极坐标与参数方程测试题(精)

合集下载

专题12-1 参数方程与极坐标归类-2023年高考数学一轮复习热点题型(全国通用)(原卷版)

专题12-1 参数方程与极坐标归类-2023年高考数学一轮复习热点题型(全国通用)(原卷版)

【提分秘籍】
基本规律
极坐标一线两点(一般直线或射线过极点):
| AB | |2 -1|=|B A(| 若是韦达定理型,则= 2 +1 2 -421)
【变式演练】
在平面直角坐标系中,曲线
C1
的参数方程为
x y
3 cos 2 sin

为参数),以
O
为极点,x
,求
AB
.
【题型二】参数方程难点 1:万能代换型消参
【典例分析】
在直角坐标系
xOy
中,曲线
C
的参数方程为
x
1 1
t t
2 2

(t
为参数).以坐标原点
O
为极点,x
轴的
y
1
4t t
2
正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 2 cos 3 sin 11 0 .
(1)求 C 和 l 的直角坐标方程;(2)求 C 上的点到 l 距离的最小值.
三、极坐标体系弦长公式
(1)一线两点(一般直线(射线)过极点
| AB | |2 -1|=|B A(| 若是韦达定理型,则= 2 +1 2 -421)
(2)两线两点:余弦定理 | AB |2 =22 +12 -221 co(s 2 -1)
【变式演练】
在直角坐标系
xOy
中,曲线 C1 的参数方程为
l
的极坐标方程为
sin
3
2
.
(1)求曲线 C 的普通方程和直线 l 的直角坐标方程; (2)设直线 l 与 y 轴的交点为 P,经过点 P 的动直线 m 与曲线 C 交于 A,B 两点,证明: PA PB 为定值.

16.第三期 极坐标与参数方程 (试题)

16.第三期 极坐标与参数方程 (试题)
2 直线 l 交圆 C 于 A , B 两点, P 为 AB 中点. (1)求点 P 轨迹的极坐标方程; (2)若 | AB | | OP | 3 ,求 的值.
7
2.(惠州市 2020 届高三第三次调研考试,理 22)在平面直角坐标系 xOy 中,以坐标原点 O 为极点, x 轴的
正半轴为极轴建立极坐标系,曲线 M 的极坐标方程为 2 cos ,若极坐标系内异于 O 的三点 A 1, ,
C2
的极坐标方程为
2
3
9 2cos2.
.
(1)写出 C1 的普通方程和 C2 的直角坐标方程;
1
(2)若 C1 与 y 轴交于点 M , C1 与 C2 相交于 A 、 B 两点,求 | MA | | MB | 的值.
x 1 t
4(. 浏阳市一中
2020
届高三第六次月考试题)在直角坐标系
xOy
(I)求 C1 的直角坐标方程;
(II)曲线
C2
的参数方程为
x
y
t cos 6
t sin 6

t
为参数)求
C1

C2
的公共点的极坐标.
考点五 综合问题
1.(2020 届宁德市毕业班第一次质量检查,理 22)在平面直角坐标系 xOy 中,圆 C : (x 1)2 ( y 1)2 1.以坐 标原点 O 为极点, x 轴正半轴为极轴,直线 l 的极坐标方程为 (0 ) ,
(0, π) .以直角坐标系的原点 O 为极点, x 轴的正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为 2
2 (3 sin2 ) 12 .
(Ⅰ)写出直线 l 的参数方程和曲线 C 的直角坐标方程,并判断曲线 C 是什么曲线; (Ⅱ)设直线 l 与曲线 C 相交于 M , N 两点,当 | PM | | PN | 2 时,求 的值.

(2021年整理)极坐标与参数方程经典练习题带详细解答

(2021年整理)极坐标与参数方程经典练习题带详细解答

(完整)极坐标与参数方程经典练习题带详细解答编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)极坐标与参数方程经典练习题带详细解答)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)极坐标与参数方程经典练习题带详细解答的全部内容。

1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴。

已知直线l的参数方程为122x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB .2.已知直线l 经过点1(,1)2P ,倾斜角α=6π,圆C的极坐标方程为)4πρθ=-。

(1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程是)(242222是参数t t y tx ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=. (I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值.4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+⎧⎨=-+⎩(α为参数),点Q的极坐标为7)4π。

