线性代数知识点总结第二章

合集下载

考研数学《线性代数》考点知识点总结

考研数学《线性代数》考点知识点总结

4.两行(列)元素成比例的行列式为零.记作: rj ri k ( cj ci k ) D 0 .
a11 a12 (a1i a1i ) a1n
a11 a12 a1i a1n a11 a12 a1i a1n
5. D
a21
a22
(a2i
a2i )a2n
D
a21
a22
a2i a2n
矩阵转置: 若 Α (aij ) ,则 ΑT (a ji ) (A B)T AT BT ,(AB)T BTAT 若 A AT , A 为对称阵
方阵的行列式: n 阶方阵 A 元素构成的行列式,记 A 或 det A .
伴随矩阵:
A11
A*
A12
A1n
A21 A22
二元线性 方程组:
aa1211xx
a12 y a22 y
b1 b2
第一章 行列式
D a11 a21
a12 a22
, D1
b1 b2
a12 a22
, D2
a11 a21
b1 b2
x D1 , y D2
D
D
排列的逆 序数:
n
t ti ( ti 为排列 p1 p2 pn 中大于 pi 且排于 pi 前的元素个数)
D1 D
, x2
D2 D
,, xn
Dn D
,其中 D j
a11
an1
a1, j1 b1 a1, j1
an, j1 bn an, j1
a1n
ann
( j 1,2,, n) .
定理 4: 若上线性方程组的系数行列式 D 0 ,则方程组一定有惟一解;若无解或有两个不同解,则 D 0 .

线性代数知识点梳理

线性代数知识点梳理

线性代数知识点梳理一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算又有低阶和高阶两种类型;主要方法是应用行列式的性质及按行列展开定理化为上下三角行列式求解。

对于抽象行列式的求值,考点不在求行列式,而在于相关性质,矩阵部分出题很灵活,频繁出现的知识点包括矩阵运算的运算规律、运算性质、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。

二、向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。

相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节;后两章特征值、特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。

解线性方程组可以看作是出发点和目标。

线性方程组(一般式)还具有两种形式:(1)矩阵形式(2)向量形式。

齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立;印证了向量部分的一条性质“零向量可由任何向量线性表示”。

齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。

秩的定义是“极大线性无关组中的向量个数”。

经过“秩→ 线性相关无关→ 线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。

非齐次线性方程组是否有解对应于向量是否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。

三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。

其原因是解决相关题目要用到线代中的大量内容,既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。

本章知识要点如下:1.特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数知识点总结第一章行列式行列式是线性代数中的重要概念之一。

