北京航空航天大学航空燃气轮机结构设计课程报告

北京航空航天大学航空燃气轮机结构设计课程报告
北京航空航天大学航空燃气轮机结构设计课程报告

航空燃气轮机结构设计课程报告PW4000高涵道比涡扇发动机总体结构分析

ppt汇报人:张X 1113XXXX

报告撰写人:邵X 1113XXXX

柳XX 1113XXXX

资料收集人:万XX 11131048

杨XX 11131047

廉XX 11131046

目录

摘要 (3)

0.PW4000简介 (4)

1.高低压转子结构形式及支承方案 (4)

1.1高低压转子的结构形式 (4)

1.1.1低压转子 (4)

1.1.2高压转子 (4)

1.2支承方案 (4)

2.传力路线分析 (5)

2.1气动力: (5)

2.1.1扭矩 (5)

2.1.2轴向力 (5)

2.2惯性力: (5)

2.3结构支承传力分析 (5)

3.风扇转子及机匣设计要求和结构特点 (6)

3.1风扇转子 (6)

3.1.1设计要求 (6)

3.1.2结构特点 (6)

3.2机匣 (7)

3.2.1设计要求 (7)

3.2.2结构特点 (7)

4.气流通道设计特点 (7)

4.2气流通道形式 (8)

4.3PW4000 (8)

5.涡轮转子-支承结构设计特点 (8)

参考文献 (9)

摘要:本文是《航空燃气轮机结构设计课程汇报》所要求的结构分析汇报,主要从高低压转子结构与支承方案、传力路线、风扇转子及机匣设计、涡轮转子支承结构方面分析了PW4000发动机,还探讨了从结构设计上实现高气动效率的措施。

关键词:PW4000 高涵道比涡扇发动机结构分析

0.PW4000简介

PW4000是美国普拉特·惠特尼公司于1982年12月8日宣布拟研制的一种商业用大推力涡扇发动机。旨在取代JT9D-7R4发动机满足未来宽体客机的需要。设计的目标是在发动机安装尺寸不变的情况下,采用先进技术提高发动机性能(增加推力,降低耗油率)。

1987年7月首次交付使用,装备于B767-200、A310飞机。

1.高低压转子结构形式及支承方案

1.1高低压转子的结构形式

1.1.1低压转子

为鼓式结构,结构特点——结构简单、零件数目少、加工方面、具有较高抗弯刚性,但,存在抵抗离心力的强度限制。

1.1.2高压转子

为盘鼓混合式结构,且为焊接和短螺栓连接的组合。结构特点——由盘、鼓筒、轴组成,兼具鼓式转子抗弯性和盘式转子强度高的特点。

1.2支承方案

PW4000采用了普惠传统的设计。低压转子为0-2-1方案,高压转子为1-1-0方案,5个支点支承于3个机匣上,无中介支点。

方案分析:

低压转子上增加了一个支点,即在风扇后滚珠轴承后面,增加了一个滚棒轴承,很好地解决了低压转子刚度不足的问题。

高压转子采用的二支点支撑方案将后支点安置在涡轮之前,可以使两支点间的距离减小,从而有利于控制轴的变形,但是由于轴承径向尺寸的限制,涡轮轴刚性较小,并且两级涡轮盘呈悬臂。然而根据国外学者研究,两级涡轮的结构采用1-1-0较为有利。

这种方案无中介支点,因而结构简单。但需要有较长的低压轴,加工困难。

LP 0--2--1

1#、1.5#、4#

HP 1--1—0

2#、3#

2.传力路线分析

总体传力路线:叶片——盘\鼓筒——轴承——轴——机匣(径向)

2.1气动力:

2.1.1扭矩

气动产生的扭矩将一方面通过转子叶片传给轴承再传给轴,另一方面将通过静子传给支撑机匣,粗略地看两者可以抵消。而实际上由涡轮输出的燃气并非完全轴向,故最终作用于机匣上少量力矩,再由发动机安装边传给飞机。

扭矩的传递依靠联轴器。

2.1.2轴向力

气动产生的轴向力在压气机跟涡轮上有着较大的力,先是气体冲撞叶片传递给叶片,再由鼓筒或盘传递给轴承,而轴承承受的轴向力需要卸荷——一方面压气机和涡轮的轴向力方向相反,相邻安装有助于卸荷,另一方面卸荷腔的应用也将减小轴向载荷。

2.2惯性力:

发动机内的部件自身质量会产生径向力,这个径向力将由轴承支承,而轴承最终将力传递给机匣。PW4000应用了涡轮级间支撑框架传力——在两级涡轮之间建立了承力框架,但这种做法拉长了发动机轴向长度,且降低了涡轮效率。同时由于PW4000涡轮转子有后支点,结构上采用了涡轮后轴承机匣,将轴承负荷外传。

2.3结构支承传力分析

将轴承从左向右依次编号为1、1.5、2、3、4

轴承1将低压压气机的推力传递给中介机匣;

轴承1.5径向支承低压转子驱动轴;

轴承2将高压压气机推力传给中介机匣;

轴承3径向支承高压压气机和高压涡轮;

轴承4径向支承低压转子尾端和低压涡轮。

3.风扇转子及机匣设计要求和结构特点

3.1风扇转子

3.1.1设计要求

转子要有足够的刚性和强度;

基本原则是等强度,等刚度设计

抗外物打伤能力和包容能力强;

采用结构措施提高可靠性

防喘、减缓振动,避免共振;

效率提高、工作稳定可靠;

重量轻、寿命长、成本低。

3.1.2结构特点

结构形式:

鼓式转子:结构简单,零件数目少,加工方便,并且具有较高的抗弯性。

盘式转子:由一组轮盘和中心轴组成,与鼓式转子相比结构强度好,但抗弯性能差,。容易产生振动。

转子特点:

38片叶身带中间肩的钛合金叶片。

叶根为燕尾型榫头。

风扇叶片为LRU, 可在外场按重量矩成对更

换。

叶身构造特点:

带凸肩阻尼结构的叶片叶身中部配有减振

凸肩(或称阻尼台),各个叶片之间的凸肩相互

顶紧,可避免发生共振和颤振,提高叶片抗外

物打击能力。

3.2机匣

3.2.1设计要求

在支撑结构中承担着承力框架的作用,同时承担防止叶片飞出时的包容作用和吸声降噪的作用。风扇机匣提供一平滑气流通道并支撑安装进气道整流罩。

3.2.2结构特点

前风扇机匣:

1、支撑安装进气道整流锥

2、包容环(阻隔器):内有风扇叶尖防磨带—可阻挡风扇叶片断裂时径向飞出发动机。

中介机匣:

1、发动机的主要结构件

2、有许多发动机组件的安装点,主要实现内外涵道分流或气流通道的过渡转接。

高压压气机机匣:

采用典型双层机匣结构,内机匣做成沿轴向分成多段,每段机匣均做成整环,用两段机匣的安装边将带安装边的外环夹住,静子叶片做成几个扇形段。装拆时,无需装拆叶片。这种结构设计保证了均匀的叶尖间隙,但结构变的复杂,质量增加。

4.气流通道设计特点

4.1特点

进口处:外物易打伤、结冰、腐蚀。

转速高:叶片根部、轮盘承受负荷极大,平衡要求高。

对空气做功:要求效率高、叶型设计

叶片高而薄:易振动、高频疲劳。

4.2气流通道形式

等外径设计:

能充分提高叶片切向速度,加大加工量,以减少压气机级数。

切向速度受到强度的限制。

多在压气机前面几级使用。

等内径设计:

优点:提高末级叶片效率。

缺点:对气体加功量小,级数多。

等中径设计:

