α粒子散射实验报告含思考题

α粒子散射实验报告含思考题
α粒子散射实验报告含思考题

西安交通大学实验报告 第1页(共7页)

课程:_______近代物理实验_______ 实 验 日 期 :

年 月 日 专业班号___ ___组别_______ 交报告日期: 年 月 日 姓 名__Bigger__学号_ _ 报 告 退 发 : (订正、重做) 同 组 者___ ________ 教师审批签字:

实验名称:α粒子散射

一、 实验目的

1) 初步了解近代物理中有关粒子探测技术和相关电子学系统的结构,熟悉半导

体探测器的使用方法。

2) 实验验证瑟福散射的微分散射截面公式。

3) 测量α粒子在空气中的射程。

二、 实验仪器

粒子源,真空室,探测器与计数系统,真空泵

三、 实验原理

1. α粒子散射理论

(1)库仑散射偏转角公式

可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 有如下关系:

设E

Ze a 02

42πε=,则a b ctg 22=θ,这就是库仑散射偏转角公式。 (2)卢瑟福散射公式

在上述库仑散射偏转公式中有一个实验中无法测量的参数b ,因此必须设法寻找一个可测量的量代替参数b 的测量。

经常使用的是微分散射截面公式,微分散射截面公式

其物理意义为,单位面积内垂直入射一个粒子(n =1)时,被这个面积内一个靶原子(10=t N )散射到θ角附近单位立体角内的概率。最终得到

这就是著名的卢瑟福散射公式。

代入各常数值,以E 代表入射α粒子的能量,得到公式:

其中,d d σΩ的单位为sr mb /,E 的单位为MeV 。

2. 卢瑟福理论的实验验证方法

对卢瑟福散射公式,可以从以下几个方面加以验证。

(1) 固定散射角,改变金靶的厚度,验证散射计数率与靶厚度的线性关系

t N ∝。

(2) 更换α粒子源以改变α粒子能量,验证散射计数率与α粒子能量的平方反比关系21E N ∝。

(3) 改变散射角,验证2

sin 1

4θ∝N 。这是卢瑟福散射击中最突出和最重要

的特征。

(4) 固定散射角,使用厚度相等而材料不同的散射靶,验证散射计数率与

靶材料核电荷数的平方关系2Z N ∝。由于很难找到厚度相同的散射

靶,而且需要对原子数密度n 进行修正,这一实验内容的难度较大。

本实验中,只涉及到第(3)方面的实验内容,这是对卢瑟福散射理论最有力的验证。

3.卢瑟福散射实验装置

(1)散射真空室

(2)电子学系统

(3)步进电机及其控制系统

在实验过程中,需在真空条件下测量不同散射角的出射α粒子计数率,这样就需要经常地变换散射角度。在本实验装置中利用步进电机来控制散射角θ,可使实验过程变得极为方便。不用每测量一个角度的数据便打开真空室转换角度,只需在真空室外控制步进电机转动相应的角度即可;此外,由于步进电机具有定位准确的特性,简单的开环控制即可达到所需精确的控制。