(1)化圆C 的参数方程为极坐标方程;(2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程.5.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M .(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.6.(本小题满分10分) 选修4—4坐标系与参数方程在直角坐标系中,曲线1C 的参数方程为⎩⎨⎧+==ααsin 22cos 2y x ,(α为参数)M 是曲线1C 上的动点,点P 满足OM 2=,(1)求点P 的轨迹方程2C ;(2)在以D 为极点,X 轴的正半轴为极轴的极坐标系中,射线3πθ=与曲线1C ,2C 交于不同于原点的点A,B 求AB7.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ⎛⎫- ⎪⎝⎭,M ,N 分别为曲线C 与x 轴、y 轴的交点.(1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标;(2)求直线OM 的极坐标方程.8.在直角坐标系中,曲线C 1的参数方程为:2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),以原点为极点,x 轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C 2是极坐标方程为:cos ρθ=,(1)求曲线C 2的直角坐标方程;(2)若P ,Q 分别是曲线C 1和C 2上的任意一点,求PQ 的最小值。

极坐标参数方程大题(含答案)

极坐标参数方程大题(含答案)

1、在直角坐标系中,圆的方程为,以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程; (2与圆交于点,求线段的长.2、在直角坐标系中,以原点为极点,点的,点,曲线.(1和直线的极坐标方程;(2)过点的射线交曲线于点,交直线于点,若,求射线所在直线的直角坐标方程.3、在平面直角坐标系中,直线(为参数).在以原点为极点,轴正半轴为极轴的极坐标中,圆的方程为 (1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求xOy C O xC C ,M N MN O A B 22:(1)1C x y -+=AB O l C M AB N ||||2OM ON =l xOy l t O x C l C P C l B A ,4、在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为(1)求直线和曲线的普通方程; (2)已知点,且直线和曲线交于两点,求的值5、在平面直角坐标系中,直线经过点,倾斜角为在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为. (1)写出直线的参数方程和曲线的直角坐标方程; (2)设直线与曲线相交于两点,求.6、在平面直角坐标系中,直线(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为.(1)求直线的极坐标方程及曲线C 的直角坐标方程;(2)若是直线C最大值.xOy C 244x k y k ⎧=⎨=⎩k x l l C (2,0)P l C A B ,||||||PA PB -l ()0,1P x C 4sin ρθ=l C l C A B 、xoy l t x 2sin ρθ=l ()1,A ρθl参考答案1、【答案】(1(2试题分析:(1)由,得到圆的极坐标方程;(2)将直线的极坐标代入,得到,所以试题解析: (1(2得,∴,,∴2、【答案】(1),;(2).试题分析:(1)将代入化简得.同理求出点,的直角坐标分别为,,所以的直角坐标方程为,极坐标方程为;(2)设射线,代入曲线得,代入直线得:,代入求得,即方程为. 试题解析:(1)点,的直角坐标分别为,,所以直线的极坐标方程为;曲线化为极坐标为(2)设射线,代入曲线得,代入直线得:所以射线所在直线的直角坐标方程为 考点:坐标系与参数方程.cos ,sin x y ρθρθ==2250ρρ--=2250ρρ--=122ρρ+=125ρρ=-2cos ρθ=sin 3ρθ=3y x =cos ,sin x y ρθρθ==22(1)1x y -+=2cos ρθ=A B (0,3)A AB 3y =sin 3ρθ=:l θα=C 2cos M ρα=AB ||||2OM ON =tan 3α=3y x =A B (0,3)A AB sin 3ρθ=C 2cos ρθ=:l θα=C 2cos M ρα=AB l 3y x =3、【答案】(1(2试题分析:(1)将参数方程转化为直角坐标系下的普通方程,需要根据参数方程的结构特征,选取恰当的消参方法,常见的消参方法有:代入消参法、加减消参法、平方消参法;(2)将参数方程转化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若有范围限制,要标出的取值范围;(2)直角坐标方程化为极坐标方程,只需把公式及直接代入并化简即可;而极坐标方程化为极坐标方程要通过变形,构造形如,,的形式,进行整体代换,其中方程的两边同乘以(或同除以)及方程的两边平方是常用的变形方法.试题解析:(1得直线得圆的直角坐标方程为把直线的参数方程代入圆的直角坐标方程,得故可设,又直线l ,两点对应的参数分别为,,考点:1、参数方程与普通方程的互化;2、直线与圆的综合问题.4、【答案】(1)(2试题分析:(1)消去曲线C 中的参数可得C 的普通方程,利用极坐标与直角坐标的互化公式可得直线的普通方程.(2)由直线的普通方程可知直线过P ,写出直线的参数方程,与曲线C 的普通方程联立,利用直线参数的几何意义及韦达定理可得结果. 【详解】(1)因为曲线的参数方程为(为参数),所以消去参数,得曲线的普通方程为y x ,y x ,θρcos =x θρsin =y θρcos θρsin 2ρρl C l C 1t 2t B A ,1t 2t 24y x =l l l C 244x k y k ⎧=⎨=⎩k k C 24y x =因为直线所以直线(2)因为直线经过点,所以得到直线(为参数)把直线的参数方程代入曲线的普通方程,得【点睛】本题考查了直角坐标方程与极坐标方程及参数方程的互化,考查了直线参数方程及参数的几何意义,属于中档题.5、【答案】(1)直线(为参数);曲线的直角坐标方程为;(2试题分析:(1)先根据直线参数方程标准式写直线的参数方程,利用化简极坐标方程为直角坐标方程;(2)将直线参数方程代入圆方试题解析:(1)直线(为参数). ∵,∴,∴,即, 故曲线的直角坐标方程为.l l l 20P (,)l t l C l t C ()2224x y +-=l y sin ,x cos ρθρθ==l t 4sin ρθ=24sin ρρθ=224x y y +=()2224x y +-=C ()2224x y +-=(2)将的参数方程代入曲线的直角坐标方程,得,显然,∴,∴6、【答案】(1,曲线;(2)2试题分析:(1)消去参数可得直线的普通方程,利用公式可把极坐标方程与直角坐标方程互化;(2这个最大值易求.【详解】(1)∵直线(为参数),∴消去参数,得直线由,得直线C的极坐标方程为,即,∴由,,得曲线C的直角坐标方程为.(2)∵在直线C上,l C230t t--=∆>2121,3lt t t t+==-2220x y y+-=cos,sinx yρθρθ==l tlcos,sinx yρθρθ==l2sinρθ=22sinρρθ=222x yρ=+sin yρθ=2220x y y+-=()1,Aρθl2【点睛】本题考查参数方程与普通方程的互化,考查极坐标方程与直角坐标方程的互化,掌握公是解题基础,在求论易得,学习时应注意体会.cos,sinx yρθρθ==。