介于两者之间,一般均混合采用

4.3PW4000

低压压气机:通道形式:弧形

高压压气机:采用等内径设计

5.涡轮转子-支承结构设计特点

3号轴承是高压涡轮转子前支点。它装于轴承衬套上,衬套上安装轴承处开有五道环形槽,衬套与涡轮轴仅在前后端接触,减少了对轴承的传热。另外,滑油喷油嘴对着涡轮轴喷入一定量的滑油,使涡轮轴的温度降低。滑油腔的封严采用石墨密封装置。静止不转动的石墨环的前端面,在弹簧的作用下压在与轴一起旋转的封严挡环上,进行动密封。石墨与隔热罩间有缝隙,也会产生滑油的泄露,因此采用了两圈涨圈紧紧抵住石墨内环内径,进行静密封。工作时,涨圈与石墨间基本无相对移动,仅石墨端面与封严挡环间有相对摩擦;当石墨磨损后,石墨在弹簧的作用下会有微量轴向移动,这是石墨与涨圈间有很小的相对轴向摩擦。为了润滑石墨端面与封严挡环间相对摩擦的表面,并冷却封严挡环,设有专门的喷嘴对其喷以滑油。由于石墨具有高温稳定性、良好的导热性及润滑性,所以它在高温、高压差、高转速下能可靠工作。

4号轴承是低压涡轮转子后支点,采用带弹性支座挤压油膜的支点结构。轴承外环以一定的间隙装入后轴承机匣中,间隙中引入润滑系统的压力滑油形成油膜。为防止滑油由两侧泄露,轴承外环两侧处开有环形槽,槽中装有封严环,为防止轴承外环在座孔中转动,在后盖板上做有限动凸块,插入轴承外环的缺口中。挤压油墨减振的工作原理类似于一般的液压减振器或缓冲器,轴承在转子的不平衡力作用的方向移动挤压油膜,在液体动力特性的作用下,外环的移动受到阻碍,同时滑油吸收了外环运动的能量,即振动能量的大部分,从而传到机匣的振动值与振幅均大大减小。该支点采用的是拉杆式弹性支座(折叠式的弹性支座),安装支座的机匣与轴承基本处于同一轴向位置上。这种设计不仅使承力框架间的轴向距离缩短,而且也便于在改型中,不需要改变机匣即可添加一个弹性支座。

6. 结构设计上可以保证高气动效率的实现的措施

1.可以采用端削的方式提高压气机的叶片效率,实现高气动效率。用削去叶尖处部分叶盆金属的办法,使叶尖处的加工量增大,从而延迟了避免附面层的分离,不仅扩大了压气机的稳定工作范围,还有利于提高增压比和效率。PW4000采用了可控扩散叶型和及端部过弯叶身的叶片,这样使得叶型厚度及曲率按最佳分布,因而基本消除了附面层的分离,增加了压气机的有效流通面积,提高了压气机的效率,端部过弯叶身是为了减少叶片两端壁附面层所造成的二次损失,因而将叶身尖部及根部前后缘特别地加以弯曲。

2.涡轮叶片采用带冠叶片。这样可以减小叶片尖部由叶盆向叶背的漏气,降低二次损失,提高涡轮效率。

3.涡轮叶片也可采用可控涡变量叶片。燃气流在导向器和转子叶片间的环形通道中的做功量是根据需要来控制的,可控涡的变功量设计减少了二次损失,提高了涡轮效率。

参考文献

陈光,洪杰,马艳红.航空燃气涡轮发动机结构.北京:北京航空航天大学出版社,2010.

陈光.航空发动机结构设计分析.北京:北京航空航天大学出版社,2006.

钢结构课程设计

中南大学 《钢结构基本原理》 课程设计 设计名称:钢框架主次梁设计 专业班级:土木1112班 姓名:周世超 学号: 指导老师:龚永智 设计任务书 (一)、设计题目 某钢平台结构(布置及)设计。 (二)、设计规范及参考书籍 1、规范 (1)中华人民共和国建设部. 建筑结构制图标准[S](GB/T50105-2001) (2)中华人民共和国建设部. 房屋建筑制图统一标准[S](GB/T50001-2001) (3)中华人民共和国建设部. 建筑结构荷载规范[S](GB5009-2001)(4)中华人民共和国建设部. 钢结构设计规范[S](GB50017-2003)(5)中华人民共和国建设部. 钢结构工程施工质量验收规范[S](GB50205-2001) 2、参考书籍

(1)沈祖炎等. 钢结构基本原理[M]. 中国建筑工业出版社,2006 (2)毛德培. 钢结构[M]. 中国铁道出版社,1999 (3)陈绍藩. 钢结构[M]. 中国建筑工业出版社,2003 (4)李星荣等. 钢结构连接节点设计手册(第二版)[M]. 中国建筑工业出版社,2005 (5)包头钢铁设计研究院?中国钢结构协会房屋建筑钢结构协. 钢结构设计与计算(第二版)[M]. 机械工业出版社,2006 (三)、设计内容 某多层图书馆二楼书库楼面结构布置示意图如图一所示,结构采用横向框架承重,楼面板为120mm厚的单向实心钢筋混凝土板。荷载的传力途径为:楼面板—次梁—主梁—柱—基础,设计中仅考虑竖向荷载与动荷载的作用。框架按照连续梁计算,次梁按照简支梁计算。其中框架柱为焊接H型钢,截面尺寸为H600X300X12X18,楼层层高取3.9米 采用的钢材为Q345,焊条为E50 柱网尺寸9 ×9,永久荷载5,活荷载10 活荷载分项系数为1.4 恒荷载分项系数为1.2 (四)、设计内容要求 1)验算焊接H型钢框架柱的承载能力,如不满足请自行调整 2)设计次梁截面CL-1(热轧H型钢)。 3)设计框架主梁截面KL-1(焊接工字钢)。 4)设计框架主梁短梁段与框架柱连接节点,要求采用焊缝连接,短

钢结构课程设计

《钢结构设计原理》课程设计 计 算 书 姓名:×× 学号:U2009158×× 专业班级:土木工程0905班 指导老师:张卉 完成时间:2012年2月18日

第一部分钢结构课程设计任务书 一、设计资料及依据 根据学号U1及次序14得已知条件:某车间跨度为24m,厂房总长度102m,柱距6m,车间内设有两台50/10t中级工作制软钩桥式吊车,地区计算温度高于-20℃,无侵蚀性介质,地震设防烈度为6度,屋架下弦标高为18m;采用×6 m 预应力钢筋混凝土大型屋面板,Ⅱ级防水,卷材屋面,桁架采用梯形钢桁架,两端铰支在钢筋混凝土柱上,上柱截面尺寸为450×450mm,混凝土强度等级为C25,屋架采用的钢材为Q235B钢,焊条为E43型。 屋架计算跨度: 03002400030023700mm L L =-=-= 屋架端部高度: 01900mm H=跨度: 01 10 i=计算跨度处高度: 19001200150120001915mm H=+?÷= 屋架跨中高度: 1 1900120003100mm 10 h=+?= 表1 荷载标准值 二、屋架尺寸及支撑布置

屋架形式及尺寸如图1: 屋盖的支撑布置如图2: 层架上弦(下弦)支撑布置图 垂直支撑1-1 垂直支撑2-2 图2 桁架支撑布置 符号说明:GWJ—钢屋架;SC—上线支撑;XC—下弦支撑;