行列式的定义包括二三阶行列式和N阶行列式。

其中,N阶行列式是由行列式中所有不同行、不同列的n个元素的乘积的和构成的。

行列式的计算需要用到奇偶排列、逆序数和对换等概念。

行列式还具有多种性质,如行列式行列互换其值不变,行列式中某两行(列)互换,行列式变号等。

通过这些性质,我们可以推论出行列式中某两行(列)对应元素相等,则行列式等于零等结论。

行列式还有一些特殊的形式,如转置行列式、对称行列式、反对称行列式、三线性行列式和上(下)三角形行列式等。

行列式在解线性方程组中应用广泛,如克莱姆法则。

非齐次线性方程组的系数行列式不为零时,有唯一解;而齐次线性方程组的系数行列式为1时,只有零解。

第二章矩阵矩阵是线性代数中另一个重要概念。

矩阵是由数个数排成的矩形阵列,其中包括零矩阵、负矩阵、行矩阵、列矩阵、n阶方阵和相等矩阵等。

矩阵的运算包括加法、数乘和乘法。

其中,加法和数乘都满足交换律和结合律。

而矩阵的乘法需要满足行数等于列数的规则。

矩阵的乘法运算需要用到矩阵的元素之间的乘积和求和。

在矩阵的运算中,我们需要注意矩阵的类型和是否有意义。

一般情况下,矩阵乘法不满足消去律。

即使已知AB=0,也不能得到A=0或B=0.对于矩阵A,它的转置等于A乘以A加B。

即transpose(A)=A(A+B)。

对于标量k和矩阵A,有(kA)=kA和(AB)=BA(反序定理)。

对于方幂A^k,有(A^k)=(A^1+k/2)+(A^2+k/2)。

有几种特殊的矩阵,如对角矩阵、数量矩阵、单位矩阵、上下三角形矩阵、对称矩阵、反对称矩阵、阶梯型矩阵和分块矩阵。

对于分块矩阵,加法、数乘和乘法的规则类似,而转置需要对每个子块进行转置。

矩阵的逆矩阵指的是存在一个N阶矩阵B,使得AB=BA=I。

如果矩阵A是可逆的,则称它是非奇异矩阵,否则称为奇异矩阵,其行列式为0.初等变换不会改变矩阵的可逆性,而初等矩阵都是可逆的。

线性代数各章要点整理

线性代数各章要点整理

第一章行列式主要知识点一、行列式的定义和性质1.余子式和代数余子式的定义2.行列式按一行或一列展开的公式1)2)3.行列式的性质1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.二、行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5.范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1.要分清矩阵与行列式的区别2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1.矩阵A , B的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).3.转置对称阵和反对称阵1)转置的性质2)若A T=A (A T= - A),则称A为对称(反对称)阵4.逆矩阵1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,.2)方阵A的伴随阵的定义。

重要公式;与A -1的关系(当方阵A可逆时,)3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.4)逆矩阵的性质:; ; .5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。

(若不知A可逆,仅知A≠0结论不一定成立。

大学线性代数2矩阵代数知识点总结

大学线性代数2矩阵代数知识点总结

2矩阵代数1. 设A,B为可以相乘的矩阵,AB的每一列都是A的各列的线性组合,以B的对应列的元素为权。

同样,AB的每一行都是B的各行的线性组合,以A的对应行的元素为权。

例如,AB的第m列是以B的第m列为权的A的各列的线性组合;AB的第n行是以A的第n行为权的B的各行的线性组合。

2. 矩阵乘法恒等式:I m A = A = AI n3. 逆矩阵的概念仅对方阵有意义。

4. 若A可逆,则对每一R n中的b,方程Ax=b有唯一解x=A-1b5. 初等矩阵:将单位矩阵进行一次初等行变换所得的矩阵。

6. 对mxn矩阵A进行初等行变换所得的矩阵,等于对单位矩阵进行相同行变换所得初等矩阵与A相乘的结果。

设对单位矩阵I m进行初等行变换所得初等矩阵为E,对A进行相同初等行变换的结果可写为EA。

因为初等行变换可逆,所以必有另一行变换将E变回I。

设该“另一行变换”对应初等矩阵为F,结合上一行,F对E的作用可写为FE=I。

因此,每个初等矩阵均可逆。

7. 当n阶方阵A行等价于I n时,A可逆。

此时,将A变为I n的一系列初等行变换同时将I n变为A-1。

8. 求A-1:将增广矩阵[A I] 进行行化简,若A可逆,则[A I] ~ [I A-1]将 [A I] 行变换为[I A-1]的过程可看作解n个方程组:Ax=e1, Ax=e2, ... Ax=e n这n个方程组的“增广列”都放在A的右侧,就构成矩阵[A e1 e2 ... e n] = [A I]如果我们只需要A-1的某一列或某几列,例如需要A-1的j列,只需解方程组Ax=e j,而不需要求出整个A-1。

