(1)填空:甲、丙两地距离千米.(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.【答案】(1)900.(2)y=.考点:一次函数的应用.20.(10分)如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF 绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN.(1)求证:AM=BN;(2)当MA∥CN时,试求旋转角α的余弦值.【答案】(1)见解析(2)考点:1.旋转的性质;2.全等三角形的判定与性质.21.(12分)阅读资料:如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为.综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.①证明AB是⊙P的切点;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.【答案】问题拓展:(x﹣a)2+(y﹣b)2=r2综合应用:①见解析②点Q的坐标为(4,3),方程为(x﹣4)2+(y﹣3)2=25.考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;直角三角形斜边上的中线;勾股定理;切线的判定与性质;相似三角形的判定与性质;锐角三角函数的定义.22.(14分)如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?【答案】(Ⅰ)y=x2﹣x+3.tan∠BAC=;(Ⅱ)(1)(11,36)、(,)、(,);(2)点E的坐标为(2,1).考点:二次函数综合题;线段的性质:两点之间线段最短;矩形的判定与性质;轴对称的性质;相似三角形的判定与性质;锐角三角函数的定义.。
【初中数学】山东省青岛市2015年学业水平模拟考试数学试题1 人教版

青岛市2015年学业水平模拟考试数学试题1一、选择题:本大题共12个小题,在每个小题的四个选项中只有一个是正确的,请把正确的选出来,并将其字母标号填写在括号内.每小题选对得3分,选错、不选或选出的答案超过一个均记0分,满分36分。
1、下列一元二次方程中,没有实数根的是( )A.2210x x +-= B.2x +22x+2=0 C.210x += D.220x x -++=2、菱形的对角线长为8cm 和6cm ,则该菱形面积为( )A .48 cm 2B .24 cm 2C .25 cm 2D .14 cm 23、下列各式计算正确的是( )A .3x -2x =1B .a 2+a 2=a 4C .a 5÷a 5=a D . a 3•a 2=a 54、一次函数y =kx +b 的图象如图所示,则方程kx +b =0的解为() A .x =2 B .y =2 C .x =-1 D .y =-15、把分式)0(≠++y x yx x中的分子、分母的x 、y 同时扩大2倍,那么分式的值( ) A. 扩大2倍 B. 缩小2倍 C. 改变原来的14D. 不改变6、给出下列命题:(1)平行四边形的对角线互相平分; (2)对角线相等的四边形是矩形;(3)菱形的对角线互相垂直平分; (4)对角线互相垂直的四边形是菱形. 其中,真命题的个数是( )A.4 B.3 C.2 D.17、如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为( )A .13 B .12 C D .3 8、在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )A B C D9、下列各函数中,y 随x 增大而增大的是( )①1y x =-+. ②3y x=-(x < 0) ③21y x =+. ④23y x =- A .①② B .②③ C .②④ D .①③10、若抛物线22y x x c =-+与y 轴的交点坐标为(0,3)-,则下列说法不正确的是( ) A.抛物线的开口向上 B.抛物线的对称轴是直线1x = C.当1x =时y 的最大值为4- D.抛物线与x 轴的交点坐标为(1,0)-、(3,0) 11、 如图,D 是△ABC 一边BC上一点,连接AD,使 △ABC ∽ △DBA 的条件是( ). A . AC :BC=AD :BD B . AC :BC=AB :AD C . AB 2=CD·BC D . AB 2=BD·BCDAC B12、反比例函数k y x=的图象如左图所示,那么二次函数221y kx k x =--的图象大致为( )二、填空题:本大题共6个小题,每小题填对最后结果得4分,满分24分。
2015年山东青岛市南区初三二模数学试卷

2015年山东青岛市南区初三二模数学试卷一、选择题(共8小题;共40分)1. 如果a与∣−7∣互为相反数,则a的值是 A. 7B. −7C. 17D. −172. 如图所示的几何体是由一些小立方块搭成的,则这个几何体的主视图是 A. B.C. D.3. 下列平面图形中,既是轴对称图形,又是中心对称图形的是 A. B.C. D.4. PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为 A. 2.5×10−7B. 2.5×10−6C. 25×10−7D. 0.25×10−55. 如图,⊙O的半径OA=6,以点A为圆心,以OA长为半径的弧交⊙O于B,C点,则BC= A. 63B. 62C. 33D. 326. 如表是12名同学的爱心捐款统计,则由捐款数组成的这组数据中,中位数与众数分别是 数额元50151020人数人2514A. 15,15B. 20,20C. 17.5,15D. 15,207. 点P是图①中三角形边上一点,坐标为a,b,图①经过变化形成图②,则点P在图②中的对应点Pʹ的坐标为 A. 12a,12b B. 12a,b C. a−2,b D. a−1,b8. 反比例函数y=kx和一次函数y=kx−k在同一直角坐标系中的图象大致是 A. B.C. D.二、填空题(共6小题;共30分)9. 化简:+313= ______.10. 如图,⊙O是△ABC的外接圆,AB是直径,若∠BOC=80∘,则∠A等于______ ∘.11. 一个口袋有15个白球和若干个黑球,在不允许将球倒出来数的前提下,小明为估计口袋中黑球的个数,采用了如下的方法:从袋中一次摸出10个球,求出白球数与10的比值,再把球放回口袋中摇匀,不断重复上述过程5次,得到的白球数与10的比值分别是0.4,0.3,0.2,0.3,0.3,根据上述数据,小明估计口袋中大约有______ 个黑球.12. 某车间有甲乙两个小组,甲组的工作效率比乙组高25%,因此甲组加工2000个零件所用的时间比乙组加工1800个零件所用的时间还少30分钟.若设乙组每小时加工x个零件.根据题意,可列出方程______.13. 如图,在△ABC中,∠C=45∘,DE垂直平分AB于点E,交BC于点D;FG垂直平分AC于点G,交BC于点F,连接AD,AF.若AC=3 2 cm,BC=12 cm,则DF= ______ cm.14. 如图,n+1个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,⋯,△B n+1D n C n的面积为S n,则S2= ______;S n= ______.(用含n 的式子表示)三、解答题(共10小题;共130分)15. 已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.16. (1)化简:x+1x ÷ x−1+x22x.(2)已知关于x的一元一次不等式2x−6>13a的解集为x>−1,求a的值.17. 某学校为了解该校学生的课余活动情况,抽样调查了部分同学,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如下:(1)在这次研究中,一共调查了______ 名学生.(2)补全频数分布折线图;(3)该校共有2200名学生,估计该校学生中爱好阅读的人数大约是多少?18. 一对质地均匀的正方体骰子的六个面上分别有1到6个点数,将骰子抛掷两次,若两骰子正面点数和为2,10,11,12,则甲赢;如果两骰子正面点数的和为7,则乙赢;若两骰子正面点数的和为其它数,则甲乙都不赢.继续下去,直到有一个人赢为止.你认为游戏对甲、乙是否公平?请说明理由;若不公平,请你修改规则使该游戏对双方公平.19. 如图,是某货运站传送货物的平面示意图.传送带AB长为4米,在离B点5米远的地方有一堆货物DEFG等待运输.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45∘改为30∘.但要保证货物着地点C的左侧留出2米的通道,试判断货物DEFG是否需要挪走.(结果精确到0.1米:参考数据:≈1.41,≈1.73,≈2.24,≈2.45)20. 如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径CD 为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如图,建立直角坐标系,求此抛物线的解析式;(2)如果竖直摆放7个圆柱形桶时,网球能不能落入桶内?(3)当竖直摆放圆柱形桶至多多少个时,网球可以落入桶内?21. 已知:如图,在平行四边形ABCD中,点E在BC边上,连接AE,O为AE中点,连接BO并延长交AD于F.(1)求证:△AOF≌△EOB;(2)当AE平分∠BAD时,四边形ABEF是什么特殊四边形?并证明你的结论.22. 某旅游商店购进某种工艺品原料140个.准备加工后销售,根据前期销售经验,加工成半成品销售每个可获利10元.加工成成品每个可获利20元,已知该店每天只能加工半成品15个或成品5个,两种加工不能同时进行.(1)若用12天刚好加工完这批原料,则该店加工半成品和成品各多少个?(2)试求出销售这批工艺品的利润y与加工成品的天数a(天)之间的函数关系表达式;(3)临近旅游旺季,该商店要在不超过14天的时间内,将140个原料全部加工完后进行销售,并要使售后或利润最大,则应该如何安排加工的时间?能获得的最大利润是多少?23. 【问题提出】如何把n个边长为1的小正方形,剪拼成一个大正方形?(1)【探究一】若n是完全平方数,我们不用剪切小正方形,可直接将小正方形拼成个大正方形.请你用9个边长为1的小正方形拼成一个大正方形.(如图正方形)(2)【探究二】若n=2,5,10,13等,这些数,都可以用两个正整数平方和的算术平方根来表示,如:2=2+125=2+12.解决方法:以n=5为例,(1)计算:拼成的大正方形的面积是5,边长为;(2)剪切:如图1,将5个小正方形按如图所示分成5部分,虚线为剪切线;(3)拼图:以图1中的虚线为边,拼成一个边长为5的大正方形,如图2.请你仿照上面的研究方式,用13个边长为1的小正方形剪拼成一个大正方形.(1)计算:拼成的大正方形的面积是13,边长为(2)剪切:请画出剪切的图形;(3)拼图:请画出拼成的图形.(3)【问题拓展】如图3,给你两个大小不相等的正方形ABCD和EFGH,设正方形ABCD的边长为a,正方形EFGH的边长为b.请你仿照上面的研究方式,把它剪拼成一个大正方形.(1)计算:拼成的大正方形的面积是a2+b2,边长为 a2+b2;(2)剪切:请在图3中完成;(3)拼图:请画出拼成的图形.24. 如图,在梯形ABCD中,AD∥BC,DC=6 cm,AD=4 cm,BC=20 cm,∠C=60∘.