CC —垂直支撑;GC —刚性系杆;LG —柔性系杆 三、 荷载计算 屋面活载与雪荷载不会同时出现,从资料可知屋面活载大于雪荷载,故取屋 面活载计算。沿屋面斜面分布的永久荷载乘以1/cos /10 1.005α==换算为沿水平投影面分布的荷载。 标准永久荷载: 2222222 0.4kN/m 0.402kN/m 201:2.50.4kN/m 0.402kN/m 1500.9kN/m 0.905kN/m kN/m 1.?=?=?=?=改性沥青防水层 1.005厚水泥砂浆找平层 1.005厚加气混凝土保温层 1.005预应力混凝土大型屋面板(包括灌缝) 1.005 1.42 222 407kN/m kN/m 0.386kN/m kN/m ?=屋架和支撑自重 1.0050.384悬挂管道 + 0.0001 23.537kN/m ?共 1.35 2 kN/m 共 4.775 标准可变荷载: 222 2 0.7kN/m 0.98kN/m 0.7kN/m 0.98kN/m ?=?=不上人屋面活载 1.4积灰荷载 + 1.4 21.96kN/m 共 设计桁架时应考虑一下三种荷载组合: 1、全跨永久荷载+全跨可变荷载 屋架上弦节点荷载:(4.775 1.96) 1.5660.615kN F =+??= 2、全跨永久荷载+半跨可变荷载 全跨节点永久荷载: 1 4.775 1.5642.975kN F =??=

航空发动机结构分析思考题答案

《航空发动机结构分析》 课后思考题答案 第一章概论 1.航空燃气涡轮发动机有哪些基本类型?指出它们的共同点、区别和应用。 答: 2.涡喷、涡扇、军用涡扇分别是在何年代问世的? 答:涡喷二十世纪三十年代(1937年WU;1937年HeS3B); 涡扇 1960~1962 军用涡扇 1966~1967 3.简述涡轮风扇发动机的基本类型。 答:不带加力,带加力,分排,混排,高涵道比,低涵道比。 4.什么是涵道比?涡扇发动机如何按涵道比分类? 答:(一)B/T,外涵与内涵空气流量比; (二)高涵道比涡扇(GE90),低涵道比涡扇(Al-37fn) 5.按前后次序写出带加力的燃气涡轮发动机的主要部件。 答:压气机、燃烧室、涡轮、加力燃烧室、喷管。 6.从发动机结构剖面图上,可以得到哪些结构信息? 答: a)发动机类型 b)轴数 c)压气机级数 d)燃烧室类型 e)支点位置 f)支点类型 第二章典型发动机 1.根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡喷、涡扇、军用涡扇发动机的性能指 标。 答:涡喷表2.1 涡扇表2.3 军用涡扇表2.2 2.al-31f发动机的主要结构特点是什么?在该机上采用了哪些先进技术? 答:AL31-F结构特点:全钛进气机匣,23个导流叶片;钛合金风扇,高压压气机,转子级间电子束焊接;高压压气机三级可调静

子叶片九级环形燕尾榫头的工作叶片;环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴;高压涡轮叶片不带冠,榫头处有减振器,低压涡轮叶片带冠;涡轮冷却系统采用了设置在外涵道中的空气-空气换热器,可使冷却空气降温125-210*c;加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障;收敛-扩张型喷管由亚声速、超声速调节片及蜜蜂片各16式组成;排气方式为内、外涵道混合排气。 3.ALF502发动机是什么类型的发动机?它有哪些有点? 答:ALF502,涡轮风扇。优点: ●单元体设计,易维修 ●长寿命、低成本 ●B/T高耗油率低 ●噪声小,排气中NOx量低于规定 第三章压气机 1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些? 答:(一)轴流压气机增压比高、效率高单位面积空气质量流量大,迎风阻力小,但是单级压比小,结构复杂; (二)离心式压气机结构简单、工作可靠、稳定工作范围较宽、单级压比高;但是迎风面积大,难于获得更高的总增压比。 2.轴流式压气机转子结构的三种基本类型是什么?指出各种转子结构的优缺点。 答 3.在盘鼓式转子中,恰当半径是什么?在什么情况下是盘加强鼓? 答:(一)某一中间半径处,两者自由变形相等联成一体后相互没有约束,即无力的作用,这个半径称为恰当半径;(二)当轮盘的自由变形大于鼓筒的自由变形;实际变形处于两者自由变形之间,具体的数值视两者受力大小而定,对轮盘来说,变形减少了,周向应力也减小了;至于鼓筒来说,变形增大了,周向应力增大了。 4.对压气机转子结构设计的基本要求是什么? 答:基本要求:在保证尺寸小、重量轻、结构简单、工艺性好的前提下,转子零、组件及其连接处应保证可靠的承受载荷和传力,具有良好的定心和平衡性、足够的刚性。 5.转子级间联结方法有哪些 答:转子间:1>不可拆卸,2>可拆卸,3>部分不可拆部分可拆的混合式。 6.转子结构的传扭方法有几种?答: a)不可拆卸:例,wp7靠径向销钉和配合摩擦力传递扭矩; b)可拆卸:例,D30ky端面圆弧齿传扭; c)混合式:al31f占全了;cfm56精制短螺栓。 7.如何区分盘鼓式转子和加强的盘式转子? 答:P40 图3.6 _c\d 8.工作叶片主要由哪两部分组成 答:叶身、榫头(有些有凸台) 9.风扇叶片叶身凸台的作用是什么? 答:减振凸台,通过摩擦减少振动,避免发生危险的共振或颤振。 10.叶片的榫头有哪几种基本形式?压气机常用哪一种?答: a)销钉式榫头; b)枞树型榫头;

完整钢结构课程设计精

贵州大学高等教育自学考试实践考试 钢结构课程设计 课程代码:02443 题目:单层工业厂房屋盖结构——梯形钢屋架设计 年级:2 0 1 3 级 专业:建筑工程 层次:本科 姓名:张伟 准考证号:21001181132 衔接院校:贵州大学 指导老师:张筱芸 完成日期: 2015. 4. 24

附件:设计资料 1、设计题目:《单层工业厂房屋盖结构——梯形钢屋架设计》 2、设计任务及参数: 第五组: 某地一机械加工车间,长84m,跨度24m,柱距6m,车间内设有两台40/10T中级工作制桥式吊车,轨顶标高18.5m,柱顶标高27m,地震设计烈度7度。采用梯形钢屋架,封闭结合,1.5×6m预应力钢筋混凝土大型屋面板(1.4KN/m2),上铺100mm厚泡沫混凝土保温层(容重为1KN/m3),三毡四油(上铺绿豆砂)防水层(0.4KN/m2),找平层2cm厚(0.3KN/m2),卷材屋面,屋面坡度i=1/10,屋架简支于钢筋混凝土柱上,混凝土强度等级C20,上柱截面400×400mm。钢材选用Q235B,焊条采用E43型。屋面活荷载标准值0.7KN/m2,积灰荷载标准值0.6KN/m2, 3、设计任务分解 学生按照下表分派的条件,完成梯形钢屋架设计的全部相关计算和验算及构造设计内容。 表-3 4、设计成果要求 在教师指导下,能根据设计任务书的要求,搜集有关资料,熟悉并应用有关规范、标准和图集,独立完成课程设计任务书(指导书)规定的全部内容。 1)需提交完整的设计计算书和梯形钢屋架施工图。 2)梯形钢屋架设计要求:经济合理,技术先进,施工方便。 3)设计计算书要求:计算依据充分、文理通顺、计算结果正确、书写工整、数字准确、图文并茂,统一用A4纸书写(打印)。 A、按步骤设计计算,各设计计算步骤应表达清楚,写出计算表达式及必要的计算过程,对数据的选取应写明判断依据。 B、计算过程中,必须配以相应的计算简图。 C、对计算结果进行复核后,为保证施工质量且方便施工,应按规范要求对计算结果进行调整并写明依据。 4)梯形钢屋架施工图共两张,图纸绘制的要求:布图合理,版面整齐,图线清晰,标注规范,符合规范/图集要求。