[注:根据此条可以导出利用克拉默法则求逆矩阵的公式]9. 可逆矩阵定理对于n阶方阵,以下命题等价:a) A可逆b) A与n阶单位矩阵等价c) A有n个主元位置d) 方程Ax=0仅有平凡解e) A各列线性无关f) 线性变换x|->Ax是一对一的g) 对R n中任意b,Ax=b至少有一个解(有且仅有唯一解?)h) A各列生成R ni) 线性变换x|->Ax将R n映上到R nj) 存在nxn阶矩阵B,使AB=BA=Ik) A T可逆l) A的列向量构成R n的一个基m) ColA=R nn) dim(Col(A))=no) rank(A)=np) Nul(A)=0q) dim(Nul(A))=0r) det(A)≠0 <=> A可逆s) A可逆当且仅当0不是A的特征值t) A可逆当且仅当A的行列式不等于零再次强调,以上命题仅对n阶方阵等价。

线性代数知识点总结第二章doc资料

线性代数知识点总结第二章doc资料

线性代数知识点总结第二章 矩阵及其运算第一节 矩阵 定义由m n ⨯个数()1,2,,;1,2,,ija i m j n ==L L 排成的m 行n 列的数表111212122212nn m m mna a a a a a a a a LL M M M L称为m 行n 列矩阵。

简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪⎪⎝⎭L L L L L L L,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元。

说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。

扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A 。

记作:A n 。

行(列)矩阵:只有一行(列)的矩阵。

也称行(列)向量。

同型矩阵:两矩阵的行数相等,列数也相等。

相等矩阵:AB 同型,且对应元素相等。

记作:A =B 零矩阵:元素都是零的矩阵(不同型的零矩阵不同) 对角阵:不在主对角线上的元素都是零。

单位阵:主对角线上元素都是1,其它元素都是0,记作:E n (不引起混淆时,也可表示为E )(课本P29—P31)注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同。

第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++ ⎪+=⎪⎪+++⎝⎭L L L L L LL说明 只有当两个矩阵是同型矩阵时,才能进行加法运算。

(课本P33) 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭L L L L L L L设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-。

《线性代数》课件-第二章 矩阵及其运算


a11
A
A
a21
am1
a12 a22
am1
a1n
a2n
amn
数乘矩阵的运算规律
a, b, c R 结 合 (ab)c a(bc) 律 分 (a b) c ac bc 配 律 c (a b) ca cb
设 A、B是同型矩阵, , m 是数 (m)A (m A)
a11
a12
a13
a14
4
c11 a1kbk1
b11
b21
b31
b41
k 1
4
c12 a11b12 a12b22 a13b32 a14b42 a1k bk 2 k 1
一般地,
4
cij ai1b1 j ai 2b2 j ai 3b3 j ai4b4 j aikbkj k 1
行列式
矩阵
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
(1) a a t( p1 p2 pn ) 1 p1 2 p2
p1 p2 pn
行数等于列数
共有n2个元素
a11 a12
a21
a22
am1 am1
anpn
a1n
a2n
amn
行数不等于列数 共有m×n个元素 本质上就是一个数表
第二章 矩阵及其运算
§1 矩阵
一、矩阵概念的引入 二、矩阵的定义 三、特殊的矩阵 四、矩阵与线性变换
B
一、矩阵概念的引入
例 某航空公司在 A、B、C、D 四座 A
城市之间开辟了若干航线,四座城市 之间的航班图如图所示,箭头从始发 地指向目的地.
城市间的航班图情况常用表格来表示:

线性代数-知识点总结part 2

线性代数知识点总结—part 2三、向量组的线性相关与线性方程组(1)n 维向量记为a=(a 1,a 2……a n )第i 个a i 称为a 的得i 个分量或坐标有几个向量就是几维向量。

(2)向量加减法按照对应项相加减。

(3)若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组0 ,0 ,,,;,0 ,,,,,,, 3.42122112122112121。

可以推出称为线性无关,如果由一向量组则称该向量组线性相关使全为零的数如果存在不给定向量组定义=====+++=+++m m m m mm m m k k k k k k k k k k k k ΛρΛΛρΛΛΛαααααααααααα(4)向量组线性相关的充分必要条件是至少有一个向量可由其他向量线性表示。