点P从点A出发沿折线AD→DC方向向点C匀速运动,速度为1 cm/s;点Q从点B出发,沿BC方向向点C匀速运动,速度为2 cm/s,P,Q同时出发,且其中任意一点到达终点,另一点也随之停止运动,设点P,Q运动的时间是t s.(1)当点P在AD上运动时,如图(1),DE⊥CD,是否存在某一时刻t,使四边形PQED是平行四边形?若存在,求出t的值;若不存在,请说明理由;(2)当点P在DC上运动时,如图(2),设△PQC的面积为S,试求出S与t的函数关系式;(3)是否存在某一时刻t,使△PQC的面积是梯形ABCD的面积的2?若存在,求出t的值;若9不存在,请说明理由;(4)在(2)的条件下,设PQ的长为x cm,试确定S与x之间的关系式.答案第一部分1. B2. D3. A4. B5. A6. C7. B8. C第二部分9. 3310. 4011. 3512. 1800x −20001+0.25x=306013. 414. 233;3nn+1第三部分15. 如图所示:△ABC即为所求,16. (1)x+1x÷ x−1+x22x =x+1x÷2x2−1−x22x=x+1x÷x2−12x=x+1x×2xx+1x−1 =2x−1.(2)2x−6>13a,2x>6+13a,x>3+16a,∵解集为x>−1,∴3+16a=−1,解得a=−24.17. (1)200(2)200×30%=60(人).200−60+30+20+40=200−150=50人.补全频数分布折线图如下:(3)2200×50200=550(人).答:估计该校学生中爱好阅读的人数大约是550人.18. 表格如下1,62,63,64,65,66,61,52,53,54,55,56,51,42,43,44,45,46,41,32,33,34,35,36,31,22,23,24,25,26,21,12,13,14,15,16,1共有36种情况,点数和为2,10,11,12的情况数有7种,所以甲赢的概率为736;点数和为7的情况数有6种,所以概率为636=16,1 6<736,则游戏不公平,甲赢的概率比乙大.掷一次骰子,向上一面的点数为偶数为甲赢,为奇数为乙赢.19. 如图,作AM⊥BC于点M;Rt△ABM中,AM=BM=AB sin45∘=4×22=22,在Rt△ACM中,∵∠ACM=30∘,∴AC=2AM=42;在Rt△ACM中,CM=AC2−AM2=422−222=26;∴CB=CM−BM=26−22≈2.1.∵DC=DB−CB≈5−2.1=2.9>2;∴货物DEFG不需要挪走.20. (1)M0,5,B2,0,C1,0,D32,0,设抛物线的解析式为y=ax2+k,∵抛物线过点M和点B,则k=5,a=−54.即抛物线解析式为y=−54x2+5.(2)当x=1时,y=154;当x=32时,y=3516.即P1,154,Q32,3516,当竖直摆放7个圆柱形桶时,桶高=310×7=2.1.∵2.1<154且2.1<3516,∴网球不能落入桶内;(3)设竖直摆放圆柱形桶m个时网球可以落入桶内,由题意,得,3516≤0.3m≤154,解得:7724≤m≤1212;∵m为整数,∴m的值为8,9,10,11,12.∴当竖直摆放圆柱形桶至多12个时,网球可以落入桶内.21. (1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∠AFO=∠EBO,∵O为AE中点,∴AO=EO,在△AOF和△EOB中,∠FAO=∠BEO,∠AFO=∠EBO,AO=EO.∴△AOF≌△EOB AAS.(2)四边形ABEF是菱形;∵△AOF≌△EOB,∴AF=BE,∵AD∥BC,∴AF∥BE,∴四边形ABEF是平行四边形,∵AE平分∠BAD,∴∠BAE=∠DAE,∵AD∥BC,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,∴四边形ABEF是菱形.22. (1)设该店加工半成品x个,则加工成品140−x个,由题意得x15+140−x5=12.解得:x=120.则140−x=20.答:该店加工半成品120个,加工成品20个.(2)由题意得销售这批工艺品的利润y与加工成品的天数a(天)之间的函数关系表达式为y=20×5a+10×140−5a=50a+1400.(3)由题意:a+140−5a15≤14解得a≤7,因为y=50a+1400,所以k=50>0,y随a的增大而增大,所以a=7时,y最大值=50×7+1400=1750元.23. (1)∵9个边长为1的正方形的面积为9,∴所拼成的正方形的边长为3.所拼图形如图所示:(2)(1)13=22+32;(2)如图所示:(3)拼成的图形如图所示:(3)(1)计算:拼成的大正方形的面积是a2+b2,边长为2+b2(2)如图4所示:(3)拼成的图形如图5所示:24. (1)不存在,理由如下:因为DE⊥CD,∠C=60∘,DC=6 cm,所以∠CED=30∘,所以CE=2CD=12,设点P,Q运动的时间是t s,PD=4−t,QE=BC−CE−BQ=20−12−2t=8−2t,使四边形PQED是平行四边形,有PD=QE,所以4−t=8−2t,解得:t=2,此时点P与点D重合,不能构成平行四边形.(2)如图②,由题意可求:PC=10−t,QC=20−2t,过点P作PM⊥BC,∠C=60∘,所以PMPC =sin60∘=32,可求PM=3210−t,所以S=12×20−2t×3210−t=32t2−103t+503.(3)如图3,过点D作DN⊥BC,DC=6,∠DCB=60∘,可求:DN=33,所以梯形ABCD的面积为:4+20×33÷2=363,当t≤4时,QC=20−2t,此时,△PQC的面积为:20−2t×33÷2,由题意得:20−2t×3÷2=36×29,解得:t=223(舍去);当4<t≤10时,由(2)知,△PQC的面积为:32t2−103t+503,由题意:32t2−103t+503=363×29,解得:t=6或t=14(舍去),所以当t=6时,△PQC的面积是梯形ABCD的面积的29.(4)如图②,由(2)知:PC=10−t,QC=20−2t,过点P作PM⊥BC,∠C=60∘,所以PMPC =sin60∘=32,PM=3210−t,可求:CM=1210−t,QM=QC−CM=3210−t,由勾股定理可求:PQ=310−t,当PQ=x时,310−t=x,解得:t=10−33x,所以S=12×20−2t×3210−t=36x2.。
2020年山东省青岛市中考数学试题及参考答案(word解析版)

2020年青岛市初中学业水平考试数学试题(考试时间120分钟,满分120分)第Ⅰ卷(选择题,共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.﹣4的绝对值是()A.4 B.﹣4 C.D.2.下列四个图形中,中心对称图形是()A.B.C.D.3.2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为()A.2.2×108B.2.2×10﹣8C.0.22×10﹣7D.22×10﹣94.如图所示的几何体,其俯视图是()A.B.C.D.5.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)6.如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°7.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A.B.C.2D.48.已知在同一直角坐标系中,二次函数y=ax2+bx和反比例函数y=的图象如图所示,则一次函数y=x﹣b的图象可能是()A.B.C.D.第Ⅱ卷非选择题(共96分)二、填空题(本大题共6小题,每小题3分,共18分)9.计算:(﹣)×=.10.某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么将被录用(填甲或乙).应聘者/项目甲乙学历9 8经验7 6工作态度 5 711.如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为6.若点P(a,7)也在此函数的图象上,则a=.12.抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是.13.如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF交AD于点G.若DE=2,OF=3,则点A到DF的距离为.14.如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)已知:△ABC.求作:⊙O,使它经过点B和点C,并且圆心O在∠A的平分线上.四、解答题(本大题共9小题,共74分)16.(8分)(1)计算:(+)÷(﹣);(2)解不等式组:17.(6分)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形.同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.18.(6分)如图,在东西方向的海岸上有两个相距6海里的码头B,D,某海岛上的观测塔A距离海岸5海里,在A处测得B位于南偏西22°方向.一艘渔船从D出发,沿正北方向航行至C处,此时在A处测得C位于南偏东67°方向.求此时观测塔A与渔船C之间的距离(结果精确到0.1海里).(参考数据:sin22°≈,cos22°≈,tan22°≈,sin67°≈,cos67°≈,tan67°≈)19.(6分)某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如图的频数直方图和扇形统计图.请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“70~80”这组的百分比m=;(3)已知“80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n名学生测试成绩的中位数是分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数.20.(8分)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.22.(10分)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM =2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?23.(10分)实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a (1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①所取的2个整数1,2 1,3 2,32个整数之和 3 4 5如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②所取的2个整数1,2 1,3 1,4 2,3 2,4 3,42个整数之和 3 4 5 5 6 7 如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有种不同的结果.24.(12分)已知:如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).