第十二周理科周末测试题(极坐标与参数方程)2013.6.2

第十二周理科周末测试题(极坐标与参数方程)2013.6.2

大庆外国语学校高中部数学组From Senior High Math Teachers ’Office of Daqing Foreign Language SchoolNurture Social Discipline and Offer Sea of Knowledge1第十二周理科周末测试题(坐标系与参数方程)2013.6.2命题人:云献军 卷面分数:50分 考试时间:50分钟 班级: 姓名:1、在平面直角坐标系xOy 中,求过椭圆5cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)的右焦点且与直线423x ty t=-⎧⎨=-⎩(t 为参数)平行的直线的普通方程 。

2、直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线13cos :4sin x C y θθ=+⎧⎨=+⎩(θ为参数)和曲线2:1C ρ=上,则AB 的最小值为 。

3、在极坐标中,已知圆C 经过点()4Pπ,,圆心为直线sin 3ρθπ⎛⎫-= ⎪⎝⎭与极轴的交点,则圆C 的极坐标方程为 .4、已知两曲线参数方程分别为(0)sin x y θθπθ⎧=⎪⎨=⎪⎩≤<和25()4x t t R y t⎧=⎪∈⎨⎪=⎩,它们的交点坐标为 .5、已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α,(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θy =sin θ,(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.6、已知曲线C 1:4cos ,3sin ,x t y t =-+⎧⎨=+⎩ (t 为参数), C 2:8cos ,3sin ,x y θθ=⎧⎨=⎩(θ为参数)。

(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为2t π=,Q 为C 2上的动点,求PQ 中点M 到直线332,:2x t C y t=+⎧⎨=-+⎩ (t 为参数)距离的最小值。

圆锥曲线的极坐标和参数方程练习题教学教材

圆锥曲线的极坐标和参数方程练习题教学教材

圆锥曲线的极坐标和参数方程练习题1错误!未指定书签。

. 二次曲线4cos (3sin x y θθθ=⎧⎨=⎩为参数)的焦点坐标为A .(5,0)±B .(0,5)±C .(D .(0, 2错误!未指定书签。

. 已知曲线C 的参数方程是)(tan 4sec 3为参数θθθ⎩⎨⎧==y x ,则曲线C 的离心率为 ;若点),(y x P 在曲线C 上运动,则y x 21-的取值范围是 。