(5)部分向量组线性相关,则整个向量组线性相关;整个向量组线性无关,则部分向量组线性无关。

(6)线性无关组添加相同数量个分量所得的向量组仍线性无关;线性相关组减少相同位置相同数量个分量所得的向量组仍线性相关。

唯一表示。

可由线性相关,则,线性无关,而设mm m αααββαααααα,,,,,,,,, 212121ΛΛΛ向量组⎪⎪⎪⎪⎪⎫⎛=⎪⎪⎪⎪⎪⎫⎛=n n T T a a aa a a A M MML L M 222211121121αα(7)若(8)若向量组A 和B 能相互线性表示就称A 和B 等价;(9)一个向量组T ,从中选出r 个向量a 1,a 2,…..a r 满足它们线性无关,并且T 中任意一个向量都可以用a 1,a 2…..a r 线性表示 那么我们就称a 1,a 2,…..a r 是T 的最大向量无关组(10)向量组的最大线性无关组所含向量的个数,称为向量组的秩. (11)矩阵A 的秩等于它的列向量组的秩,也等于行向量组的秩 (12)设向量组(I)的秩为r1,向量组(II)的秩为r2,且(I)能由(II)线性表示,则r1<=r2(13)等价的向量组有相同的秩。

线性代数 第二章总结

第二章 矩阵及其运算矩阵是线性代数主要研究对象,是求解线性方程组的一个有力工具,它在自然科学、工程技术及经济问题等各个领域中都有广泛的应用。

本章的教学基本要求:理解矩阵概念并掌握矩阵的线性运算、乘法、转置及其运算规律;理解逆矩阵的概念,掌握逆矩阵存在的条件,了解求逆矩阵的伴随矩阵法;熟练掌握利用逆矩阵求解矩阵方程的方法;了解单位矩阵、对角矩阵、对称矩阵及其性质;了解分块矩阵及其运算。

本章的重点及难点:矩阵的各种运算及其运算规律,尤其矩阵的乘法;逆矩阵存在的条件,利用伴随矩阵法会求逆矩阵,主要是二阶和特殊的三阶矩阵的逆矩阵;用逆矩阵求解矩阵方程。

§ 1 矩阵的概念一、内容提要1.矩阵定义 由n m ⨯个数排成的m 行n 列的矩形数表⎪⎪⎪⎪⎪⎭⎫⎝⎛mn m m n n a a a a a a a a a 212222111211称为一个m ×n 矩阵,其中ij a 表示位于数表中第i 行第j 列的数(m i ,,2,1 =;n j ,2,1=)。

ij a 又称为矩阵的元素。

规定,1×1矩阵 a a =)(。

矩阵也可表示为)(ij a 或n m ij a ⨯)( 。

如果不需要表示出矩阵的元素,通常用大写英文字母表示矩阵,如:A ,B ,...,或n m A ⨯,n m B ⨯,...。

元素都是实数的矩阵称为实矩阵;有复数元素的矩阵称为复矩阵。

若两个矩阵的行数、列数分别相等,则称它们是同型矩阵。

矩阵A =()n m ij a ⨯,B =()n m ij b ⨯是同型矩阵。

若它们的对应元素相等,即ij ij b a = ()n j m i 2,1;2,1== 那么称矩阵A 与矩阵B 相等,记作:A = B 。

2.特殊矩阵零矩阵 所有元素都为零的矩阵称为零矩阵。

如一个n m ⨯的零矩阵为nm ⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛000000000记为0n m ⨯。