解答下列问题:(1)当t为何值时,点M在线段CQ的垂直平分线上?(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;(4)点P在运动过程中,是否存在某一时刻t,使点P在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.答案与解析第Ⅰ卷(选择题,共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.﹣4的绝对值是()A.4 B.﹣4 C.D.【知识考点】绝对值.【思路分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解题过程】解:∵|﹣4|=4,∴﹣4的绝对值是4.故选:A.【总结归纳】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.下列四个图形中,中心对称图形是()A.B.C.D.【知识考点】中心对称图形.【思路分析】根据中心对称图形的概念结合各图形的特点求解.【解题过程】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.故选:D.【总结归纳】本题考查了中心对称图形与轴对称图形的概念.判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为()A.2.2×108B.2.2×10﹣8C.0.22×10﹣7D.22×10﹣9【知识考点】科学记数法—表示较小的数.【思路分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解题过程】解:将0.000000022用科学记数法表示为2.2×10﹣8.故选:B.【总结归纳】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图所示的几何体,其俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解题过程】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.【总结归纳】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)【知识考点】坐标与图形变化﹣平移;坐标与图形变化﹣旋转.【思路分析】根据平移和旋转的性质,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,即可得点A的对应点A′的坐标.【解题过程】解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(﹣1,4).故选:D.【总结归纳】本题考查了坐标与图形变换﹣旋转、平移,解决本题的关键是掌握旋转的性质.6.如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°【知识考点】圆心角、弧、弦的关系;圆周角定理.【思路分析】根据圆周角定理得到∠BAD=90°,∠DAC=∠COD=63°,再由=得到∠B=∠D=45°,然后根据三角形外角性质计算∠AGB的度数.【解题过程】解:∵BD是⊙O的直径,∴∠BAD=90°,∵=,∴∠B=∠D=45°,∵∠DAC=∠COD=×126°=63°,∴∠AGB=∠DAC+∠D=63°+45°=108°.故选:B.【总结归纳】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A.B.C.2D.4【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】由矩形的性质,折叠轴对称的性质,可求出AF=FC=AE=5,由勾股定理求出AB,AC,进而求出OA即可.【解题过程】解:∵矩形ABCD,∴AD∥BC,AD=BC,AB=CD,∴∠EFC=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB==4,在Rt△ABC中,AC==4,∴OA=OC=2,故选:C.【总结归纳】本题考查矩形的性质、折叠轴对称的性质,勾股定理等知识,根据图形直观,求出线段的长是得出答案的前提.8.已知在同一直角坐标系中,二次函数y=ax2+bx和反比例函数y=的图象如图所示,则一次函数y=x﹣b的图象可能是()A.B.C.D.【知识考点】一次函数的图象;反比例函数的图象;二次函数的图象.【思路分析】根据反比例函数图象和二次函数图象经过的象限,即可得出a<0、b>0、c>0,由此即可得出<0,﹣b<0,即可得出一次函数y=x﹣b的图象经过二三四象限,再对照四个选项中的图象即可得出结论.【解题过程】解:∵二次函数开口向下,∴a<0;∵二次函数的对称轴在y轴右侧,左同右异,∴b符号与a相异,b>0;∵反比例函数图象经过一三象限,∴c>0,∴<0,﹣b<0,∴一次函数y=x﹣b的图象经过二三四象限.故选:B.【总结归纳】本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,根据反比例函数图象和二次函数图象经过的象限,找出a<0、b>0、c>0是解题的关键.第Ⅱ卷非选择题(共96分)二、填空题(本大题共6小题,每小题3分,共18分)9.计算:(﹣)×=.【知识考点】二次根式的混合运算.【思路分析】先化简括号内的二次根式,再合并括号内的同类二次根式,最后计算乘法即可得.【解题过程】解:原式=(2﹣)×=×=4,故答案为:4.【总结归纳】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.10.某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么将被录用(填甲或乙).应聘者/项目甲乙学历9 8经验7 6工作态度 5 7【知识考点】加权平均数.【思路分析】根据加权平均数的定义列式计算,比较大小,平均数大者将被录取.【解题过程】解:∵==,==,∴<,∴乙将被录用,故答案为:乙.【总结归纳】本题主要考查加权平均数,若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数.11.如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB 的面积为6.若点P(a,7)也在此函数的图象上,则a=.【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【思路分析】根据反比例函数系数k的几何意义求得k的值,即可求得反比例函数的解析式,代入点P,即可求得a.【解题过程】解:∵AB垂直于x轴,垂足为B,∴△OAB的面积=|k|,即|k|=6,而k>0,∴k=12,∴反比例函数为y=,∵点P(a,7)也在此函数的图象上,∴7a=12,解得a=.故答案为.【总结归纳】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.12.抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是.【知识考点】抛物线与x轴的交点.【思路分析】根据抛物线的解析式和二次函数的性质可以求得抛物线y=2x2+2(k﹣1)x﹣k(k 为常数)与x轴交点的个数,本题得以解决.【解题过程】解:∵抛物线y=2x2+2(k﹣1)x﹣k(k为常数),∴当y=0时,0=2x2+2(k﹣1)x﹣k,∴△=[2(k﹣1)]2﹣4×2×(﹣k)=4k2+4>0,∴0=2x2+2(k﹣1)x﹣k有两个不相等的实数根,∴抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴有两个交点,故答案为:2.【总结归纳】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.13.如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF交AD于点G.若DE=2,OF=3,则点A到DF的距离为.【知识考点】全等三角形的判定与性质;直角三角形斜边上的中线;三角形中位线定理;正方形的性质.【思路分析】根据正方形的性质得到AO=DO,∠ADC=90°,求得∠ADE=90°,根据直角三角形的性质得到DF=AF=EF=AE,根据三角形中位线定理得到FG=DE=1,求得AD=CD=4,过A作AH⊥DF于H,根据相似三角形的性质和勾股定理即可得到结论.【解题过程】解:∵在正方形ABCD中,对角线AC与BD交于点O,∴AO=DO,∠ADC=90°,∴∠ADE=90°,∵点F是AE的中点,∴DF=AF=EF=AE,∴OF垂直平分AD,∴AG=DG,∴FG=DE=1,∵OF=2,∴OG=2,∵AO=CO,∴CD=2OG=4,∴AD=CD=4,过A作AH⊥DF于H,∴∠H=∠ADE=90°,∵AF=DF,∴∠ADF=∠DAE,∴△ADH∽△AED,∴=,∴AE===2,∴=,∴AH=,即点A到DF的距离为,故答案为:.【总结归纳】本题考查了正方形的性质,相似三角形的判定和性质,线段垂直平分线的性质,三角形中位线定理,勾股定理,直角三角形的性质,正确的识别图形是解题的关键.14.如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为.【知识考点】切线的性质;弧长的计算;扇形面积的计算.【思路分析】连接OM、ON,根据半圆分别与AB,AC相切于点M,N.可得OM⊥AB,ON⊥AC,由∠BAC=120°,可得∠MON=60°,得∠MOB+∠NOC=120°,再根据的长为π,可得OM=ON=r=3,连接OA,根据Rt△AON中,∠AON=30°,ON=3,可得AM=AN=,进而可求图中阴影部分的面积.【解题过程】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵的长为π,∴=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=,∴AM=AN=,∴BM+CN=AB+AC﹣(AM+AN)=16﹣2,∴S阴影=S△OBM+S△OCN﹣(S扇形MOE+S扇形NOF)=3×(BM+CN)﹣()=(16﹣2)﹣3π=24﹣3﹣3π.故答案为:24﹣3﹣3π.【总结归纳】本题考查了切线的性质、弧长的计算、扇形面积的计算,解决本题的关键是掌握弧长和扇形面积的计算公式.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)已知:△ABC.求作:⊙O,使它经过点B和点C,并且圆心O在∠A的平分线上.【知识考点】作图—复杂作图.【思路分析】作出∠A的平分线和线段BC的垂直平分线,找到它们的交点,即为圆心O,再以OB为半径画出⊙O,得出答案.【解题过程】解:如图所示:⊙O即为所求.【总结归纳】此题主要考查了复杂作图,正确掌握角平分线和垂直平分线的作法是解题关键.四、解答题(本大题共9小题,共74分)16.(8分)(1)计算:(+)÷(﹣);(2)解不等式组:【知识考点】分式的混合运算;解一元一次不等式组.【思路分析】(1)先计算括号内分式的加减运算,再将除法转化为乘法,最后约分即可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解题过程】解:(1)原式=(+)÷(﹣)=÷=•=;(2)解不等式2x﹣3≥﹣5,得:x≥﹣1,解不等式x+2<x,得:x>3,则不等式组的解集为x>3.