钢结构课程设计计算书

一由设计任务书可知: 厂房总长为120m,柱距6m,跨度为24m,屋架端部高度为2m,车间内设有两台中级工作制吊车,该地区冬季最低温度为-22℃。暂不考虑地震设防。 屋面采用1.5m×6.0m预应力大型屋面板,屋面坡度为i=1:10。卷材防水层面(上铺120mm 泡沫混凝土保温层和三毡四油防水层)。屋面活荷载标准值为0.7KN/㎡,雪荷载标准值为0.4KN/㎡,积灰荷载标准值为0.5KN/㎡。 屋架采用梯形钢屋架,钢屋架简支于钢筋混凝土柱上,混凝土强度等级C20. 二选材: 根据该地区温度及荷载性质,钢材采用Q235-C。其设计强度为215KN/㎡,焊条采用E43型,手工焊接,构件采用钢板及热轧钢筋,构件与支撑的连接用M20普通螺栓。 屋架的计算跨度L。=24000-2×150=23700,端部高度:h=2000mm(轴线处),h=2150(计算跨度处)。 三结构形式与布置: 屋架形式及几何尺寸见图1所示: 图1 屋架支撑布置见图2所示:

图2 四荷载与内力计算: 1.荷载计算: 活荷载于雪荷载不会同时出现,故取两者较大的活荷载计算。 永久荷载标准值: 防水层(三毡四油上铺小石子)0.35KN/㎡找平层(20mm厚水泥砂浆)0.02×20=0.40 KN/㎡保温层(40mm厚泡沫混凝土0.25 KN/㎡预应力混凝土大型屋面板 1.4 KN/㎡钢屋架和支撑自重0.12+0.011×24=0.384 KN/㎡ 总计:2.784 KN/㎡可变荷载标准值: 雪荷载<屋面活荷载(取两者较大值)0.7KN/㎡积灰荷载0.5KN/㎡风载为吸力,起卸载作用,一般不予考虑。 总计:1.2 KN/㎡永久荷载设计值 1.2×2.784 KN/㎡=3.3408KN/㎡可变荷载设计值 1.4×1.2KN/㎡=1.68KN/㎡2.荷载组合: 设计屋架时应考虑以下三种组合: 组合一全跨永久荷载+全跨可变荷载 屋架上弦荷载P=(3.3408KN/㎡+1.68KN/㎡) ×1.5×6=45.1872KN 组合二全跨永久荷载+半跨可变荷载 屋架上弦荷载P1=3.3408KN/㎡×1.5×6=30.07KN P2=1.68KN/㎡×1.5×6=15.12KN 组合三全跨屋架及支撑自重+半跨大型屋面板自重+半跨屋面活荷载

钢结构课程设计参考答案[1]

一、设计题目 18m跨三角形钢桁架 二、设计资料 1、某单层轻型工业厂房,平面尺寸18m×90m,柱距6m,柱高6m,采用三角形钢屋架,跨度18m,屋面坡度i=1/3,屋面防水材料为波形彩钢瓦+50厚玻纤棉+钢丝网铝箔,冷弯薄壁C型钢檩条,檩条斜距1.555m,支撑布置自行设计,无吊车。采用钢筋混凝土柱,混凝土强度等级为C20,钢屋架与柱铰接,柱截面尺寸400×600mm;使用温度-5摄氏度以上,地震烈度7度,连接方法及荷载性质,按设计规范要求。屋架轴线图及杆件内力图见图。 2、荷载标准值如下: (1)、永久荷载(沿屋面分布) 屋面防水结构+檩条 0.2KN/m2 钢屋架及支撑等自重 0.35KN/m2 (2)、可变荷载 屋面活荷载(按水平投影)0.50KN/m2 基本风压(地面粗糙度为B类)0.80KN/m2 三、要求设计内容 1、屋盖结构布置 2、屋架杆件内力计算和组合 3、选择杆件截面型号,设计节点 4、绘制施工图 四、课题设计正文 (一)屋盖结构布置: 上弦节间长度为两个檩距,有节间荷载。上弦横向水平支撑设置在房屋两端及伸缩缝处的第一开间内,并在相应开间屋架跨中设置垂直支撑,在其余开间屋架下弦跨中设置一道通长的水平系杆。上弦横向水平支撑在交叉点处与檩条相连。上弦杆在屋架平面外的计算长度等于其节间几何长度;下弦杆在屋架平面外的计算长度为屋架跨度的1/2。具体支撑布置如下图:

屋架支撑布置 1-1剖面图 (二)、屋架杆件内力计算和组合 1、荷载组合:恒载+活荷载;恒载+半跨活荷载 2、上弦的集中荷载及节点荷载如下图: 上弦集中荷载

上弦节点荷载 上弦集中荷载及节点荷载表 3、上弦节点风荷载设计值如图所示。 (1)按照规范可知风荷载体形系数:背风面-0.5;迎风面-0.5 (2)上弦节点风荷载为: 上弦节点风荷载 W=1.4×(-0.5)×0.8×1.556×6=-5.228KN 4、内力计算 (1)杆件内力及内力组合如下表: (2)上弦杆弯矩计算。 端节间跨中正弯矩为 M1=0.8M0=0.8×P丿l=0.8(1/4×12.04kNm×3/√10×1.555m) =3.553kNm 中间节间跨中正弯矩和中间节点负弯矩为

钢结构课程设计

. . XX 工程学院 建筑钢结构 课程设计 班级: 学号: :

目录 前言 (2) 某车间刚屋架设计 1.设计资料 (3) 2.荷载计算 (5) 3.荷载组合 (5) 4.内力计算 (6) 5.杆件设计 (7) 6.节点设计 (11) 参考文献 (19)

前言 本书意在完成钢结构设计课的作业,以及对自己两学期来钢结构设计课所学知识的一次检验。本书主要对一个单层厂房的屋盖进行设计验算,。编撰过程由于疏忽或个人知识面的局限性,难免会产生一些失误以及错误,望各位老师批评改正。

某车间钢屋架设计 1. 设计资料 1.1屋面类型 无檩屋面,屋面采用1.5X6m 的预应力钢筋混凝土大型屋面板。 1.2杆件及连接 杆件采用Q235钢,钢材强度设计值f =215N/mm 2。角焊缝强度设计值 为 2/160mm kN f w f 1.3屋架主要尺寸 Ⅰ.跨度30m Ⅱ.屋架上弦坡度1/10 Ⅲ.架端架高度1990mm Ⅳ.屋架跨中高度3340mm 1.4其他设计资料 Ⅰ.厂房长度240m Ⅱ.屋架支撑于钢筋混凝土柱顶 Ⅲ.柱距6m Ⅳ.柱网布置如图

Ⅴ.架几何尺寸 Ⅵ.屋架支撑布置

2.荷载计算 预应力混凝土大型屋面板 1.0?1.4 kN/m2=1.4 kN/m2 屋架自重0.12+0.011?30=0.45 KN/m2 永久荷载 2.2 KN/m2 共 4.05 kN/m2屋面活载 1.0 kN/m2 3. 荷载组合 由永久荷载控制的荷载组合值为 q=1.35×4.05+1.4×0.7×1.0=6.45KN/㎡ 由可变荷载控制的荷载组合值为 q=1.2×4.05+1.4×1.0=6.26KN/㎡ 故永久荷载控制的组合起控制作用。 Ⅰ.全垮永久荷载加全垮可变荷载 F=6.45×1.5×6=58.05KN Ⅱ.全垮永久荷载加半跨可变荷载