在不会引起混淆的情形下,也可记为0。

线性代数知识点总结

线性代数知识点总结第一章 行列式一要点1、二阶、三阶行列式2、全排列和逆序数;奇偶排列可以不介绍对换及有关定理;n 阶行列式的定义3、行列式的性质4、n 阶行列式ij a D =;元素ij a 的余子式和代数余子式;行列式按行列展开定理5、克莱姆法则二基本要求1、理解n 阶行列式的定义2、掌握n 阶行列式的性质3、会用定义判定行列式中项的符号4、理解和掌握行列式按行列展开的计算方法;即+11j i A a +22j i A a ⎩⎨⎧≠==+j i j i D A a jn in 0 +j i A a 1122i j a A +⎩⎨⎧≠==+j i j i D A a nj ni0 5、会用行列式的性质简化行列式的计算;并掌握几个基本方法:归化为上三角或下三角行列式;各行列元素之和等于同一个常数的行列式;利用展开式计算6、掌握应用克莱姆法则的条件及结论会用克莱姆法则解低阶的线性方程组7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件第二章 矩阵一要点1、矩阵的概念n m ⨯矩阵n m ij a A ⨯=)(是一个矩阵表..当n m =时;称A 为n 阶矩阵;此时由A 的元素按原来排列的形式构成的n 阶行列式;称为矩阵A 的行列式;记为A .注:矩阵和行列式是两个完全不同的两个概念..2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法1矩阵的乘法不满足交换律和消去律;两个非零矩阵相乘可能是零矩阵..如果两矩阵A 与B 相乘;有BA AB =;则称矩阵A 与B 可换..注:矩阵乘积不一定符合交换2方阵的幂:对于n 阶矩阵A 及自然数k ;个k k A A A A ⋅⋅= 规定I A =0;其中I 为单位阵 .3 设多项式函数k k k k a a a a ++++=--λλλλϕ1110)( ;A 为方阵;矩阵A 的多项式I a A a A a A a A k k k k ++++=--1110)( ϕ;其中I 为单位阵..4n 阶矩阵A 和B ;则B A AB =.5n 阶矩阵A ;则A A nλλ=4、分块矩阵及其运算5、逆矩阵:可逆矩阵若矩阵A 可逆;则其逆矩阵是唯一的;矩阵A 的伴随矩阵记为*A ; E A A A AA ==**矩阵可逆的充要条件;逆矩阵的性质..6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵..7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩8、矩阵的等价二要求1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等2、了解几种特殊的矩阵及其性质3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时;会用伴随矩阵求逆矩阵5、了解分块矩阵及其运算的方法1在对矩阵的分法符合分块矩阵运算规则的条件下;其分块矩阵的运算在形式上与不分块矩阵的运算是一致的..2特殊分法的分块矩阵的乘法;例如n m A ⨯;l n B ⨯;将矩阵B 分块为) (21l b b b B =;其中j b l j 2, ,1=是矩阵B 的第j 列;则=AB ) (21l b b b A ) (21l Ab Ab Ab =又如将n 阶矩阵P 分块为) (21n p p p P =;其中j p n j 2, ,1=是矩阵P 的第j 列.