【总结归纳】本题考查的是解一元一次不等式组和分式的混合运算,正确求出每一个不等式解集并掌握分式的混合运算顺序和运算法则是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(6分)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形.同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.【知识考点】列表法与树状图法;游戏公平性.【思路分析】用列表法表示所有可能出现的结果情况,进而求出小亮、小颖去的概率,进而判断游戏是否公平.【解题过程】解:用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中配成紫色的有3种,配不成紫色的有3种,∴P(小颖)==,P(小亮)==,因此游戏是公平.【总结归纳】本题考查列表法或树状图法求随机事件的发生的概率,列举出所有可能出现的结果数,是解决问题的前提.18.(6分)如图,在东西方向的海岸上有两个相距6海里的码头B,D,某海岛上的观测塔A距离海岸5海里,在A处测得B位于南偏西22°方向.一艘渔船从D出发,沿正北方向航行至C处,此时在A处测得C位于南偏东67°方向.求此时观测塔A与渔船C之间的距离(结果精确到0.1海里).(参考数据:sin22°≈,cos22°≈,tan22°≈,sin67°≈,cos67°≈,tan67°≈)【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】过点A作AE⊥BD于点E,过点C作CF⊥AE于点F,得矩形CDEF,再根据锐角三角函数即可求出观测塔A与渔船C之间的距离.【解题过程】解:如图,过点A作AE⊥BD于点E,过点C作CF⊥AE于点F,得矩形CDEF,∴CF=DE,根据题意可知:AE=5,∠BAE=22°,∴BE=AE•tan22°=5×=2,∴DE=BD﹣BE=6﹣2=4,∴CF=4,在Rt△AFC中,∠CAF=67°,∴AC==4×=4.33(海里).答:观测塔A与渔船C之间的距离约为4.33海里.【总结归纳】本题考查了解直角三角形的应用﹣方向角问题,解决本题的关键是掌握方向角定义.19.(6分)某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如图的频数直方图和扇形统计图.请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“70~80”这组的百分比m=;(3)已知“80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n名学生测试成绩的中位数是分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数.【知识考点】用样本估计总体;频数(率)分布直方图;扇形统计图;中位数.【思路分析】(1)求出调查人数,和“90﹣100”的人数即可补全频数直方图;(2)用“70﹣80”的频数10除以调查人数50 即可得出m的值;(3)利用中位数的意义,求出中间位置的两个数的平均数,即可得出中位数;(4)样本估计总体,样本中优秀所占的百分比为,因此估计总体1200人的是优秀的人数.【解题过程】解:(1)8÷16%=50(人),50﹣4﹣8﹣10﹣12=16(人),补全频数直方图如图所示:(2)m=10÷50=20%,故答案为:20%;(3)将50个数据从小到大排列后,处在第25、26位的两个数的平均数为=84.5,因此中位数是84.5,故答案为:84.5;(4)1200×=672(人),答:全校1200名学生对海洋科普知识了解情况为优秀的学生有672人.【总结归纳】本题考查频数分布直方图、扇形统计图的意义和制作方法,理解和掌握统计图中的数量关系是正确计算的关键.20.(8分)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?【知识考点】一次函数的应用.【思路分析】(1)根据函数图象中的数据,可以求得游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并计算出同时打开甲、乙两个进水口的注水速度;(2)根据题意和(1)中的结果,可以得到甲进水管的进水速度,从而可以求得单独打开甲进水口注满游泳池需多少小时.【解题过程】解:(1)设y与t的函数解析式为y=kt+b,,解得,,即y与t的函数关系式是y=140t+100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m3/h);(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.∴甲进水口进水的速度是乙进水口进水速度的,∵同时打开甲、乙两个进水口的注水速度是140m3/h,∴甲进水口的进水速度为:140÷(+1)×=60(m3/h),480÷60=8(h),即单独打开甲进水口注满游泳池需8h.【总结归纳】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.。
2015淄博中考数学试题及答案(word版)

山东省淄博市2015年中考数学试卷一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的.每小题4分,错选、不选或选出的答案超过一个,均记零分. 1.(4分)(2015•淄博)比﹣2015小1的数是( ) A. ﹣2014 B .2014 C .﹣2016 D .2016 2.(4分)(2015•淄博)下列式子中正确的是( )A.9312-=⎪⎭⎫ ⎝⎛- B.()623-=- C.()222-=- D.()130=-3.(4分)(2015•淄博)将图1围成图2的正方体,则图1中的红心“ ”标志所在的正方形是正方体中的( )A . 面CDHEB . 面BCEFC . 面ABFGD . 面ADHG4.(4分)(2015•淄博)已知215x -=,215y +=, 则22y xy x ++的值为( )A . 2B . 4C . 5D . 7 图1 图25.(4分)(2015•淄博)已知⎩⎨⎧==1y 2x 是二元一次方程组⎩⎨⎧=-=+1my nx 8ny mx 的解,则n m 2-的平方根为( )A . ±2B .2C . 2±D .26.(4分)(2015•淄博)某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率( ) A.31 B.21 C.32 D.43 7.(4分)(2015•淄博)若锐角α满足cos α<22且tan α<3,则α的范围是( ) A . 30°<α<45° B . 45°<α<60° C . 60°<α<90° D . 30°<α<60° 8.(4分)(2015•淄博)如图,在四边形ABCD 中,DC ∥AB ,CB ⊥AB ,AB=AD ,CD=21AB ,点E 、F 分别为AB 、AD 的中点,则△AEF 与多边形BCDFE 的面积之比为( ) A.71 B.61 C.51 D.419.(4分)(2015•淄博)如图,在菱形ABCD 和菱形BEFG 中,点A 、B 、E 在同一直线上,P 是线段DF 的中点,连接PG ,PC .若∠ABC=∠BEF=60°,则PCPG=( ) A .2 B .3 C .22 D .33 10.(4分)(2015•淄博)若关于x 的方程2x2mx 2x 2=-++-的解为正数,则m 的取值范围是( ) A . m <6 B . m >6 C . m <6且m ≠0 D . m >6且m ≠811.(4分)(2015•淄博)如图是一块△ABC 余料,已知AB=20cm ,BC=7cm ,AC=15cm ,现将余料裁剪成一个圆形材料,则该圆的最大面积是( )A .πcm 2B . π2cm 2C . π4cm 2D .π8cm 2 12.(4分)(2015•淄博)如图,△ABC 中,∠ACB=90°,∠A=30°,AB=16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q .设AP=x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致是( )A. B. C. D.第8题 第11题 第12题二、填空题:本题共5小题,满分15分.只要求填写最后结果,每小题填对得4分.13.(3分)(2015•淄博)计算:=⨯2731. 14.(3分)(2015•淄博)如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA= 度.15.(3分)(2015•淄博)如图,经过点B (﹣2,0)的直线y=kx+b 与直线y=4x+2相交于点A (﹣1,﹣2),则不等式4x+2<kx+b <0的解集为 .16.(3分)(2015•淄博)现有一张圆心角为108°,半径为40cm 的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为 .17.(3分)(2015•淄博)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为3x 2x y 2--=,AB 为半圆的直径,则这个“果圆”被y 轴截得的弦CD 的长为 .第14题 第15题 第16题 第17题 三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.(4分)(2015•淄博)解不等式组:⎩⎨⎧≤-+1-x x 281>3x 2,并把解集在数轴上表示出来.19.(4分)(2015•淄博)如图,在△ABC 中,AB=4cm ,AC=6cm .(1)作图:作BC 边的垂直平分线分别交与AC ,BC 于点D ,E (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)的条件下,连结BD ,求△ABD 的周长.20.(9分)(2015•淄博)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?21.(10分)(2015•淄博)某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达6分以上为合格,达到9分以上(含9分)为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如下. (1)补充完成下列的成绩统计分析表:组别 平均分 中位数方差 合格率 优秀率 甲 6.73.41 90% 20% 乙7.580%10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.22.(10分)(2015•淄博)如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD 和BC 表示两根较粗的钢管,EG 表示座板平面,EG 和BC 相交于点F ,MN 表示地面所在的直线,EG ∥MN ,EG 距MN 的高度为42cm ,AB=43cm ,CF=42cm ,∠DBA=60°,∠DAB=80°.求两根较粗钢管AD 和BC 的长.(结果精确到0.1cm .参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin60°≈0.87,cos60°≈0.5,tan60°≈1.73)图1 图223.(10分)(2015•淄博)如图1,在Rt △ACB 中,∠ACB=90°,AC=3,BC=4,有一过点C 的动圆⊙O 与斜边AB 相切于动点P ,连接CP .(1)当⊙O 与直角边AC 相切时,如图2所示,求此时⊙O 的半径r 的长;(2)随着切点P 的位置不同,弦CP 的长也会发生变化,试求出弦CP 的长的取值范围. (3)当切点P 在何处时,⊙O 的半径r 有最大值?试求出这个最大值.图1 图224.(10分)(2015•淄博)(1)抛物线1m :11211c x b x a y ++=中,函数1y 与自变量x 之间的部分对应值如表:x… ﹣2 ﹣1 1 2 4 5 … y…﹣543﹣5﹣12…设抛物线m1的顶点为P ,与y 轴的交点为C ,则点P 的坐标为 ,点C 的坐标为 . (2)将设抛物线m1沿x 轴翻折,得到抛物线2m :22222c x b x a y ++=,则当x =﹣3时,2y = . (3)在(1)的条件下,将抛物线1m 沿水平方向平移,得到抛物线3m .设抛物线1m 与x 轴交于A ,B 两点(点A 在点B 的左侧),抛物线3m 与x 轴交于M ,N 两点(点M 在点N 的左侧).过点C 作平行于x 轴的直线,交抛物线3m 于点K .问:是否存在以A ,C ,K ,M 为顶点的四边形是菱形的情形?若存在,请求出点K 的坐标;若不存在,请说明理由.。