航空发动机结构设计中可装配性案例分析

航空发动机结构设计中可装配性案例分析 摘要:航空发动机零部件数目繁多,结构复杂,精度及性能要求高,型号规格相似,在生命周期内需要多次装配、分解及维修,且为手工装配,工作量大,错装、漏装现象容易发生。因此,对于航空发动机这种高度复杂的产品,除了应当完善严格的工艺规划、装配操作与流程管理外,更应当在设计初期对产品的可装配性进行分析,总体上提高产品质量和可靠性,降低成本,缩短发动机的开发和制造周期。 关键词:航空;发动机;结构设计;可装配性;案例 1分组设计 在航空发动机压气机转子设计中,后几级叶片通常采用环形燕尾榫头固定,即在轮缘上车出 1 个环形燕尾槽安装叶片,使加工简单,装配方便。考虑到叶片在工作中受热膨胀以及为了有利于安装分解,叶片榫头与鼓筒榫槽设计为间隙配合,为防止工作状态叶片甩开后,缘板出现周向碰摩或较大串动,静态装配时要求叶片周向总间隙 M 在合理范围内。 叶片首次装配或更换新叶片后,通常会出现总间隙M 小于规定要求的情况,操作者会将最后 1 个叶片(不带锁紧槽的叶片)暂时不装,将安装的叶片手动排除活动间隙后,用卡尺测量空缺位置的缘板间隙,比对最后 1 个安装叶片的缘板宽度,计算二者差值,即为装配工序留 给加工修磨工序的修磨值,通过修磨值确定对 1 片或多片叶片进行修磨。目前设计要求为:如果装配后不能满足总间隙 M 的要求,允许修磨叶片缘板的 2 个周向侧面,但每边叶片修磨量有上限要求。有时会发生叶片修磨过量,导致叶片修磨后仍无法满足要求,需要更换叶片进行重新修磨,造成叶片的损坏或浪费。 2非均布设计 在某型发动机设计中,4 支点轴承外环安装在高压涡轮后轴颈内,轴向用 4 支点轴承螺母紧固,采用锁紧环防松方法。锁紧环安装在轴承螺母径向安装槽内,通过锁紧环上的定位销插入高压涡轮后轴颈和轴承螺母周向同一个卡槽内防松。其中,高压涡轮后轴颈后端面和轴承螺母后端周向均布 12 个卡槽。要求轴承螺母拧紧至一定的力矩(1193~1342N m)后,用锁紧环锁紧。在实际装配中,在规定的力矩范围内,高压涡轮后轴颈后端面和轴承螺母后端的卡槽只有 1 次机 会重合,或者 12 个槽全部对上,或者 1 个也对不上,旋转角度需为360°÷12÷1=30°,每次都需采用修磨螺母端面的方法解决,既损坏机件连接性能,又耗费人力物力。而在 CFM56 系列发动机类似设计中,高压涡轮后轴颈后端面周向均布 12 个卡槽,而轴承螺母后端面周向均 布 11 个卡槽,螺母旋转 1 周,有 11 次机会可以对正锁紧,旋转角度只需为 360°÷12÷11=2.73°,这样可使力矩范围更窄,也能 1 次对正成功。 3防错设计

钢结构课程设计参考示例

参考实例: 钢结构课程设计例题 -、设计资料 某一单层单跨工业长房。厂房总长度为120m,柱距6m,跨度为27m。车间设有两台中级工作制桥式吊车。该地区冬季最低温度为-20℃。 屋面采用1.5m×6.0m预应力大型屋面板,屋面坡度为i=1:10。上铺120mm 厚泡沫混凝土保温层和三毡四油防水层等。屋面活荷载标准值为0.6kN/㎡,雪荷载标准值为0.75kN/㎡,积灰荷载标准值为0.5kN/㎡。 屋架采用梯形钢屋架,其两端铰支于钢劲混凝土柱上。柱头截面为400mm ×400mm,所用混凝土强度等级为C20。 根据该地区的温度及荷载性质,钢材采用Q235―A―F,其设计强度f=215kN/㎡,焊条采用E43型,手工焊接。构件采用钢板及热轧钢劲,构件与支撑的连接用M20普通螺栓。 屋架的计算跨度:Lo=27000-2×150=26700mm,端部高度:h=2000mm(轴线处),h=2015mm(计算跨度处)。 二、结构形式与布置 屋架形式及几何尺寸见图1所示。

图1 屋架形式及几何尺寸 屋架支撑布置见图2所示。

符号说明:GWJ-(钢屋架);SC-(上弦支撑):XC-(下弦支撑);

CC-(垂直支撑);GG-(刚性系杆);LG-(柔性系杆) 图2 屋架支撑布置图 三、荷载与力计算 1.荷载计算 荷载与雪荷载不会同时出现,故取两者较大的活荷载计算。 永久荷载标准值 放水层(三毡四油上铺小石子)0.35kN/㎡找平层(20mm厚水泥砂浆)0.02×20=0.40kN/㎡ 保温层(120mm厚泡沫混凝土)0.12*6=0.70kN/㎡ 预应力混凝土大型屋面板 1.40kN/㎡钢屋架和支撑自重0.12+0.011×27=0.417kN/㎡ 管道设备自重0.10 kN/㎡ 总计 3.387kN/㎡ 可变荷载标准值 雪荷载0.75kN/㎡积灰荷载0.50kN/㎡ 总计 1.25kN/㎡

北航航空燃气轮机结构设计期末考试复习宝典概要

、填空题。 1.推力是发动机所有部件上气体轴向力的代数和。 2.航空涡轮发动机的五大部件为进气装置、压气机、燃烧室、涡轮和排气装置;其中“三大核心”部件为:压气机、燃烧室和涡轮。 3.压气机的作用提咼空气压力,分成轴流式、离心式和组合式三种 4.离心式压气机的组成:离心式叶轮,叶片式扩压器,压气机机匣。 5.压气机增压比的定义是:压气机出口压力与进口压力的比值,反映了气流在压气机内压力提高的程度。 6.压气机由转子和静子等组成,静子包括机匣和整流器。 7.压气机转子可分为鼓式、盘式和鼓盘式。 8.转子(工作)叶片的部分组成:叶身、樺头、中间叶根。 8.压气机的盘式转子可分为盘式和加强盘式。 9.压气机叶片的榫头联结形式有销钉式榫头;燕尾式榫头;和枞树形榫头。 10.压气机转子叶片通过燕尾形榫头与轮盘上燕尾形榫槽连接在轮盘。 11压气机静子的固定形式有:燕尾形榫头;柱形榫头和焊接在中间环或者机匣上。 12压气机进口整流罩的功用是减小流动损失。 13.压气机进口整流罩做成双层的目的是通加温热空气 14.轴流式压气机转子的组成:盘;鼓(轴)和叶片。 15.压气机进口可变弯度导流叶片(或可调整流叶片)的作用是防止压气机喘振。 16.压气机是安装放气带或者放气活门的作用是防止压气机喘振。 17.采用双转子压气机的作用是防止压气机喘振。 18压气机机匣的基本结构形式:整体式、分半式、分段式。 19压气机机匣的功用:提高压气机效率;承受和传递的负载;包容能力。 20整流叶片与机匣联接的三种基本方法:榫头联接;焊接;环 21.多级轴流式压气机由前向后,转子叶片的长度的变化规律是逐渐缩短。 22.轴流式压气机叶栅通道形状是扩散形。 23.轴流式压气机级是由工作叶轮和整流环组成的。 24.在轴流式压气机的工作叶轮内,气流相对谏度减小,压力、密度增加。 25.在轴流式压气机的整流环内,气流绝对速度减小,压力增加。 26.叶冠的作用:①可减少径向漏气而提高涡轮效率:②可抑制振动。 27.叶身凸台的作用:阻尼减振,避免发生共振或颤震,降低叶片根部的弯曲扭转应力(防

钢结构设计原理的课程设计报告

XX 工学院 课程实训 课程名称:钢结构设计原理专业层次:土木工程(卓越)