四、 实验步骤

1) 若打开真空室上盖,可以直接观察并调节散射源准直孔大致与探测器准直

孔,盖紧真空室盖子。

2) 打开机械泵,对真空室进行抽真空,以减少空气对α粒子的阻碍作用。

a粒子散射实验

a粒子散射实验 揭示原子有核模型的实验。为E.卢瑟福等人所做,又称卢瑟福a 粒子散射实验。J.J.汤姆孙发现电子揭示了原子具有内部结构后,1903年提出原子的葡萄干圆面包模型,认为原子的正电荷和质量联系在一起均匀连续分布于原子范围,电子镶嵌在其中,可以在其平衡位置作微小振动。 1909年卢瑟福的助手H.盖革和E.马斯登在卢瑟福建议下做了a粒子散射实验,用准直的a 射线轰击厚度为微米的金箔,发现绝大多数的a粒子都照直穿过薄金箔,偏转很小,但有少数a 粒子发生角度比汤姆孙模型所预言的大得多的偏转,大约有1/8000 的a粒子偏转角大于90°,甚至观察到偏转角等于150°的散射,称大角散射,更无法用汤姆孙模型说明。1911年卢瑟福提出原子的有核模型,与正电荷联系的质量集中在中心形成原子核,电子绕着核在核外运动,由此导出a粒子散射公式,说明了 a 粒子的大角散射。卢瑟福的散射公式后来被盖革和马斯登改进了的实验系统地验证。根据大角散射的数据可得出原子核的半径上限为10-14米。此实验开创了原子结构研究的先河。 原子结构模型的演变 原子结构模型是科学家根据自己的认识,对原子结构的形象描摹。一种模型代表了人类对原子结构认识的一个阶段。人类认识原子的历史是漫长的,也是无止境的。下面介绍的几种原子结构模型简明形象地表示出了人类对原子结构认识逐步深化的演变过程。 道尔顿原子模型(1803 年):原子是组成物质的基本的粒子,它们是坚实的、不可再分的实心球。 汤姆生原子模型(1904 年):原子是一个平均分布着正电荷的粒子,其中镶嵌着许多电子,中和了正电荷,从而形成了中性原子。 卢瑟福原子模型(1911 年):在原子的中心有一个带正电荷的核,它的质量几乎等于原子的全部质量,电子在它的周围沿着不同的轨道运转,就像行星环绕太阳运转一样。 玻尔原子模型(1913 年):电子在原子核外空间的一定轨道上绕核做高速的圆周运动。 电子云模型(1927 年——1935 年):现代物质结构学说。 现在,科学家已能利用电子显微镜和扫描隧道显微镜拍摄表示原子图像的照片。随着现代科学技术的发展,人类对原子的认识过程还会不断深化。 从英国化学家和物理学家道尔顿(J.John Dalton ,1766~1844)(右图)创立原子学说以后,很长时间内人们都认为原子就像一个小得不能再小的玻璃实心球,里面再也没有什么花样了。 从1869年德国科学家希托夫发现阴极射线以后,克鲁克斯、赫兹、勒纳、汤姆逊等一大批人科学家研究了阴极射线,历时二十余年。最终,汤姆逊(Joseph John Thomson)发现了电子的存在(请浏览科技园地“神秘的绿色荧光”)。通常情况下,原子是不带电的,既然从原子中能跑出比它质量小1700倍的带负电电子来,这说明原子内部还有结构,也说明原子里

光谱分析 实验报告

实验报告 课程名称: 材料科学基础实验 指导老师: 乔旭升 成绩: 实验名称: 光谱分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)一、实验目的 通过本实验了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR )和荧光光谱仪的基本原理、主要用途和实际操作过程。掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。学习分析影响测试结果的主要因素。 二、实验原理 电磁波可与多种物质相互作用。如果这种作用导致能量从电磁波转移至物质,就称为吸收。当光波与某一受体作用时,光子和接受体之间就存在碰撞。光子的能量可被传递给接受体而被吸收,由此产生吸收光谱。通常紫外和可见光的能量接近于某两个电子能级地能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁,又称为电子光谱。 当一束平行单色光照射到非散射的均匀介质时,光的一部分将被介质所反射,一部分被介质吸收,一部分透过介质。如果入射光强度为I0.反射光强度为Ir ,吸收光强度为Ia ,透过光强度为It ,则有I0=Ir+Ia+It 投射光强度与入射光强度之比称为透光率 T=It/I0 当一束具有连续波长的红外光照射某化合物时,其分子要吸收一部分光能转变为分子的震动能量或转动能量。此时若将其透过的光用单色器进行色散,就可得到一带暗条的谱带。以红外光的波长或波数为横坐标,以吸收率或者透过率百分数为纵坐标,把该谱带记录下来,就可得到该化合物的红外吸收光谱图。不同的化合物均有标准特征谱,将实验所得的光谱与标准谱对照,就可进行分子结构的基础研究和化合组成的分析。可由吸收峰的位置和形状来推知被测物的结构,按照特征峰的强度来测定混合物中各组分的含量。 当分子吸收来自光辐射的能量后,其本身就由处于稳定的基态跃迁至不稳定的激发态: M+h ν→。激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁波(荧光或磷光)的方式回到基态: →M+荧光(或磷光)。任何能产生荧光(或磷光)的物质都具有两个特征光谱:激发光谱和发射光谱。 激发光谱:荧光(或磷光)为光致发光,因此必须选择合适的激发光波长,这可通过激发