5错误!未指定书签。

.已知二次函数222sin 22sec ,2cos y x x ααα+=-+(α为参数,cos 0α≠)此抛物线顶点的轨迹是( )A .椭圆B .双曲线C .抛物线D .两条相交直线3错误!未指定书签。

.已知某圆锥曲线C 的极坐标方程是22225916cos ρθ=+,则曲线C 的离心率为( ) A .45 B .53 C .35 D .45 4错误!未指定书签。

. 在极坐标系中,以01cos =+θρ为准线,(1,0)为焦点的抛物线的极坐标方程为_________. 5错误!未指定书签。

.在平面直角坐标系xOy 中,动圆2224cos 6sin 5sin 30,x y x y R θθθθ+--++=∈的圆心为(,)P x y ,求2x y +的取值范围6已知曲线C 1的参数方程为⎩⎨⎧==θθsin cos 2y x ,曲线C 2的极坐标方程为.2)4cos(=-πθρ (1)将曲线C 1和C 2化为普通方程;(2)设C 1和C 2的交点分别为A ,B ,求线段AB 的中垂线的参数方程。

7错误!未指定书签。

. 已知曲线C 1:4cos ,3sin ,x t y t =-+⎧⎨=+⎩(t 为参数), C 2:8cos ,3sin ,x y θθ=⎧⎨=⎩(θ为参数)。

(Ⅰ)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (Ⅱ)若C 1上的点P 对应的参数为2t π=,Q 为C 2上的动点,求PQ 中点M 到直线332,:2x t C y t =+⎧⎨=-+⎩(t 为参数)距离的最小值。

极坐标与参数方程题型及答案

极坐标与参数方程题型及答案数学选择题:1. 下列哪个极坐标表示点(3, 5)?A. (5, 53.13°)B. (3, 53.13°)C. (5, 37.12°)D. (3, 37.12°)答案:A2. 唯一表示点(-4, 60°)的极坐标是A. (4, 60°)B. (4, 120°)C. (-4, 60°)D. (-4, 240°)答案:C3. 参数方程x = 2cosθ、y = 3sinθ (0 ≤ θ ≤ π/2) 表示的图形是A. 长方形B. 正方形C. 长椭圆D. 圆答案:C4. 必要条件方程x = 1 + cosθ、y = 2 + sinθ (0 ≤ θ ≤ 2π)表示的图形是A. 点B. 圆C. 椭圆D. 双曲线答案:B填空题:1. 将极坐标(4, 240°)转化为直角坐标形式,其对应的坐标为(______, ______)。

答案:(-2, -3.46)2. 给出参数方程x = 2cosθ、y = 5sinθ (0 ≤ θ ≤ π/2) 所表示直线的斜率,其斜率为 _______。

答案:2.5判断题:1. 下列哪些图形可以由参数方程表示?I. 点 II. 圆 III. 双曲线 IV. 三角形A. I、II、IIIB. I、II、IVC. II、III、IVD. I、II、III、IV答案:B2. 唯一表示点(4, 30°)的极坐标是(4, π/6) 。

答案:正确简答题:1. 极坐标系表示的是平面直角坐标系的哪些信息不同?答案:极坐标系表示的是点与极点之间的距离和点与极轴的夹角,而直角坐标系则表示的是点在x、y轴之间的坐标。

2. 怎样将一个极坐标转换为另一个等价的极坐标?答案:若(r, θ)为一个点在极坐标系中的坐标,则其等效于(r, θ + 2kπ) (k 为整数)。

3. 参数方程x = cosθ、y = sinθ 表示的图形是什么?有何特点?答案:参数方程x = cosθ、y = sinθ 表示的是单位圆,其特点是对于任意θ值,点到原点的距离都是1。