1、设计资料 1)某厂房跨度为24m,总长90m,柱距6m,屋架下弦标高为18m。 2)屋架铰支于钢筋混凝土柱顶,上柱截面400×400,混凝土强度等级为C30。 3)屋面采用1.5×6m的预应力钢筋混凝土大型屋面板(屋面板不考虑作为支撑用)。 4)该车间所属地区西安。 5)采用梯形钢屋架。 考虑静载:①预应力钢筋混凝土屋面板(包括嵌缝)1400N/m2 ②二毡三油防水层400N/m2 ③20mm厚水泥砂浆找平400N/m2 ④支撑重量70N/m2 考虑活载:活载700N/m2

6)钢材选用Q345钢,焊条为E50型。 2、屋架形式和几何尺寸 屋面材料为大型屋面板,故采用无檩体系平破梯形屋架。 屋面坡度 i=1/10; 屋架计算跨度L 0=24000-300=23700mm ; 端部高度取H=1990mm ,中部高度取H=3190mm (为L 0/7.4)。 屋架几何尺寸如图1所示: 1拱50 图1:24米跨屋架几何尺寸

三、支撑布置 由于房屋长度有6米,故在房屋两端及中间设置上、下横向水平支撑和屋架两端及跨中三处设置垂直支撑。其他屋架则在垂直支撑处分别于上、下弦设置三道系杆,其中屋脊和两支座处为刚性系杆,其余三道为柔性系杆。 上弦平面支撑布置

屋架和下弦平面支撑布置

垂直支撑布置 4、设计屋架荷载 屋面活荷载与雪荷载不会同时出现,从资料可知屋面活荷载大于雪荷载,故取屋面活荷载计算。由于风荷载为0.35kN/m2 小于0.49kN/m2,故不考虑风荷载的影响。沿屋面分布的永久荷载乘以1/cosα=√1+102/10=1.005换算为沿水平投影面分布的荷载。桁架沿水平投影面积分布的自重(包括支撑)按经验公式( P=0.12+0.011 跨度)计 w 算,跨度单位为m。 标准永久荷载: 二毡三油防水层

航空发动机和燃气轮机耐高温叶片

附件4 航空发动机和燃气轮机耐高温叶片 “一条龙”应用计划申报指南 一、产业链构成 面向航空发动机和燃气轮机等应用领域,以提高高温合金精密铸造涡轮叶片质量和可靠性为核心,组织产业链各环节优势力量,推动重点项目攻关,突破单晶高温合金母合金纯净度控制、复杂定向/单晶涡轮叶片制备、长寿命热障涂层设计与制备等关键技术,带动上游原辅材料产业、高端装备产业等相关产业互融共生、分工合作、利益共享,推进产业链协作发展,形成上下游产业对接顺畅的应用示范全链条,推动航空发动机和燃气轮机的开发、生产和应用。 关键产业链条环节 序号产业链环节航空发动机叶片地面燃气轮机叶片 1上游原材料√√ 2关键设备制造√√ 3高性能涡轮叶片合金开发√√ 4高纯净度母合金制备√√ 5涡轮叶片精密铸造√√ 6涡轮叶片机加√√ 7涡轮叶片制孔√√ 8涡轮叶片焊接√√ 9涡轮叶片热障涂层√√ 10下游应用√√ 二、目标和任务 (一)上游原材料 1.母合金用原材料 (1)环节描述及任务。开发镍、钽、铼等原材料制备技术,提

高原材料的杂质元素含量控制水平,为涡轮叶片用铸造高温合金熔炼提供优质原材料,为母合金锭纯净度控制奠定基础。 (2)具体目标。具备优质原材料生产能力,镍、钽、铼等具体化学成分控制要求如下表所示: 表1镍的化学成分控制要求 表2钽的化学成分控制要求 类别牌号 化学成分,% Ta Nb C O N Fe Ni Mn 不大于 钽条TTa-1余量0.010.0150.200.010.010.0050.003 类别牌号W Mo Si Zr Al Cu Cr Ti 不大于 钽条TTa-10.00 30.0030.010.0030.0030.0030.0050.003 表3铼的化学成分控制要求 类别 化学成分,% Re K Na Ca Fe Cu Mo Pb 不小于不大于 铼条、铼粒99.990.00050.00050.00050.00050.00010.00010.0001 类别W As Se Sn Ba Mn Be Pt 不大于 铼条、铼粒0.00050.00010.00030.00010.00010.00010.00010.0001 类别Co Cd Bi Si Mg C Zn Sb 不大于 铼条、铼粒0.00050.00010.00010.00050.00010.00150.00010.0001 类别Al Ni Ti Cr Tl Te S 不大于 铼条、铼粒0.00010.00050.00050.00010.00010.00010.0005 2.陶瓷型芯/型壳用原材料 (1)环节描述及任务

(完整版)航空发动机结构练习题库(一)

1.航空发动机研制和发展面临的特点不包括下列哪项()。 A.技术难度大 B.研制周期长 C.费用高 D.费用低 正确答案:D 试题解析:发动机研制开发耗费昂贵。 2.航空发动机设计要求包括()。 A.推重比低 B.耗油率高 C.维修性好 D.可操纵性差 正确答案:C 试题解析:航空发动机设计要求其推重比高、耗油率低、可操纵性好、维修性好。 3.下列哪种航空发动机不属于燃气涡轮发动机()。 A.活塞发动机 B.涡喷发动机 C.涡扇发动机 D.涡桨发动机 正确答案:A 试题解析:活塞发动机不属于燃气涡轮发动机,二者结构、原理不同。 4.燃气涡轮发动机的核心机由压气机、燃烧室和()组成。 A.进气道 B.涡轮 C.尾喷管 D.起落架 正确答案:B 试题解析:压气机、燃烧室和涡轮并称为核心机。 5.活塞发动机工作行程不包括()。 A.进气行程 B.压缩行程 C.膨胀行程 D.往返行程 正确答案:D 试题解析: 活塞发动机四个工作行程:进气、压缩、膨胀、排气。 6.燃气涡轮发动机的主要参数不包括下列哪项()。 A.推力 B.推重比 C.耗油率 D.造价 正确答案:D 试题解析:造价不是发动机性能参数。 7.对于现代涡扇发动机,常用()代表发动机推力。 A.低压涡轮出口总压与低压压气机进口总压之比

B.高压涡轮出口总压与压气机进口总压之比 C.高压涡轮出口总压与低压涡轮出口总压之比 D.低压涡轮出口总压与低压涡轮进口总压之比 正确答案:A 试题解析:低压涡轮出口总压与低压压气机进口总压之比用来表示涡扇发动机推力。 8.发动机的推进效率是()。 A.单位时间发动机产生的机械能与单位时间内发动机燃油完全燃烧时放出的热量之比。 B.发动机的推力与动能之比。 C.发动机推进功率与单位时间流过发动机空气的动能增量之比。 D.推进功率与单位时间内发动机加热量之比。 正确答案:C 试题解析:发动机的推进效率是发动机推进功率与单位时间流过发动机空气的动能增量之比。 9.航空燃气涡轮发动机是将()。 A.动能转变为热能的装置 B.热能转变为机械能的装置 C.动能转变为机械能的装置 D.势能转变为热能的装置 正确答案:B 试题解析:航空燃气涡轮发动机是将热能转变为机械能的装置。 10.航空燃气涡轮喷气发动机经济性的指标是()。 A.单位推力 B.燃油消耗率 C.涡轮前燃气总温 D.喷气速度 正确答案:B 试题解析:燃油消耗率是航空燃气涡轮喷气发动机经济性的指标。 11.气流马赫数()时,为超音速流动。 A.小于1 B.大于0 C.大于1 D.不等于1 正确答案:C 试题解析:气流马赫数大于1时,为超音速流动。 12.燃气涡轮喷气发动机产生推力的依据是()。 A.牛顿第二定律和牛顿第三定律 B.热力学第一定律和热力学第二定律 C.牛顿第一定律和付立叶定律 D.道尔顿定律和玻尔兹曼定律 正确答案:A 试题解析:燃气涡轮喷气发动机产生推力的依据是牛顿第二定律和牛顿第三定律。 13.燃气涡轮喷气发动机出口处的静温一定()大气温度。 A.低于 B.等于 C.高于