分光计实验报告

实验十二 分光计的调节及三棱镜顶角的测定 实验目的:1.深入了解分光计的构造和设计原理,学会调整分光计的正确方法; 2.掌握测定棱镜顶角的方法; 实验仪器:分光计 分光计调整用双平面镜 三棱镜 实验原理: 将分光计的载物台和望远镜筒调节水平,再将三棱镜放到载物台上,如图:调节望远镜筒使之主轴分别与AC 、AB 设此时游标盘的读数分别为()21,?? ,()','21??则其顶角()2211''2 1 180180?????-+-- =-= A 实验过程(内容、步骤、原始数据等): ⒈调节分光计: ①旋转目镜一直到能够清楚地看到分划板刻度线。 ②将双面镜放到载物台上,如图: 转动载物台,一直到能够在望远镜中看到绿“十”字像。如果绿“十”字像模糊。可拉动目镜筒,使之清晰; ③调整望远镜光轴垂直主轴:当镜面与望远镜光轴垂直时,绿“十”字像与分划板上十字线重合,平面镜旋转180°后,另一镜面的反射象仍落在原处。 (调节方法:对半调节) 此时证明望远镜筒和载物台均已水平。 2. 使三棱镜光学侧面垂直望远镜光轴。 ①将双面镜拿下来,再将棱镜放到载物台上,使棱镜三边与台下三螺钉的连线所 成三边互相垂直。 ②转动载物台,在望远镜中观察从棱镜侧面AC 和AB 返回的十字象,只调

节载物台下正对棱镜侧面的那个螺钉,使绿“十”字像都落在上十子线处。此时说明望远镜已与AC 面或AB 面垂直。 ③测量顶角A :转动游标盘,使棱镜AC 面和望远镜垂直,记下游标1的读数1?和游标2的读数2?。再转动游标盘,使AB 面和望远镜垂直,记下游标1的读数'1?和游标2的读数'2?。同一游标两次读数之差11'??-或22'??-,即是载物台转过的角度?,而?是A角的补角。 ()2211''2 1 180180?????-+-- =-= A 重复测量5两次,记下数据。 数据处理(数据处理、结果分析、问题讨论及总结): 测量结果:1.代真值:=A 2.算术平均值的标准偏差:()() =-?=∑12 n n A A σ 3.相对误差:E = 4.结果表示A= ± E = (具体公式参见 课本22页)

大学物理实验报告及答案

(此文档为word格式,下载后您可任意编辑修改!) 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的(1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 U 实验方法原理根据欧姆定律,R =,如测得U 和I 则可计算出R。值得注意的是,本实验待测电阻有两只, I 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置待测电阻两只,0~5mA 电流表1 只,0-5V 电压表1 只,0~50mA 电流表1 只,0~10V 电压表一只,滑线变阻器1 只,DF1730SB3A 稳压源1 台。 实验步骤本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学生参照第2 章中的第2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录U 值和I 值。对每一个电阻测量3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由?U =U max ×1.5% ,得到?U 1 = 0.15V,?U2 = 0.075V ; (2) 由?I = I max ×1.5% ,得到?I 1 = 0.075mA,?I 2 = 0.75mA; (3) 再由u= R ( ?U )2 + ( ?I ) 2 ,求得u= 9 ×101?, u= 1?; R 3V 3I R1 R2 (4) 结果表示R1 = (2.92 ± 0.09) ×10光栅衍射实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。?, R 2 = (44 ±1)? (3) 观测汞灯在可见光范围内几条光谱线的波长实验方法原理

α粒子散射实验报告含思考题

交通大学实验报告 第1页(共7页)课程:_______近代物理实验_______ 实验日期:年月日 专业班号___ ___组别_______ 交报告日期:年月日 姓名__Bigger__学号_ _ 报告退发:(订正、重做) 同组者___ ________ 教师审批签字: 实验名称:α粒子散射 一、实验目的 1)初步了解近代物理中有关粒子探测技术和相关电子学系统的结构,熟悉半导 体探测器的使用方法。 2)实验验证瑟福散射的微分散射截面公式。 3)测量α粒子在空气中的射程。 二、实验仪器 粒子源,真空室,探测器与计数系统,真空泵 三、实验原理 1.α粒子散射理论 (1)库仑散射偏转角公式 可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b有如下关系:

设 E Ze a 0242πε=,则a b ctg 22=θ,这就是库仑散射偏转角公式。 (2)卢瑟福散射公式 在上述库仑散射偏转公式中有一个实验中无法测量的参数b ,因此必须设法寻找一个可测量的量代替参数b 的测量。 经常使用的是微分散射截面公式,微分散射截面公式 0d ()d 1 d d n n N t σθ=?ΩΩ 其物理意义为,单位面积垂直入射一个粒子(n =1)时,被这个面积一个靶原子(10=t N )散射到θ角附近单位立体角的概率。最终得到 22 2400d ()d 121d d 44sin 2 n Ze nN t E σθθ πε????== ? ?ΩΩ???? 这就是著名的卢瑟福散射公式。 代入各常数值,以E 代表入射α粒子的能量,得到公式: 2 4d 21 1.296d sin 2Z E σθ?? = ?Ω???? ? ?? 其中,d d σΩ的单位为sr mb /,E 的单位为MeV 。 2. 卢瑟福理论的实验验证方法 对卢瑟福散射公式,可以从以下几个方面加以验证。

卢瑟福散射实验报告

陈杨PB05210097 物理二班 实验题目:卢瑟福散射实验 实验目的: 1.通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论; 2.并学习应用散射实验研究物质结构的方法。 实验原理: 现从卢瑟福核式模型出发,先求α粒子散射中的偏转角公式,再求α粒子散射公式。 1.α粒子散射理论 (1)库仑散射偏转角公式 设原子核的质量为M,具有正电荷+Ze,并处于点O,而质量为m,能量为E,电荷为2e的α粒子以速度ν入射,在原子核的质量比α粒子的质量大得多的情况下,可以认为前者不会被推动,α粒子则受库仑力的作用而改变了运动的方向,偏转θ角,如图所示。图中ν是α粒子原来的速度,b是原子核离α粒子原运动径的延长线的垂直距离,即入射粒子与原子核无作用时的最小直线距离,称为瞄准距离。 图α粒子在原子核的库仑场中路径的偏转 当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。设α粒子最初的的动能和角动量分别为E和L,由能量和动量守恒定

律可知: ???? ??++?=??222202241 ?πεr r m r Ze E (1) L b m mr ==? ? ν?2 (2) 由(1)式和(2)式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 有如下关系: 20 2242 Ze Eb ctg πεθ = (3) 设 E Ze a 02 42πε= ,则 a b ctg 22 = θ (4) 这就是库仑散射偏转角公式。 (2)卢瑟福散射公式 在上述库仑散射偏转公式中有一个实验中无法测量的参数b ,因此必须设法寻找一个可测量的量代替参数b 的测量。 事实上,某个α粒子与原子散射的瞄准距离可大,可小,但是大量α粒子散射都具有一定的统计规律。由散射公式(4)可见,θ与b 有对应关系,b 大,θ就小,如图所示。那些瞄准距离在b 到db b +之间的α粒子,经散射后必定向θ到θθd -之间的角度散出。因此,凡通过图中所示以b 为内半径,以db b +为外半径的那个环形ds 的α粒子,必定散射到角θ到θθd -之间的一个空间圆锥体内。

4-关于“a 粒子散射实验”的若干问题

关于“α粒子散射实验”的若干问题 朱建廉 南京市金陵中学(210005) 摘要:就“α粒子散射实验”的教学过程中所碰到的诸如“为什么用金箔做靶”、“卢瑟福获取α粒子散射的精确数据的方法”等问题谈一些看法。 关键词:α粒子散射;实验现象;闪烁法。 笔者在进行“α粒子散射实验”的教学过程中,常会碰到学生提出的诸如:“为什么要用金箔做靶”,“为什么要在真空环境中实验”,“为什么从α粒子的散射现象中就可以概括出原子的核式结构”,“卢瑟福在α粒子散射实验中是怎样获得α粒子散射的精确数据的”等问题。这些问题归纳起来实际上是两类:一类是涉及到“α粒子散射实验”的实验目的、实验原理及实验方法设计的基本问题,相比较而言,这类问题比较容易回答;而另一类则是涉及到具体的实验操作细节中的一些技术问题,回答这类问题要困难得多,带着这些问题笔者查阅了有关资料,归纳写出本文。 1、α粒子散射实验的实验目的、方法设计及设计思想 1.1实验目的 通过对α粒子散射情况的观察与分析,获取关于原子结构方面的信息。 1.2实验方法设计 在真空环境中,使放射性元素钋放射出的α粒子轰击金箔,然后通过显微镜观察用荧光屏(硫化锌屏)接收到的α粒子,借助于对轰击金箔前后的α粒子的运动情况的分析与对比,进而了解金原子的结构情况。 1.3实验方法的设计原理和设计思想 与某一金原子发生作用前后的α粒子运动情况的差异,必然带有金原子结构特征的烙印,而这正是α粒子散射实验的设计思想。卢瑟福所以选择金原子作靶,是利用金的良好的延展特性,把金箔做得尽量薄,以使每一个α粒子在穿过金箔的过程中与尽可能少的金原子发生作用;至于实验要求在真空环境中进行,显然是为了避免气体分子对α粒子的运动产生影响。 2、α粒子散射实验的实验现象及对实验现象的解释 2.1实验现象 α粒子散射实验的现象是沿不同散射角度的方向上均观察到散射的α粒子,但数量不