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n P λλλ 0 0 00 0 00 0 0 21 ) (21n p p p = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ 0 0 00 0 00 0 0 21) (2211n n p p p λλλ = 3设对角分块矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=SS A A A A 2211 ;),2,1(s P A PP =均为方阵; A 可逆的充要条件是PP A 均可逆;s P ,2,1=;且⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=----11221111 ss A A A A6、理解和掌握矩阵的初等变换和初等矩阵及其有关理论;掌握矩阵的初等变换;化矩阵为行最简形;会用初等变换求矩阵的秩、求逆矩阵7、理解矩阵的秩的概念以及初等变换不改变矩阵的秩等有关理论8、若矩阵A 经过有限次初等变换得到矩阵B ;则称矩阵A 和矩阵B 等价;记为B A ≅. n m ⨯矩阵A 和B 等价当且仅当)()(B r A r =;在等价意义下的标准型:若r A r =)(;则r D A ≅;⎥⎦⎤⎢⎣⎡=000 r r I D ;r I 为r 阶单位矩阵.. 因此n 阶矩阵A 可逆的充要条件为n I A ≅..第三章 线性方程组一要点1、n 维向量;向量的线性运算及其有关运算律记所有n 维向量的集合为n R ;n R 中定义了n 维向量的线性运算;则称nR 为 n 维向量空间..2、向量间的线性关系1线性组合与线性表示;线性表示的判定2线性相关与线性无关;向量组的线性相关与无关的判定3、向量组的等价;向量组的秩;向量组的极大无关组及其求法;向量组的秩及其求法 1设有两个向量组,1α,2αs α )(A,1β,2βt β )(B向量组)(A 和)(B 可以相互表示;称向量组)(A 和)(B 等价..向量组的等价具有传递性..2一个向量组的极大无关组不是惟一的;但其所含向量的个数相同;那么这个相同的个数定义为向量组的秩..4、矩阵的秩与向量组的秩的关系5、线性方程组的求解1线性方程组的消元解法2线性方程组解的存在性和唯一性的判定3线性方程组解的结构4齐次线性方程的基础解系与全部解的求法5非齐次方程组解的求法二要求1、理解n 维向量的概念;掌握向量的线性运算及有关的运算律2、掌握向量的线性组合、线性表示、线性相关、线性无关等概念3、掌握线性表示、线性相关、线性无关的有关定理4、理解并掌握向量组的等价极大无关组、向量组的秩等概念;及极大无关组、向量组秩的求法5、掌握线性方程组的矩阵形式、向量形式的表示方法6、会用消元法解线性方程组7、理解并掌握齐次方程组有非零解的充分条件及其判别方法8、理解并掌握齐次方程组的基础解系、全部解的概念及其求法9、理解非齐次方程组与其导出组解的关系;掌握非齐次方程组的求解方法第四章 矩阵的特征值与特征向量一要点1、矩阵的特征值与特征向量的定义;特征方程、特征值与特征向量的求法与性质2、相似矩阵的定义、性质;矩阵可对角化的条件3、实对称矩阵的特征值和特征向量向量内积的定义及其性质;正交向量组;施密特正交化方法;正交矩阵;实对称矩阵的特征值与特征向量的性质;实对称矩阵的对角化二要求1、理解矩阵的特征值、特征向量的概念及有关性质2、掌握特征值与特征向量的求法3、理解并掌握相似矩阵的概念与性质4、掌握判断矩阵与对角矩阵相似的条件及对角化的方法5、会将实对称矩阵正交相似变换化为对角矩阵..第五章二次型一要点1、二次型与对称矩阵:二次型的定义;二次型与对称矩阵的对应关系2、二次型与对称矩阵的标准形配方法;初等变换法;正交变换法;合同矩阵;二次型及对称矩阵的标准形与规范形 3、二次型与对称矩阵的有定性二次型与对称矩阵的正定、负定、半正定、半负定二要求1、理解并掌握二次型的定义及其矩阵的表示方法..2、会用三种非退化线性替换:即配方法、初等变换法、正交变换法化二次型为标准形及规范型3、掌握二次型的正定、负定、半正定、半负定的定义;会判定二次型的正定性..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数知识点总结第二章 矩阵及其运算第一节 矩阵 定义由m n ⨯个数()1,2,,;1,2,,ija i m j n ==排成的m 行n 列的数表111212122212nn m m mna a a a aa a a a 称为m 行n 列矩阵。