极坐标与参数方程经典30题

专题14坐标系与参数方程一、解答题1.(2019·安徽高考模拟(文))在平面直角坐标系中,曲线的参数方程为(其中为参数).以坐标原点为原点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(I)写出曲线的普通方程和曲线的直角坐标方程;(II)设点,分别在曲线,上运动,若,两点间距离的最小值为,求实数的值.【答案】(I),;(II)或.【解析】(I)曲线;曲线的极坐标方程为,即,将,代入,得(II)因为曲线的半径,若点,分别在曲线,上运动,,两点间距离的最小值为,即圆的圆心到直线的距离,,解得或.2.(2019·江西高考模拟(文))已知平面直角坐标系,以为极点,轴的非负半轴为极轴建立极坐标系,直线过点,且倾斜角为,圆C的极坐标方程为.(1)求圆C的普通方程和直线的参数方程;(2)设直线与圆C交于M、N两点,求的值.【答案】(1)圆的方程:,直线的参数方程为(为参数)(2)【解析】(1)圆的方程:,直线的参数方程为(为参数)(2)将直线的参数方程代入圆的方程,得:3.(2019·辽宁高考模拟(文))选修4-4:坐标系与参数方程在平面直角坐标系中,圆的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求圆的极坐标方程;(2)已知射线,若与圆交于点(异于点),与直线交于点,求的最大值.【答案】(1);(2)3【解析】(1)由圆的参数方程为消去参数,得到圆的普通方程为,即,所以其极坐标方程为,即;(2)由题意,将代入圆的极坐标方程得;将代入线的极坐标方程,得,所以,因为,所以,因此,当,即时,取得最大值3.4.(2019·湖北高考模拟(理))选修4-4:坐标系与参数方程在平面直角坐标系中,直线的普通方程是,曲线的参数方程是(为参数)。