完整钢结构课程设计

1.设计资料: ................................................................ 错误!未定义书签。 2.结构形式与布置 ............................................................ 错误!未定义书签。 3.荷载计算 .................................................................. 错误!未定义书签。 4.内力计算 .................................................................. 错误!未定义书签。 附件:设计资料 1、设计题目:《单层工业厂房屋盖结构——梯形钢屋架设计》 2、设计任务及参数: 第五组: 某地一机械加工车间,长84m ,跨度24m ,柱距6m ,车间内设有两台40/10T 中级工作制桥式吊车,轨顶标高18.5m ,柱顶标高27m ,地震设计烈度7度。采用梯形钢屋架,封闭结合,1.5×6m 预应力钢筋混凝土大型屋面板(1.4KN/m 2 ),上铺100mm 厚泡沫混凝土保温层(容重为1KN/m 3 ),三毡四油(上铺绿豆砂)防水层(0.4KN/m 2 ),找平层2cm 厚(0.3KN/m 2 ),卷材屋面,屋面坡度i=1/10,屋架简支于钢筋混凝土柱上,混凝土强度等级C20,上柱截面400×400mm 。钢材选用Q235B ,焊条采用E43型。屋面活荷载标准值0.7KN/m 2 ,积灰荷载标准值0.6KN/m 2 ,雪荷载及风荷载见下表,7位同学依次按序号进行选取。 活载KN/m 2 1 2 3 4 5 6 7 基本雪压 0.30 0.75 0.10 0.20 0.45 0.50 0.35 基本风压 0.35 0.60 0.25 0.55 0.30 0.50 0.45 3、设计任务分解 学生按照下表分派的条件,完成梯形钢屋架设计的全部相关计算和验算及构造设计内容。 表-3 4、设计成果要求 在教师指导下,能根据设计任务书的要求,搜集有关资料,熟悉并应用有关规范、标准和图集,独立完成课程设计任务书(指导书)规定的全部内容。 1)需提交完整的设计计算书和梯形钢屋架施工图。 2)梯形钢屋架设计要求:经济合理,技术先进,施工方便。 3)设计计算书要求:计算依据充分、文理通顺、计算结果正确、书写工整、数字准确、图文并茂,统一用A4纸书写(打印)。 A 、按步骤设计计算,各设计计算步骤应表达清楚,写出计算表达式及必要的计算过程,对数据的选取应写明判断依据。 B 、计算过程中,必须配以相应的计算简图。 C 、对计算结果进行复核后,为保证施工质量且方便施工,应按规范要求对计算结果进行调整并写明依据。 4)梯形钢屋架施工图共两张,图纸绘制的要求:布图合理,版面整齐,图线清晰,标注规范,符合规范/图集要求。 单层工业厂房屋盖结构——梯形钢屋架设计 1.设计资料:(1)某地一机械加工车间,长84m ,跨度24m ,柱距6m ,车间内设有两台40/10T 中级工作制桥式吊车,轨顶标高18.5m ,柱顶标高27m ,地震设计烈度7度。采用梯形钢屋架,封闭结合,1.5×6m 预应力钢筋混凝土大型屋面板(1.4KN/m 2 ),上铺100mm 厚泡沫混凝土保温层(容重为1KN/m 3 ),三毡四油(上铺绿豆砂)防水层(0.4KN/m 2 ),找平层2cm 厚(0.3KN/m 2 ),卷材屋面,屋面坡度i=1/10,屋架简支于钢筋混凝土柱上,混凝土强度等级C20,上柱截面400×400mm 。钢材选用Q235B ,焊条采用E43型。屋面活荷载标准值0.7KN/m 2 ,积灰荷载标准值0.6KN/m 2 ,雪荷载及风荷载见下表。 活载KN/m 2 1 2 3 4 5 6 7 基本雪压 0.30 0.75 0.10 0.20 0.45 0.50 0.35 基本风压 0.35 0.60 0.25 0.55 0.30 0.50 0.45 (2)屋架计算跨度 )(7.233.0240 m l =-= (3)跨中及端部高度:设计为无檩屋盖方案,采用平坡梯形屋架,端部高度 mm h 19000=中部高度

钢结构课程设计

课程设计 课程名称:钢结构设计 设计题目:昆明地区某工厂金工车间钢屋架设计学院:土木工程学院 专业:土木工程 年级:大学三年级 姓名:郭锐 学号:19 指导教师:王鹏 日期:2016年12月

课程设计任务书 土木工程学院学院土木工程专业 3 年级姓名:郭锐学号:13325 课程设计题目:昆明地区某工厂金工车间钢屋架设计 课程设计主要内容: (一)设计资料 昆明地区某工厂金工车间,长度90m,柱距6m,车间内设有两台30/5t中级工作制桥式吊车,屋面采用1.5×6m预应力钢筋混凝土大型屋面板。20mm厚水泥砂浆找平层,三毡四油防水层,屋面坡度1/10~1/12。屋架两端铰支于钢筋混凝土柱上,上柱截面400×400m m,混凝土C20,屋面活荷载0.50 kN/m2,屋面积灰荷载0.75 kN/m2,屋架跨度、屋架计算跨度、屋面做法和屋架端高按指定的数据进行计算。 1、屋架跨度(1)21m(2)24m 2、屋面计算跨度(1)L0=L (2)L0=L-300mm 3、屋面做法(1)有保温层(2)无保温层 4、屋架端高(1)h0=1.8m (2)h0=1.9m (3)h0=2.0m h=2.1m (4)0 (二)设计要求 1、由结构重要性,荷载特征(静荷),连接方法(焊接)及工作温度选用钢材及焊条。 2、合理布置支撑体系,主要考虑 (1)上弦横向水平支撑 (2)下弦横向水平支撑 (3)垂直支撑 (4)系杆(刚性或柔性) 并在计算书上画出屋盖支撑布置图,并对各榀屋架进行编号 3、荷载及内力计算

(1)屋面恒载计算。 (2)屋面活荷载与屋面雪荷载不同时考虑。 (3)屋面积灰荷载属于可变荷载。 (4)利用结构的对称性,仅计算屋架左半跨杆件内力。 (5)计算屋架杆力时,应考虑三种荷载组合。 (6)将屋面分布荷载转化为屋架节点荷载,利用左半跨单位节点荷载内力图计算杆力。 (7)确定各杆最不利内力(最大拉力或最大压力) 4、杆件截面选择 (1)屋架杆件常采用双角钢组合组成的T形截面或十字形截面,要根据λx=λy的等稳条件选择合理的截面形式。 (2)正确确定杆件的长细比,由轴心受力杆件确定杆件截面及填板数量。 (3)设计小组内每位同学所计算的上弦杆,下弦杆,斜杆截面选择过程要在计算书内详细说明,其余杆件截面选择可按同组内其他同学计算成果统一列表取用。 (4)杆件截面规格不宜过多,与垂直支撑相连的竖杆截面则不宜小于2L63×5。 5、节点设计 (1)熟知节点设计的基本要求及一般步骤。 (2)要在计算书内写出一般上下弦节点,下弦跨中节点,下弦支座节点及屋脊节点设计过程。 6、屋架施工图 (1)用铅笔绘制1#施工图 (2)施工图应包括 ①屋架简图(比例1∶100),左半跨标明杆件长度,右半跨注明杆件最不利内力,以及起拱度。 ②屋架正面图,上、下弦平面图(轴线比例1:20,杆件、节点比例1:10)。 ③侧面图,剖面图及零件详图。 ④注明全部零件的编号,规格及尺寸(包括加工尺寸和定位尺寸)孔洞位置,孔洞及螺 栓直径,焊缝尺寸以及对工厂加工和工地施工的要求。 ⑤材料表(一榀屋架的材料用量)。 ⑥说明(钢号、焊条型号、起拱要求、图中未注明的焊缝尺寸和油漆要求等)。 指导教师(签字):