简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫⎪⎪= ⎪⎪⎝⎭,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元。

说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。

扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A 。

记作:A n 。

行(列)矩阵:只有一行(列)的矩阵。

也称行(列)向量。

同型矩阵:两矩阵的行数相等,列数也相等。

相等矩阵:AB 同型,且对应元素相等。

记作:A =B 零矩阵:元素都是零的矩阵(不同型的零矩阵不同) 对角阵:不在主对角线上的元素都是零。

单位阵:主对角线上元素都是1,其它元素都是0,记作:E n (不引起混淆时,也可表示为E )(课本P29—P31)注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同。

第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++⎪+= ⎪⎪+++⎝⎭说明 只有当两个矩阵是同型矩阵时,才能进行加法运算。

(课本P33) 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-。

(课本P33) 数与矩阵相乘,A A A λλλ数与矩阵的乘积记作或规定为111212122211,n n m m mn a a a a a a A A A A A a a a λλλλλλλλλλλλλλ⎛⎫ ⎪ ⎪== ⎪⎪⎝⎭数与矩阵的乘积记作或规定为数乘矩阵的运算规律(设A B 、为m n ⨯矩阵,,λμ为数)()()()1A A λμλμ=; ()()2A A A λμλμ+=+;()()3A B A B λλλ+=+。

(课本P33) 矩阵相加与数乘矩阵统称为矩阵的线性运算。

矩阵与矩阵相乘 设(b )ij B =是一个m s ⨯矩阵,(b )ij B =是一个s n ⨯矩阵,那么规定矩阵A与矩阵B的乘积是一个m n ⨯矩阵(c)ij C =,其中()12121122j j i i is i j i j is sj sj b b a a a a b a b a b b ⎛⎫ ⎪ ⎪=+++ ⎪ ⎪ ⎪⎝⎭1sik kj k a b ==∑,()1,2,;1,2,,i m j n ==,并把此乘积记作C AB = 注意1。

A 与B 能相乘的条件是:A 的列数=B 的行数。

2。

矩阵的乘法不满足交换律,即在一般情况下,AB BA ≠,而且两个非零矩阵的乘积可能是零矩阵。

3。

对于n 阶方阵A 和B ,若AB=BA ,则称A 与B 是可交换的。

矩阵乘法的运算规律()()()1AB C A BC =; ()()()()2AB A B A B λλλ==()()3A B C AB AC +=+,()B C A BA CA +=+ ()4m n n n m m m n m n A E E A A ⨯⨯⨯⨯⨯==()5若A 是n 阶方阵,则称 A k 为A 的k 次幂,即kk A A A A =个,并且m k m kA A A +=,()km mk A A =(),m k 为正整数。

规定:A 0=E注意 矩阵不满足交换律,即AB BA ≠,()kkkAB A B ≠(但也有例外)(课本P36)纯量阵 矩阵0E 0λλλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭称为纯量阵,作用是将图形放大λ倍。

且有()(E )E A A A λλλ==,A 为n 阶方阵时,有()(E )n n n n n E A A A λλλ==,表明纯量阵与任何同阶方阵都是可交换的。

(课本P36)转置矩阵把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作A T,如122458A ⎛⎫= ⎪⎝⎭,142528TA ⎛⎫⎪= ⎪ ⎪⎝⎭。

转置矩阵的运算性质()()1TT AA =;()()2TT T A B A B +=+;()()3TT A A λλ=;()()4TT T AB B A =。

(课本P39) 方阵的行列式由n 阶方阵A 的元素所构成的行列式,叫做方阵A 的行列式,记作A 或det A (记住这个符号)注意矩阵与行列式是两个不同的概念,n 阶矩阵是n 2个数按一定方式排成的数表,而n阶行列式则是这些数按一定的运算法则所确定的一个数。

运算性质()1T A A =;()2nA A λλ=;(3)AB A B B A BA ===(课本P40)对称阵 设A 为n 阶方阵,如果满足A =A T ,即(),1,2,,ij ji a a i j n ==那么A 称为对称阵。

说明对称阵的元素以主对角线为对称轴对应相等,如果TA A =-则称矩阵A 为反对称的。

即反对称矩阵A =(a ij )中的元素满足a ij =-a ji ,i ,j =1,2,…n 伴随矩阵行列式A 的各个元素的代数余子式ij A 所构成的如下矩阵112111222212n n nnnn A A A A A A A A A A *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵。