在以为极点,轴的正半轴为极轴建立的极坐标系中,曲线的极坐标方程是。

(1)求直线及曲线的极坐标方程;(2)已知直线与曲线交于两点,直线与曲线交于两点,求的最大值。

极坐标参数方程试题

极坐标参数方程解答题训练1.在平面直角坐标系xOy 中,已知直线l 的参数方程为11x mty t=+⎧⎨=-⎩m R t ∈(,为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线C 的极坐标方程为2cos ρθ=-. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若曲线C 上的点到直线l1,求实数m 的值.2.在直角坐标系xOy中,曲线1C的参数方程为612x y t ⎧=⎪⎪⎨⎪⎪⎩(t 为参数),曲线2C 的参数方程22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线12,C C 的极坐标方程;(2)若射线:(0)l θαρ=分别交12C ,C 于A ,B 两点,求||||OB OA 的最大值.3.在极坐标系中,曲线1C 的极坐标方程为4cos ρθ=,曲线2C 的极坐标方程为4sin ρθ=,以极点O 为坐标原点,极轴为x 的正半轴建立平面直角坐标系xOy . (1)求1C 和2C 的参数方程; (2)已知射线1:(0)2l πθαα=<<,将1l 逆时针旋转6π得到2:6l πθα=+,且1l 与1C 交于,O P 两点,2l 与2C 交于,O Q 两点,求OP OQ ⋅取得最大值时点P 的极坐标.4.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos ,2sin ,x y θθ=⎧⎨=⎩(θ为参数),已知点(4,0)Q ,点P 是曲线1C 上任意一点,点M 为PQ 的中点,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求点M 的轨迹2C 的极坐标方程;(2)已知直线l :y kx =与曲线2C 交于,A B 两点,若3OA AB =,求k 的值.5.在直角坐标系xOy 中,直线1C的参数方程为2x y ⎧=⎪⎪⎨⎪=⎪⎩(其中t为参数).以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos 3sin ρθθ=.(1)求1C 和2C 的直角坐标方程;(2)设点()0,2P ,直线1C 交曲线2C 于,M N 两点,求22PM PN +的值.6.已知在极坐标系中,点(2,)6A π,2(23,)3B π,C 是线段AB 的中点,以极点为原点,极轴为x 轴的正半轴,并在两坐标系中取相同的长度单位,建立平面直角坐标系,曲线Ω的参数方程是2cos 22sin x y θθ=⎧⎨=-+⎩(θ为参数).(1)求点C 的直角坐标,并求曲线Ω的普通方程;(2)设直线l 过点C 交曲线Ω于,P Q 两点,求CP CQ ⋅的值.7.在直角坐标系xOy 中,直线1:3C x =-,圆()()222:211C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求12,C C 的极坐标方程; (2)若直线3C 的极坐标方程为()4R πθρ=∈,设23,C C 的交点为A ,B ,求2C AB ∆的面积.8.在极坐标系下,已知圆和直线(1)求圆和直线的直角坐标方程; (2)当时,求圆和直线的公共点的极坐标.9.已知曲线C 的极坐标方程是2221sin θρ=+,直线l的参数方程是1(x t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数) (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设直线l 与x 轴的交点是P ,直线l 与曲线C 交于M ,N 两点,求11||||PM PN +的值.10.在以原点为极点,x 轴正半轴为极轴的极坐标系中,曲线1C 的极坐标方程为22cos 28cos 8ρθρθρ+=+(1)求曲线1C 的直角坐标方程;(2)曲线2C 的方程为2cos sin x t y t αα=+⎧⎨=⎩(t 为参数),若曲线1C 与曲线2C 交于A 、B 两点,且8AB =,求直线AB 的斜率.11.已知极点与坐标原点O 重合,极轴与x 轴非负半轴重合,M 是曲线1:2sin C ρθ=上任一点P 满足3OP OM =,设点P 的轨迹为Q .(1)求曲线Q 的平面直角坐标方程;(2)将曲线Q 向右平移1个单位后得到曲线N ,设曲线N 与直线:1x tl y t=-⎧⎨=+⎩(t 为参数)相交于A 、B 两点,记点()0,1T ,求TA TB +.12.在平面直角坐标系xOy 中,已知曲线1C 的参数方程为32cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以坐标原点O 为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2ρ=. (1)设点,M N 分别为曲线1C 与曲线2C 上的任意一点,求||MN 的最大值;(2)设直线1cos :sin x t l y t αα=-+⎧⎨=⎩(t 为参数)与曲线1C 交于,P Q 两点,且||1PQ =,求直线l 的普通方程.13.已知曲线C 的极坐标方程是ρ=6sinθ,建立以极点为坐标原点,极轴为x 轴正半轴的平面直角坐标系.直线l 的参数方程是cos 2sin x t y t θθ=⎧⎨=+⎩,(t 为参数).(1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|AB k .14.在直角坐标系xOy 中,射线l 的方程为(1)(1)3y x x =+≥-,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的方程为10cos ρθ=.一只小虫从点(1,0)A -沿射线l 向上以2单位/min 的速度爬行(1)以小虫爬行时间t 为参数,写出射线l 的参数方程; (2)求小虫在曲线1C 内部逗留的时间.15.在直角坐标系xOy 中,曲线C 的参数方程为2cos ,2sin x y αα=⎧⎨=⎩([0,2),απα∈为参数),在同一平面直角坐标系中,经过伸缩变换'2,'x x y y=⎧⎨=⎩得到曲线1C ,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系(ρ为极径,θ为极角).(Ⅰ)求曲线C 的直角坐标方程和曲线1C 的极坐标方程;(Ⅱ)若射线():0OA θβρ=>与曲线1C 交于点A ,射线():02OB πθβρ=+>与曲线1C 交于点B ,求2211OAOB+的值.16.在直角坐标系xOy 中,曲线C的参数方程是222813(1)1k x k k y k ⎧=⎪⎪+⎨-⎪=⎪+⎩(k 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为cos()4πρθ+=(1)曲线C 的普通方程和直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的取值范围.17.在直角坐标系xOy 中,曲线C的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin 110ρθθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.18.以直角坐标系的原点为极点,x 轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为512x y t ⎧=⎪⎪⎨⎪=⎪⎩(t为参数),圆C 的极坐标方程为4cos 3πρθ⎛⎫=- ⎪⎝⎭(1)求直线l 和圆C 的直角坐标方程;(2)若点(),P x y 在圆Cy -的取值范围.19.在直角坐标系xoy 中,以原点O 为极点,轴的正半轴为极轴建立极坐标系.已知曲线1C 的极坐标方程为22312cos ρθ=+,直线的极坐标方程为4sin cos ρθθ=+.(1)写出曲线1C 与直线的直角坐标方程;(2)设Q 为曲线1C 上一动点,求Q 点到直线距离的最小值.20.在平面直角坐标系xOy 中,曲线C 的参数方程为3cosx y αα=⎧⎪⎨⎪⎩,在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为sin 4πρθ⎛⎫-= ⎪⎝⎭.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)设点()1,0P -,直线l 和曲线C 交于,A B 两点,求11PA PB +的值.。

极坐标与参数方程例题示范(分题型)