2015青岛中考数学答题卡

三、作图题(本题满分4分)
用圆规、直尺作图,不写作法,但要保留作图痕迹.
结论:
四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分,每题4分)
(1)化简:n
n n n n 1
)12(2-÷++;
(2) 17.(本小题满分6分)
(2)
(3)
18.(本小题满分6分)
19.(本小题满分6分)
20.(本小题满分8分)
(1
)
(1)
21.(本小题满分8分)22.(本小题满分10分)
(1)
(2)
(3)
23.(本小题满分10分)
(1)
(2)(只需把结果填在表②中)
(设n 分别等于14-k 、k 4、14+k 、24+k ,其中k 是整数,把结果填在表③中)
问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形? (要求写出解答过程)
其中面积最大的等腰三角形每个腰用了__________________根木棒。
(只填结果) 24.(本小题满分12分)
(
1)
(2)
(3)
(4)。
2023年青岛市中考数学试卷及答案(Word解析版)
2023年青岛市中考数学试卷及答案(Word
解析版)
2023年青岛市中考数学试卷及答案(Word解析版)
试卷概述
本文档为2023年青岛市中考数学试卷及答案的Word解析版,旨在为参加中考的学生提供参考和复材料。
试卷内容
试卷包含以下几个部分:
1. 选择题:包括单选题和多选题,涵盖数学的各个知识点;
2. 填空题:要求学生填写正确的答案或计算结果;
3. 解答题:提供了一些需要详细解答的问题。
试卷答案
文档中附有答案部分,供学生自行核对和参考。
答案部分包括选择题的正确选项和解答题的详细解答过程。
学生可以通过对照答案来检查自己的答题情况,加深对知识点的理解。
使用方法
注意事项
1. 本文档仅供参考和复使用,请勿用于违规行为;
2. 在解答题时,请注意书写规范,尽量清晰地表达思路和计算过程;
3. 在核对答案时,如遇到对答案有疑问或发现错误的情况,请与老师进行讨论和确认。
祝愿大家在2023年的中考中取得优异成绩!加油!。
2015青岛市 市北期中初三数学
2015-2016市北区初三期中数学一、选择题(满分24分,共8道小题)1、下列方程是一元二次方程的是( )A 、12=+y xB 、32)1(22+=-x x xC 、022=-xD 、413=+xx 2、一个可以自由转动的转盘如图所示,小明已经任意转动这个转盘两次,每次转盘停止转动后指针都落在“蓝色”的区域内,那么从概率的角度分析,小明第三次转动这个转盘,转盘停止时,( )A 、转出的结果一定是“蓝色”B 、转出的结果为“蓝色”的可能性大于“红色”C 、转出的结果为“红色”的可能性大于“蓝色”D 、转出的结果为“蓝色”和“红色”的可能性一样大3、如果342=+y y x ,则yx =( ) A 、61 B 、32C 、67D 、6 4、方程042=+-ax x 的两个根相等,则a 等于( )A 、2B 、4±C 、-4D 、4 5、将矩形ABCD 密铺在长4cm ,宽2cm 的矩形纸片右侧,若组成新矩形和原矩形相似,则AB=( )cmA 、2B 、6C 、8D 、117-6、连掷两枚质地均匀的骰子,它们的点数相同的概率为( ) A 、21 B 、31 C 、32 D 、617、如图,菱形ABCD 的周长为24cm ,对角线AC 、BD 相交于点O ,E 是AD 的中点,连接OE ,则线段OE 的长为( )A 、3cmB 、4cmC 、2.5cmD 、2cm8、如图,点A 、B 、C 、D 的坐标分别为(1,0)、(5,0)、(3,2)、(4,1),如果以点C 、D 、E 为顶点的三角形与ΔABC 相似,则点E 的坐标可能是下列的( )①(2,1) ②(3,1) ③(4,2) ④(5,2)A 、①③B 、②④C 、①②③D 、①②③④二、填空题(本题满分18分,共6道小题)9、某纪念品原价168元,连续两次降价x %后,售价为128元,根据题意可列方程为10、一个直角三角形斜边上的高和中线分别是5cm 和6cm ,则它的面积是11、如图,给一幅长8m,宽5m 的矩形风景画(图中阴影部分)镶一个画框,若设画框的宽均为x ,装好画框后总面积为702m ,则根据题意可列方程为12、小亮希望测出电线杆AB 的高度,他在电线杆旁的D 点处立一标杆,标杆的影子DE 与电线杆的影子BE 部分重叠(即E 、C 、A 在一条直线上),量的BD=2ED,CD=1.5米,则电线杆AB 的高度为米。
专题16 压轴题(第01期)-2015年中考数学试题分项版解析汇编(各省统一命题版)(解析版)(2)
一、解答题:1.(2015.上海市,第24题,12分) (本题满分12分,每小题满分各4分)已知在平面直角坐标系xOy 中(如图),抛物线24y ax =-与x 轴的负半轴相交于点A ,与y 轴相交于点B ,25AB =.点P 在抛物线上,线段AP 与y 轴的正半轴交于点C ,线段BP 与x 轴相交于点D .设点P 的横坐标为m .(1)求这条抛物线的解析式;(2)用含m 的代数式表示线段CO 的长; (3)当3tan 2ODC ∠=时,求PAD ∠的正弦值.11xyO2.(2015.上海市,第25题,14分) (本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y . (1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.OPQ F EDCBA备用图O DCBA【答案】(1)通过证明AOP ∆≌ODQ ∆,过程略;(2)236030050(10)13x x y x x -+=<<;(3)8OP =∴2360300x x y x-+=,考点:1.三角形全等的判定及性质;2.锐角三角函数的综合应用;3.圆的综合应用.3. (2015.河南省,第23题,11分)(11分)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PF⊥BC于点F.点D 、E 的坐标分别为(0,6),(-4,0),连接PD ,PE ,DE. (1)请直接写出抛物线的解析式;(2)小明探究点P 的位置发现:当点P 与点A 或点C 重合时,PD 与PF 的差为定值. 进而猜想:对于任意一点P ,PD 与PF 的差为定值. 请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE 的面积为整数”的点P 记作“好点”,则存在多个“好点”,且使△PDE 的周长最小的点P 也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE 的周长最小时“好点”的坐标.PE OF C DBA 图xy∴PD=812x +2, ∴PD-PF=812x +2-812x =2,∴猜想正确.4. (2015.重庆市A 卷,第26题,12分)如图1,在平面直角坐标系中,抛物线233334y x x =-++交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴于点W ,顶点为C ,抛物线的对称轴与x 轴的交点为D 。
2016年山东省青岛市市北区中考数学一模试卷(解析版)
2016年山东省青岛市市北区中考数学一模试卷(解析版)DA.0个B.1个C.2个D.3个4.据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米5.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15°B.30°C.45°D.60°6.当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.47.如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③D.①②③④8.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A. B.C.D.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.计算:=______.10.在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是______.11.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为______.12.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为______.13.如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为______.14.将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2=______;S n=______.(用含n 的式子表示)三、解答题(本大题共10小题,满分78分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:______.16.(1)化简:(2)解不等式组:.17.某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.18.某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.运动员平均数众数中位数方差甲601.8 600 600 50.56乙599.3 ______ ______ 284.21 (2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?19.某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)20.