国内外燃气轮机发电技术的进展与前景

国内外燃气轮机发电技术的进展与前景 1前言 随着社会生产力水平的不断提高和经济的迅速增长,对于能源的需求也在快速增长。目前,世界火电站汽轮机长期占统治地位的局面已开始动摇,“大型电站以联合机组为主,中、小型机组以热电并供居多”已是许多工业发达国家电站发展的主要格局。燃气轮机具有极强的适配性,能够作为多种发电模式,以成为当今世界发电的主要形式之一,由于该装置,特别是联合循环发电装置具有效率高、机动性好,不仅可以作为电网的调峰机组,且更多地用于电网的基本负荷发电,又能满足日益严格的环保要求,其地位将得到巩固和加强。 我国自改革开放以来,随着电力工业的迅猛发展和电网峰谷差的日趋增大,燃气轮机发电得到重视和发展。近几年已相继兴建了一批具有80年代国际先进水平的机组,在缓解电力紧缺的同时,有效地发挥了其增强电网调峰能力的作用。跨入21世纪,随着科技发展、能源政策的调整,如何高效、洁净利用化石能源已成为电力领 域的突出问题。燃气—蒸汽联合循环发电越来越受到国家有关方面的重视,必将得到进一步的快速发展。 2 国际燃气轮机发电技术

燃气轮机是从20世纪50年代开始逐渐登上发电工业舞台的,由于当时机组的单机容量小、热效率低而在电力系统中只能作为紧急备用电源和调峰机组。60年代加深了对电网中必须配备一定数量的燃气轮发电机组的认识,从安全和调峰的目的出发,燃气轮发电机组在电网中的比例达到8%~12%。从80年代以后由于燃气轮机的功率和热效率均得到很大程度的提高,特别是燃气—蒸汽联合循环机型成熟,再加上世界范围内天然气资源进一步开发,燃气轮机及其联合循环在世界电力系统中的地位发生了明显变化,它们不仅仅可以用作紧急备用电源和调峰负荷机组,还能带基本负荷和中间负荷。美国在1990~2000年期间新增长的发电容量为1.13亿kW,其中燃气轮机电站和蒸汽轮机电站的容量分别为44%,第一次出现了朗肯循环和布莱顿循环平分秋色的局面,在德国前者则占2/3左右,由此可见在世界范围内燃气轮机及其联合循环已成为火电发展的主要方向。 近几年来,世界燃气轮机工业取得相当的成就和飞速的发展,几家著名的公司GE、ABB、Siemens、西屋等均与航空发动机设计、研究、制造厂彼此联营,保证及时地把航空发动机领域内的先进技术用来武装重型燃气轮机,以确保技术的先进性。如压气机已采用“可控扩压”的概念进行设计,把单轴压气机的压缩比提高到了24~30的水平,透平叶片采用了航空机组的先进冷却结构和定向结晶制造工艺,使透平前的燃气温度提高到了1300℃的水平,由此明显地提高了机组的输出功率和热效率。如GE公司的9FA、Siemens的V94.3A等典型机组的燃机单循环功率为266MW,燃气初温为1270~1300℃,压缩比为16,

【期末复习】航空燃气轮机结构设计期末考试复习知识点总结

北航航空燃气轮机结构设计期末考试复习宝典. 一、填空题。 1.推力是发动机所有部件上气体轴向力的代数和。 2.航空涡轮发动机的五大部件为进气装置、压气机、燃烧室、涡轮和排气装置,其中“三大核心”部件为:压气机、燃烧室和涡轮。 3.压气机的作用提高空气压力~分成轴流式、离心式和组合式三种 4.离心式 压气机的组成:离心式叶轮~叶片式扩压器~压气机机匣。 5.压气机增压比的定义是:压气机出口压力与进口压力的比值~反映了气流在压气机内压力提高的程度。 6.压气机由转子和静子等组成~静子包括机匣和整流器。 7.压气机转子可分为鼓式、盘式和鼓盘式。 8.转子,工作,叶片的部分组成:叶身、榫头、中间叶根。 8.压气机的盘式转子可分为盘式和加强盘式。 9.压气机叶片的榫头联结形式有销钉式榫头,燕尾式榫头,和枞树形榫头。 10.压气机转子叶片通过燕尾形榫头与轮盘上燕尾形榫槽连接在轮盘。 11压气机静子的固定形式有:燕尾形榫头,柱形榫头和焊接在中间环或者机匣上。 12压气机进口整流罩的功用是减小流动损失。 13.压气机进口整流罩做成双层的目的是通加温热空气。 14.轴流式压气机转子的组成:盘,鼓,轴,和叶片。 15.压气机进口可变弯度导流叶片(或可调整流叶片)的作用是防止压气机喘 振。 16.压气机是安装放气带或者放气活门的作用是防止压气机喘振。 17.采用双转子压气机的作用是防止压气机喘振。 18压气机机匣的基本结构形式:整体式、分半式、分段式。 19压气机机匣的 功用:提高压气机效率,承受和传递的负载,包容能力。 20整流叶片与机匣联接的

三种基本方法:榫头联接,焊接,环 21.多级轴流式压气机由前向后~转子叶片的长度的变化规律是逐渐缩短。 22.轴流式压气机叶栅通道形状是扩散形。 23.轴流式压气机级是由工作叶轮和整流环组成的。 24.在轴流式压气机的工作叶轮内~气流相对速度减小~压力、密度增加。 25.在轴流式压气机的整流环内~气流绝对速度减小~压力增加。 26.叶冠的作用:?可减少径向漏气而提高涡轮效率,?可抑制振动。 27.叶身凸台的作用:阻尼减振~避免发生共振或颤震~降低叶片根部的弯曲扭转应力,防止叶片振动,。 28.涡轮工作条件:燃气温度高~转速高~负荷高~功率大 29.涡轮的基本类型:轴流式涡轮~径向式涡轮 30.涡轮的功用是把高温、高压燃气的部分热能、压力能转变为旋转地机械功 从而带动压气机和其他附件工作 31.涡轮的组成:转子,静子和冷却系统。 32.涡轮叶片的特点:剖面厚、弯曲大、和内腔有冷却通道。 33.涡轮不可拆卸式盘轴联接的方案有径向销钉联接方案,盘、轴焊接联接方案和盘轴整体方案 34.加强的盘式转子是在盘式转子的基础上增加了定距环和将轴加粗。 35(鼓 式转子的优点是抗弯刚性好~结构简单。 36..涡轮叶片一般通过枞树形榫头与轮盘上的榫槽连接到轮盘上。 37.为了冷却涡轮叶片~一般把叶片做成空心的~通冷却空气。 38..在两级涡轮中~一般第二级涡轮叶片更需要带冠。 39.空气—空气热交换器的功用是利用外涵道的空气给冷却涡轮的空气降温。 40.燃气涡轮发动机附件机匣的作用是安装和传动附件 41.工作叶片受到负荷的类型:气动负荷,振动负荷,热负荷,离心力负荷 42.燃 烧室的基本类型:分管燃烧室~环管燃烧室~环形燃烧室

相关文档
最新文档