极坐标与参数方程例题示范(分题型)极坐标与参数方程是选修内容的必考题型,这里按照课本及高考考试说明,归纳总结为四类题型。

题型一。

极坐标与直角坐标的互化。

互化原理(三角函数定义)、数形结合。

1.在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧-=+-=t y t x 13(t 为参数),以O 为极点,x轴的非负半轴为极轴建立极坐标系,并在两种坐标系中取相同的长度单位,曲线C 的极坐标方程为0cos 2=+θρ.(1)把曲线C 的极坐标方程化为普通方程;(2)求直线l 与曲线C 的交点的极坐标(πθρ20,0<≤≥).试题解析:(1)由0cos 2=+θρ得θρcos 2-=,两边同乘以ρ,得x y x 222-=+; (2)由直线l 的参数方程为⎩⎨⎧-=+-=ty tx 13(t 为参数),得直线的普通方程为02=++y x ,联立曲线C 与直线l 的方程得,⎩⎨⎧-=-=11y x 或⎩⎨⎧=-=02y x ,化为极坐标为)45,2(π或),2(π.考点:极坐标方程与直角坐标方程的互化,直线参数方程与普通方程的互化. 考点:cos ,sin x y ρθρθ==,222x y ρ=+. 2.在极坐标系中,设圆C经过点6π⎛⎫P ⎪⎝⎭,圆心是直线sin 32πρθ⎛⎫-= ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.试题解析:法一:6π⎛⎫P ⎪⎝⎭直线sin 32πρθ⎛⎫-=⎪⎝⎭它与x 轴的交点也就是圆心为()1,0所以圆的方程为()2211x y -+=,得2220x y x +-=所以,圆的极坐标方程为:2cos ρθ=法二:因为圆心为直线2sin sin 33ππρθ⎛⎫-= ⎪⎝⎭与极轴的交点,所以令0θ=,得1ρ=,即圆心是()1,0 又圆C经过点6π⎫P ⎪⎭,∴圆的半径1r ==,∴圆过原点,∴圆C 的极坐标方程是2cos ρθ=.考点:(1)转化为直角坐标,求出所求方程,再转化为极坐标;(2)先求圆心坐标,再运用余弦定理求半径,最后借助过原点写出圆的极坐标方程.题型二。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 《极坐标与参数方程》测试题 一、选择题 (每题5分,共12题,满分60分) 1.直线12xy的参数方程是( )

A、1222tytx(t为参数) B、1412tytx(t为参数)

C、 121tytx(t为参数) D、1sin2sinyx(t为参数) 2.已知实数x,y满足02cos3xx,022cos83yy,则yx2( ) A.0 B.1 C.-2 D.8

3.已知3,5M,下列所给出的不能表示点的坐标的是( )

A、3,5 B、34,5 C、32,5 D、35,5 4.极坐标系中,下列各点与点P(ρ,θ)(θ≠kπ,k∈Z)关于极轴所在直线 对称的是( ) A.(-ρ,θ)B.(-ρ,-θ)C.(ρ,2π-θ) D.(ρ,2π+θ) 5.点3,1P,则它的极坐标是 ( )

A、3,2 B、34,2 C、3,2 D、34,2 6.直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线13cos:sinxCy (为参数)和曲线2:1C上,则AB的最小值为( ). A.1 B.2 C.3 D.4 7.参数方程为1()2xttty为参数表示的曲线是( ) A.一条直线 B.两条直线 C.一条射线 D.两条射线 8.124123xttxkykyt若直线为参数与直线垂直,则常数( ) 2

A.-6 B.16 C.6 D.16 9.极坐标方程4cos化为直角坐标方程是( ) A.22(2)4xy B.224xy \\\\ C.22(2)4xy D.22(1)(1)4xy

10. 直线12()2xttyt为参数被圆229xy截得的弦长为( ).

A.125 B.1255 C.955 D.9105 11.已知二面角l的平面角为,P为空间一点,作PA,PB,A,B为垂足,且4PA,5PB,设点A、B到二面角l的棱l的距离为别为,xy.则当变化时,点(,)xy的轨迹是下列图形中的

12.曲线24sin()4x与曲线12221222xtyt的位置关系是( )。 A、 相交过圆心 B、相交 C、相切 D、相离 二、填空题 (每题5分,共4题,满分20分)

13.在极坐标, 20中,曲线sin2与1cos的交点的极坐标为

____________. 14.在极坐标系中,圆2上的点到直线6sin3cos的距离的最小值是 . 15. 圆C:x=1+cosθy=sinθ(θ为参数)的圆心到直线l:x=22+3ty=13t(t为参数)的距离

为 .