性质 AA A A A E **==(易忘知识点)(课本P ? ) 总结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算。

(2)只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘,且矩阵相乘不满足交换律。

(3)矩阵的数乘运算与行列式的数乘运算不同。

第三节 逆矩阵定义对于n 阶矩阵A ,如果有一个n 阶矩阵B ,使得AB =BA =E 则说矩阵A 是可逆的,并把矩阵B 称为A 的逆矩阵。

1A A -的逆矩阵记作,1A B -=即。

说明1 A ,B 互为逆阵, A = B -12 只对方阵定义逆阵。

3.若A 是可逆矩阵,则A 的逆矩阵是唯一的。

定理1 矩阵A 可逆的充分必要条件是0A ≠,并且当A 可逆时,有1*1AA A-=(重要)(证明见课本P ? ) 奇异矩阵与非奇异矩阵当0A =时,A 称为奇异矩阵,当0A ≠时,A 称为非奇异矩阵。

即0A A A ⇔⇔≠可逆为非奇异矩阵。

推论若(A=E)AB E =或B ,则1B A -=(证明见课本P ? )求逆矩阵方法**1(1)||||021(3)||A A A A A A -≠=先求并判断当时逆阵存在;()求;求。

更好的求逆矩阵的方法--chapter3初等变换法(A,E) 逆矩阵的运算性质()()1111,,A A A A ---=若可逆则亦可逆且()()1112,0,,A A A A λλλλ--≠=若可逆数则可逆且。

()1113,,,A B AB AB B A ---=若为同阶方阵且均可逆则亦可逆且()。

(以上证明见课本P43)()()()114,,TT T A A A A --=若可逆则亦可逆且。

()115,A A A --=若可逆则有。

总结逆矩阵的计算方法()1待定系数法;()12A A A*-=利用公式;()()3初等变换法下一章介绍第四节 矩阵分块法矩阵分块将矩阵A 用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A 的子块,以子块为元素的形式上的矩阵称为分块矩阵。

分块的目的是为了简化运算。

分块矩阵的运算规则 加法 A 与B 同型,且A 、B 的分块方法相同,则A 与B 的和定义为对应子块相加。

数乘()ij A A λλ=。

转置112111121312222122231323,T T TT T T T A A A A A A A A A A A A A A ⎛⎫⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭设则。

(先外转再内转)乘法 首先AB 有意义,其次A 的列的分法与B 的行的分法相同。

,,A m l B l n ⨯⨯设为矩阵为矩阵分块成()1212,,(),()t n B B A A A A B B ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭即列向量组即行向量组,1212,,,,,,,i i it j j tj A A A B B B 其中的列数分别等于的行数那么1111r s sr C C AB C C ⎛⎫ ⎪=⎪ ⎪⎝⎭,()11,,;1,,tij ik kjk C A B i s j r ====∑其中。

结论 分块矩阵之间与一般矩阵之间的运算性质类似。

分块对角阵(准对角矩阵)设A 为n 阶矩阵,若A 的分块矩阵只有在主对角线上有非零子块,其余子块都为零矩阵,且非零子块都是方阵,即12s A A A A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭,()1,2,iA i s =其中都是方阵,则有:121)s A A A A =。

122)0,,i s A A A A A A ⎛⎫⎪⎪≠= ⎪ ⎪ ⎪⎝⎭若每个则可逆且有,()1111121,2,,,,,i s A A i s A diag A A A ----⇔==可逆可逆且(diag (A )表示对角阵A )(课本P ? )有用的结论 TA A O,A O P?==设则(证明见课本)线性方程组的分块表示线性方程组1111221121122222m11m22m ..............................................n n n n n n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,111112112221222212......A (), , , ...n n ij n m m m mnm x b a a a b x b a a a b a x b B x b a a a b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭记, 其中A 为系数矩阵,x 称为未知数向量,b 称为常数向量,B 称为增广矩阵。

相关文档
最新文档