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:进价(元/千售价(元/千克)克)苹果 5 8丑桔9 13(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?21.如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.22.某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC 的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌高拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.23.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽______.∴=,即DH2=AD×DE.又∵DE=DC∴DH2=______.即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的______(填写图形各称),再转化为等积的正方形.如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.(不要求写具体作法,但要保留作图痕迹)(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为n﹣1边形,…,直至转化为等积三角形,从而可以化方.如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).24.已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P 从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD于点E,交AC于点F,连接PQ,设运动时间为t(s).(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.2016年山东省青岛市市北区中考数学一模试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.的绝对值是()A.﹣6 B.6 C.﹣D.【考点】绝对值.【分析】根据计算绝对值的方法可以得到的绝对值,本题得以解决.【解答】解:∵,∴的绝对值是,故选D.2.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图,(两图都不完整),则下列结论中正确的是()A.步行人数为30人 B.骑车人数占总人数的10%C.该班总人数为50人 D.乘车人数是骑车人数的40%【考点】频数(率)分布直方图;扇形统计图.【分析】根据乘车的人数和所占的百分比求出总人数,用总人数乘以步行所占的百分比求出步行的人数,用骑车的人数除以总人数求出骑车人数占总人数的百分比,用乘车的人数除以骑车人数,求出乘车人数是骑车人数的倍数.【解答】解:A、步行的人数有:×30%=15人,故本选项错误;B、骑车人数占总人数10÷=20%,故本选项错误;C、该班总人数为=50人,故本选项正确;D、乘车人数是骑车人数的=2.5倍,故本选项错误;故选:C.3.下列四个图形能围成棱柱的有几个()A.0个B.1个C.2个D.3个【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:第一个图形缺少一个面,不能围成棱柱;第三个图形折叠后底面重合,不能折成棱柱;第二个图形,第四个图形都能围成四棱柱;故选:C.4.据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:由题意可得:30×10﹣9=3.0×10﹣8.故选:B.5.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15°B.30°C.45°D.60°【考点】切线的性质;含30度角的直角三角形.【分析】连接OB,构造直角△ABO,结合已知条件推知直角△ABO的直角边OB等于斜边OA 的一半,则∠A=30°.【解答】解:如图,连接OB.∵AB与⊙O相切于点B,∴∠ABO=90°.∵OB=OC,,∴∠C=∠OBC,OB=OA,∴∠A=30°,∴∠AOB=60°,则∠C+∠OBC=60°,∴∠C=30°.故选B.6.当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.4【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.【分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大,二次函数根据对称轴及开口方向判断增减性.【解答】解:①为一次函数,且a>0时,函数值y总是随自变量x增大而增大;②为一次函数,且a<0时,函数值y总是随自变量x增大而减小;③为反比例函数,当x>0或者x<0时,函数值y随自变量x增大而增大,当﹣2<x<2时,就不能确定增减性了;④为二次函数,对称轴为x=﹣3,开口向上,故当﹣2<x<2时,函数值y随自变量x增大而增大,符合题意的是①④,故选B.7.如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③D.①②③④【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形性质得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根据SAS证△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根据平行线的判定推出即可,再根据等腰三角形性质求出∠BAP=30°,求出∠PMA=90°,即可得出答案.【解答】证明:如图,∵△ABC和△APQ是等边三角形,∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,∴∠BAP=∠CAQ=60°﹣∠PAC,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),∴∠ACQ=∠B=60°=∠BAC,故②正确,∴AB∥CQ,故①正确,∵∠APQ=∠ACQ=60°,∠PAC=∠PAC,∴△APM∽△ACP,∴,∴AP2=AC•AM,故③正确,∵BP=PC,∴∠BAP=30°,∴∠PAC=30°,∵∠APC=60°,∴∠AMP=90°,∴PQ⊥AC,故④正确.故选D.8.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A. B.C.D.【考点】二次函数图象与系数的关系;反比例函数的图象.【分析】首先观察抛物线y=ax2+bx+c图象,由抛物线的对称轴的位置由其开口方向,即可判定﹣b的正负,由抛物线与x轴的交点个数,即可判定﹣4ac+b2的正负,则可得到一次函数y=﹣bx ﹣4ac+b2的图象过第几象限,由当x=1时,y=a+b+c<0,即可得反比例函数y=过第几象限,继而求得答案.【解答】解:∵抛物线y=ax2+bx+c开口向上,∴a>0,∵抛物线y=ax2+bx+c的对称轴在y轴右侧,∴x=﹣>0,∴b<0,∴﹣b>0,∵抛物线y=ax2+bx+c的图象与x轴有两个交点,∴△=b2﹣4ac>0,∴一次函数y=﹣bx﹣4ac+b2的图象过第一、二、三象限;∵由函数图象可知,当x=1时,抛物线y=a+b+c <0,∴反比例函数y=的图象在第二、四象限.故选D.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.计算:=﹣.【考点】二次根式的混合运算.【分析】先把各二次根式化为最简二次根式,然后把分子合并后进行二次根式的除法运算.【解答】解:原式===﹣.故答案为﹣.10.在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是10.【考点】概率公式.【分析】根据摸到白球的概率为,列出方程求解即可.【解答】解:∵在一个不透明的布袋中装有5个白球和n个黄球,∴共有(5+n)个球,根据古典型概率公式知:P(白球)=,解得n=10.故答案为:10.11.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为.【考点】由实际问题抽象出分式方程.【分析】设原来的平均速度为x千米/时,列车大提速后平均速度为x+70千米/时,根据走过相同的距离时间缩短了3小时,列方程即可.【解答】解:设原来的平均速度为x千米/时,可得:,故答案为:12.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).【考点】位似变换.【分析】先找一对应点是如何变化,那么所求点也符合这个变化规律.【解答】解:小鱼最大鱼翅的顶端坐标为(5,3),大鱼对应点坐标为(﹣10,﹣6);小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).13.如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为.【考点】扇形面积的计算;切线的性质.【分析】由AB为圆的切线,得到OC⊥AB,再由OA=OB,利用三线合一得到C为AB中点,且OC为角平分线,在直角三角形AOC中,利用30度所对的直角边等于斜边的一半求出OC 的长,利用勾股定理求出AC的长,进而确定出AB的长,求出∠AOB度数,阴影部分面积=三角形AOB面积﹣扇形AOB面积,求出即可.【解答】解:连接OC,∵AB与圆O相切,∴OC⊥AB,∵OA=OB,∴AC=BC=AB=,∴sin∠AOC==,∴∠AOC=60°,∴∠AOB=120°∴OC=OA=,∴S 阴影=S△AOB﹣S扇形=×3×﹣,故图中阴影部分的面积为,故答案为:.14.将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2=;S n=.(用含n的式子表示)【考点】相似三角形的判定与性质;等腰直角三角形.【分析】连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1,依题意可知△B1C1B2是等腰直角三角形,知道△B1B2D1与△C1AD1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AC2=1:2,所以B2D2:D2C2=1:2,进而S2的值可求出,同样的道理,即可求出S3,S4…S n 的值.【解答】解:∵n+1个边长为1的等腰三角形有一条边在同一直线上,∴S△AB1C1=×1×1=,连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1∵∠B1C1B2=90°∴A1B1∥B2C1∴△B1C1B2是等腰直角三角形,且边长=1,∴△B1B2D1∽△C1AD1,∴B1D1:D1C1=1:1,∴S1=×=,同理:B2B3:AC2=1:2,∴B2D2:D2C2=1:2,∴S2=×=,同理:B3B4:AC3=1:3,∴B3D3:D3C3=1:3,∴S3=×=,∴S4=×=,…∴S n=故答案为:;.