3333

(A) (B) (C) (D) 3

16. A:(极坐标参数方程选做题)以直角坐标系的原点为极点,x轴的正半轴为极轴,已知曲线1C、2C的极坐标方程分别为0,3,曲线3C的参数方程为2cos2sinxy(

为参数,且,22),则曲线1C、2C、3C所围成的封闭图形的面积是 . 三、解答题(满分70分)

17.(10分) 在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为

x3cosysin(为参数).(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴 正半轴为极轴)中,点P的极坐标为(4,2),判断点P与直线l的位置关系;(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

18. (12分)在平面直角坐标系xOy中,椭圆C方程为5cos(3sinxy为参数) (Ⅰ)求过椭圆的右焦点,且与直线42(3xttyt为参数)平行的直线l的普通方程。 (Ⅱ)求椭圆C的内接矩形ABCD面积的最大值。 4

19. (12分)已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合.直线l的参数方程为:tytx21231(t为参数),曲线C的极坐标方程为:cos4.(1)写出曲线C的直角坐标方程,并指明C是什么曲线; (2)设直线l与曲线C相交于QP,两点,求PQ的值. 5

20. (12分)在直角坐标系xoy中,直线l的参数方程是()21xttyt为参数,在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的极坐标方程是2cos (I)求圆C的直角坐标方程; (II)求圆心C到直线l的距离。

21. (12分)在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点M的极坐标为42,4,曲线C的参数方程为12cos,2sin,xy(为参数). (1)求直线OM的直角坐标方程; (2)求点M到曲线C上的点的距离的最小值. 6

22. (12分)以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系。已知点P的极坐标为2,4,直线l过点P,且倾斜角为23,方程2213616xy所对应的曲

线经过伸缩变换1312xxyy后的图形为曲线C。(Ⅰ)求直线l的参数方程和曲线C的直角坐标系方程(Ⅱ)直线l与曲线C相交于两点,AB,求PAPB的值。 7

试卷答案 1.C 2.A 3.A 4.C 5.C 6.A 7.D 8.A 9.A 10.B 11.D 12.B

13.43,2 14.1 15.2 16.23

17.解:(I)把极坐标系下的点(4,)2P化为直角坐标,得P(0,4)。 因为点P的直角坐标(0,4)满足直线l的方程40xy, 所以点P在直线l上, (II)因为点Q在曲线C上,故可设点Q的坐标为(3cos,sin), 从而点Q到直线l的距离为

2cos()4|3cossin4|62cos()22622d



由此得,当cos()16时,d取得最小值,且最小值为2. 18.(1)由已知得椭圆的右焦点为4,0,已知直线的参数方程可化为普通方程:220xy,所以12k,于是所求直线方程为240xy。 (2)460sincos30sinSxy2, 当22时,面积最大为30 19.

(2)把tytx21231代入xyx422,整理得05332tt,---6分 8

设其两根分别为,,21tt则5,332121tttt,---8分 所以721ttPQ.----10分 20.(1)圆C的直角坐标方程是22+-2=0xyx;

(2)圆心C到直线35=5ld的距离。 21.解:(Ⅰ)由点M的极坐标为π42,4,得点M的直角坐标为(4,4), 所以直线OM的直角坐标方程为xy. (Ⅱ)由曲线C的参数方程12cos,2sinxy(为参数), 化成普通方程为:2)1(22yx, 圆心为A(1,0),半径为2r. 由于点M在曲线C外,故点M到曲线C上的点的距离最小值为 25||rMA. 22.

23.(Ⅰ)22,2yaxyx. ………..5分 9

(Ⅱ)直线l的参数方程为tytx224222(t为参数), 代入22yax, 得到222(4)8(4)0tata, ………………7分 则有121222(4),8(4)ttatta. 因为2||||||MNPMPN,所以2212121212()()4tttttttt. 解得 1a. …………10分 24.(本小题满分10分)选修4-4:坐标系与参数方程

解:(I)把极坐标系下的点P(4,)2化为直角坐标,得P(0,4) 因为点P的直角坐标(0,4)满足直线l的方程40xy, 所以点P在直线l上, …………5分 (II)因为点Q在曲线C上,故可设点Q的坐标为(3cos,sin), 从而点Q到直线l的距离为,

3cossin42d

2cos()462

2cos()226

由此得,当cos()16时,d取得最小值,且最小值为2……10分 25.解:(I)sin2cos2, sin2cos22

, …………(2分)

02222yxyxC的直角坐标方程为圆, …………(3分) 即1)22()22(22yx,)22,22(圆心直角坐标为.…………(5分) (II)方法1:直线l上的点向圆C 引切线长是

6224)4(4081)242222()2222(2222ttttt, …………(8分)

相关文档
最新文档