三、解答题(本大题共10小题,满分78分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:△ABC为等腰直角三角形.【考点】作图—复杂作图.【分析】先在一直线上截取AB=a,再过A作AB的垂线,接着在此垂线上截取AC=a,则△ABC满足条件.【解答】解:如图,△ABC为所作,△ABC为等腰直角三角形.故答案为△ABC为等腰直角三角形.16.(1)化简:(2)解不等式组:.【考点】分式的加减法;解一元一次不等式组.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)原式=+===;(2),由①得:x>,由②得:x≤3,则不等式组的解集为<x≤3.17.某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.【考点】概率公式.【分析】(1)根据转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵得:顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6),再计算即可;(2)根据(1)的结果与10比较即可.【解答】解:(1)顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6)=(元),答:顾客任意转动一次转盘的平均收益是元;(2)∵<10,∴如果是餐厅经理,希望顾客参与游戏,这样能减少支出.18.某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.运动员平均数众数中位数方差甲601.8 600 600 50.56乙599.3 618596.5284.21 (2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?【考点】折线统计图;中位数;众数;方差.【分析】(1)根据中位数、众数的概念求值即可;(2)答案不惟一,如:甲的成绩比较稳定,波动小;乙成绩不稳定,波动较大.【解答】解:(1)根据折线统计图知乙10次成绩从小到大依次排列为:574,580,585,590,595,598,613,618,618,624,则其众数为:618,中位数为:=596.5;(2)甲的平均水平和跳远在600及以上要优于乙且甲的方差小说明甲成绩比医德成绩稳定,乙跳远的最好成绩大于甲的最好成绩.故答案为:(1)618,596.5.19.某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)【考点】解直角三角形的应用.【分析】通过构造直角三角形来解答,过A作AD⊥MN于D,就有了∠ABN、∠ACN的度数,又已知AE的长,可在直角三角形ABE、ACE 中分别求出BE、CE的长,BC就能求出.【解答】解:如图,过A作AD⊥MN于点D,在Rt△ACD中,tan∠ACD==,CD=5.6(m),在Rt△ABD中,tan∠ABD==,BD=7(m),则BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m.20.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:进价(元/千售价(元/千克)克)苹果 5 8丑桔9 13(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?【考点】一元一次不等式的应用;一元一次方程的应用.【分析】(1)设购进苹果x千克,则购进丑桔千克,根据进货钱数=单价×数量,列出关于x的一元一次方程,解方程即可得出结论;(2)设购进苹果x千克时售完这批水果将获利y元,由丑桔的进货量不超过苹果进货量的3倍可列出关于x的一元一次不等式,解不等式可找出x的取值范围,再根据总利润=每千克利润×千克数可找出y关于x的函数关系式,根据函数的性质即可解决最值问题.【解答】解:(1)设购进苹果x千克,则购进丑桔千克,依题意得:5x+9=1000,解得:x=65,则140﹣65=75(千克),答:水果店购进苹果65千克,丑桔75千克.(2)设购进苹果x千克时售完这批水果将获利y元,由题意得:140﹣x≤3x,解得:x≥35.获得利润y=(8﹣5)x+(13﹣9)=﹣x+560.故当x=35时,y有最大值,最大值为525元.140﹣35=105(千克).答:购进苹果35千克,丑桔105千克时水果店在销售完这批水果时获利最多.21.如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【考点】相似三角形的判定与性质;直角三角形斜边上的中线;平行四边形的判定与性质;菱形的判定.【分析】(1)先连接DF,判定四边形ABDF是平行四边形,再根据平行四边形的性质,得出DE=AE即可;(2)先判定四边形ADCF是平行四边形,再根据直角三角形的性质,得出AD=CD,最后判断四边形ADCF是菱形.【解答】(1)连接DF,∵AD是BC边上的中线,∴DB=BC,∵AF=BC,∴DB=AF,又∵AF∥BC,∴四边形ABDF是平行四边形,∴DE=AE即E是AD的中点;(2)四边形ADCF是菱形.∵AD是BC边上的中线,∴DC=BC,∵AF=BC,∴DC=AF,又∵AF∥BC,∴四边形ADCF是平行四边形,又∵AB⊥AC,AD是BC边上的中线,∴AD=BC=CD,∴四边形ADCF是菱形.22.某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC 的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌高拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.【考点】二次函数的应用.【分析】(1)根据题意可设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入求得a、c的值即可求解;(2)令x=5求得y的值,将y的值减去0.35可得广告牌最大高度.【解答】解:(1)根据题意,设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入,得:,解得:.故抛物线解析式为:y=﹣x2+5;(2)当x=5时,y=﹣×25+5=3.75(m),3.75﹣0.35=3.4(m).答:矩形广告牌的最大高度为3.4m.23.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽△HDE.∴=,即DH2=AD×DE.又∵DE=DC∴DH2=AD•DC.即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的▱ABDE(填写图形各称),再转化为等积的正方形.如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.(不要求写具体作法,但要保留作图痕迹)(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为n﹣1边形,…,直至转化为等积三角形,从而可以化方.如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).【考点】四边形综合题.【分析】(1)通过直角△ADH和直角△HDE中,∠AHD=∠HED证明△ADH∽△HDE,得DH2=AD×DE,再根据等量代换得出正方形DFGH与矩形ABCD等积;(3)作法:①作BC的中垂线,取BD中点,作▱ABDE;②过B作BF⊥AE,垂足为F,作矩形BDHF;③在直线AE在取BF=FM,以HM 为直径,以点F为圆心作半圆,与直线BF交于点G;④则线段FG就是所求的正方形的一边;(4)作法:①连接BD,②过A作l∥BD,③延长CD交l于E,④连接BE,则S△BEC=S四边形ABCD.【解答】解:(1)答案为:△HDE,AD•DC;(3)如图2,答案为:▱ABDE;(4)如图3,则△BEC的面积=四边形ABCD 的面积;24.已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P 从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD于点E,交AC于点F,连接PQ,设运动时间为t(s).(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)利用相似三角形的判断和性质,表示出BQ=t,QH=t,PF=t,相似三角形的面积比等于相似比的平方,S△CPF=t2,从而y用三角形的面积的差表示出,即可;(2)假设存在,建立方程,求出方程的解,全不符合题意,得到不存在;(3)假设存在,建立方程,求出方程的解符合题意,即存在时间t,使PQ⊥PE;(4)假设存在,由线段PQ的垂直平分线恰好经过点B,得到BQ=BP,建立方程,求出t,即可.【解答】解:如图1,作AG⊥BC于G,作QH ⊥BC于H,∴QH∥AG,∴=,∵AG⊥BC,AB=AC=10,BC=12,∴BG=BC=×12=6,AG=8,∵BQ=t,∴=,∴QH=t,∵PE∥AB,∴=,∴=,∴PF=t,∵BC=12,AG=8,∴S△ABC=×BC×AG=48,(1)∵PE∥AB,∴=()2==,∴S△CPF=×S△ABC=×48=t2,∵BP=BC﹣PC=12﹣t,QH=t,∴S△BPQ=BP×QH=×(12﹣t)×t,∴y=S四边形AQPE=S△ABC﹣S△BPQ﹣S△CPF=48﹣×(12﹣t)×t﹣t2=﹣t2﹣t+48,(0<t<10)(2)解:假设存在某一时刻t,使四边形AQPE 的面积为平行四边形ABCD面积的一半,由(1)由S四边形AQPE=﹣t2﹣t+48,∴=﹣t2﹣t+48=48,∴t=0(舍)或t=﹣60(舍),∴假设不成立,∴不存在这样某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半;(3)解:假设存在某一时刻t,使PQ⊥PE,∵PE∥AB,∴∠BQP=90°,∴∠BQP=∠AGB,∠B=∠B,∴△BQP∽△BGA,∴,∵BG=6,BQ=t,BP=12﹣t,AB=10,∴=,∴t=,∴存在t=,使PQ⊥PE;(4)假设存在某一时刻t,使线段PQ的垂直平分线恰好经过点B,∴BQ=BP,当0<t<10时,∵BP=12﹣t,BQ=t,∴12﹣t=t,∴t=6,∴存在t=6,使线段PQ的垂直平分线恰好经过点B,当10≤t<12时,∵BQ=20﹣t,BP=12﹣t,∴20﹣t=12﹣t,明显等式不成立,∴不存在某一时刻t,使线段PQ的垂直平分线恰好经过点B,即:存在t=6,使线段PQ的垂直平分线恰好经过点B.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 24 页 2015年山东省青岛市中考数学试卷 一、选择题(本题满分24分,共有8小题,每小题3分)下列每小题都给出标号为A,B,C,D的四个结论,其中只有一个是正确的 1.(3分)(2015•青岛)的相反数是( ) A.﹣ B. C. D. 2
考点: 实数的性质. 分析: 根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可. 解答: 解:根据相反数的含义,可得 的相反数是:﹣. 故选:A. 点评: 此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.
2.(3分)(2015•青岛)某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s用科学记数法可表示为( ) A. 0.1×10﹣8s B. 0.1×10﹣9s C. 1×10﹣8s D. 1×10﹣9s 考点: 科学记数法—表示较小的数. 分析: 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,
与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 解答: 解:0.000 000 001=1×10﹣9,
故选:D. 点评: 本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<
10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
3.(3分)(2015•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是( ) 第 2 页 共 24 页
A. B. C. D. 考点: 中心对称图形;轴对称图形. 分析: 根据轴对称图形与中心对称图形的概念求解. 解答: 解:A、不是轴对称图形,是中心对称图形,故此选项错误; B、是轴对称图形,又是中心对称图形,故此选项正确; C、是轴对称图形,不是中心对称图形,故此选项错误; D、是轴对称图形,不是中心对称图形,故此选项错误. 故选:B. 点评: 此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.
4.(3分)(2015•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=( )
A. B. 2 C. 3 D.+2 考点: 角平分线的性质;含30度角的直角三角形. 分析: 根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得. 解答: 解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°, ∴CD=DE=1, 又∵直角△BDE中,∠B=30°, ∴BD=2DE=2, ∴BC=CD+BD=1+2=3. 故选C. 第 3 页 共 24 页
点评: 本题考查了角的平分线的性质以及直角三角形的性质,30°的锐角所对的直角边等于斜边的一半,理解性质定理是关键.
5.(3分)(2015•青岛)小刚参加射击比赛,成绩统计如下表: 成绩(环) 6 7 8 9 10 次数 1 3 2 3 1 关于他的射击成绩,下列说法正确的是( ) A.极差是2环 B.中位数是8环 C.众数是9环 D.平均数是9环 考点: 众数;加权平均数;中位数;极差. 分析: 根据极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,以及众数是出现次数最多的数,中位数是按大小顺序排列后,最中间的一个即是中位数,所有数据的和除以数据个数即是平均数,分别求出即可. 解答: 解:A、极差是10﹣6=4环,故本选项错误; B、把数从小到大排列起来;6,7,7,7,8,8,9,9,9,10,位于中间的两个数都是8,所以中位数是(8+8)÷2=8,故本选项正确; C、7和9都出现了3次,次数最多,所以众数是7环和9环,故本选项错误; D、平均数=(6+7×3+8×2+9×3+10)=8,故本选项错误; 故选:B. 点评: 此题主要考查了极差,平均数,众数与中位数,解决问题的关键是正确把握这几种数概念的区别与联系.
6.(3分)(2015•青岛)如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=( )
A. 30° B. 35° C. 45° D.60° 第 4 页 共 24 页
考点: 切线的性质;正多边形和圆. 分析: 连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理∠PAB. 解答: 解:连接OB,AD,BD, ∵多边形ABCDEF是正多边形, ∴AD为外接圆的直径, ∠AOB==60°,
∴∠ADB=∠AOB=×60°=30°. ∵直线PA与⊙O相切于点A, ∴∠PAB=∠ADB=30°, 故选A.
点评: 本题主要考查了正多边形和圆,切线的性质,作出适当的辅助线,利用弦切角定理是解答此题的关键.
7.(3分)(2015•青岛)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为( )
A. 4 B. 4 C. 4 D.28 考点: 菱形的性质;三角形中位线定理. 分析: 首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求第 5 页 共 24 页
得边长,得出周长即可. 解答: 解:∵E,F分别是AB,BC边上的中点,EF=,
∴AC=2EF=2, ∵四边形ABCD是菱形, ∴AC⊥BD,OA=AC=,OB=BD=2,
∴AB==, ∴菱形ABCD的周长为4. 故选:C. 点评: 此题考查菱形的性质,三角形的中位线定理,勾股定理,掌握菱形的性质是解决问题的关键.
8.(3分)(2015•青岛)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是( )
A. x<﹣2或x>2 B. x<﹣2或0<x<2 C.﹣2<x<0或0<x<﹣2 D. ﹣2<x<0或x>2 考点: 反比例函数与一次函数的交点问题. 分析: 先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论. 解答: 解:∵反比例函数与正比例函数的图象均关于原点对称, ∴A、B两点关于原点对称, ∵点A的横坐标为2, ∴点B的横坐标为﹣2, ∵由函数图象可知,当﹣2<x<0或x>2时函数y1=k1x的图象在y2=的第 6 页 共 24 页
上方, ∴当y1>y2时,x的取值范围是﹣2<x<0或x>2. 故选D.
点评: 本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y2时x的取值范围是解答此题的关键.
二、填空题(本题满分18分,共有6小题,每小题3分) 9.(3分)(2015•青岛)计算:3a3•a2﹣2a7÷a2= a5 . 考点: 整式的混合运算. 分析: 根据整式的混合运算顺序,首先计算乘法和除法,然后计算减法,即可求出算式3a3•a2﹣2a7÷a2的值是多少. 解答: 解:3a3•a2﹣2a7÷a2
=3a5﹣2a5 =a5 故答案为:a5. 点评: (1)此题主要考查了整式的混合运算,要熟练掌握,解答此题的关键是要明确:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似. (2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加. (3)此题还考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是第 7 页 共 24 页
什么,指数是什么. 10.(3分)(2015•青岛)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是 (6,1) .
考点: 坐标与图形性质. 分析: 先写出点A的坐标为(6,3),横坐标保持不变,纵坐标分别变为原来的,即可判断出答案. 解答: 解:点A变化前的坐标为(6,3), 将横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是(6,1), 故答案为(6,1). 点评: 此题考查了坐标与图形性质的知识,根据图形得到点A的坐标是解答本题的关键.
11.(3分)(2015•青岛)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为 s= . 考点: 根据实际问题列反比例函数关系式. 分析: 利用长方体的体积=圆柱体的体积,进而得出等式求出即可. 解答: 解:由题意可得:sh=3×2×1, 则s=.
故答案为:s=.