分光计实验报告()

分光计实验报告 【实验目的】 1、了解分光计的结构和工作原理 2、掌握分光计的调整要求和调整方法,并用它来测量三棱镜的顶角和最小偏向角。 3、学会用最小偏向角法测棱镜材料折射率 【实验仪器】 分光计,双面平面镜,汞灯光源、读数用放大镜等。 【实验原理】 1、调整分光计: (1)调整望远镜: a目镜调焦:清楚的看到分划板刻度线。 b调整望远镜对平行光聚焦:分划板调到物镜焦平面上。 c调整望远镜光轴垂直主轴:当镜面与望远镜光轴垂直时,反射象落在上十字线中心,平面镜旋转180°后,另一镜面的反射象仍落在原处。 (2)调整平行光管发出平行光并垂直仪器主轴:将被照明的狭缝调到平行光管物镜焦面上,物镜将出射平行光。 2、三棱镜最小偏向角原理 介质的折射率可以用很多方法测定,在分光计上 用最小偏向角法测定玻璃的折射率,可以达到较高的 精度。这种方法需要将待测材料磨成一个三棱镜。如 果测液体的折射率,可用表面平行的玻璃板做一个中 间空的三棱镜,充入待测的液体,可用类似的方法进 行测量。 当平行的单色光,入射到三棱镜的AB面,经折射 后由另一面AC射出,如图7.1.2-8所示。入射光线LD 和AB面法线的夹角i称为入射角,出射光ER和AC 面法线的夹角i’称为出射角,入射光和出射光的夹角 δ称为偏向角。 可以证明,当光线对称通过三棱镜,即入射角i0等于出射角i0’时,入射光和出射光之间的夹角最小,称为最小偏向角δmin。由图7.1.2-8可知: δ=(i-r)+(i’-r’)(6-2) A=r+r’(6-3) 可得:δ=(i+i’)-A (6-4)

三棱镜顶角A 是固定的,δ随i 和i’而变化,此外出射角i’也随入射角i 而变化,所以偏向角δ仅是i 的函数.在实验中可观察到,当i 变化时,δ有一极小值,称为最小偏向角. 令 0=di d δ ,由式(6-4)得 1' -=di di (6-5) 再利用式(6-3)和折射定律 ,sin sin r n i = 's i n 's i n r n i = (6-6) 得到 r n i i r n di dr dr dr dr di di di cos cos )1('cos 'cos ''''? -?=??= ' 'csc csc 'sin 1cos sin 1'cos 2 2 2 2222 2 22r tg n r r tg n r r n r r n r --= --- = ' )1(1)1(12 2 22r tg n r tg n -+-+- = (6-7) 由式(6-5)可得:')1(1)1(12 22 2 r tg n r tg n -+=-+ 'tgr tgr = 因为r 和r’都小于90°,所以有r =r ’ 代入式(5)可得i =i'。 因此,偏向角δ取极小值极值的条件为: r =r ’ 或 i =i' (6-8) 显然,这时单色光线对称通过三棱镜,最小偏向角为δ min ,这时由式(6-4)可得: δ min =2i –A )(21 min A i += δ 由式(6-3)可得: A =2r 2 A r = 由折射定律式(6-6),可得三棱镜对该单色光的折射率n 为 2 sin )(21 sin sin sin min A A r i n += =δ (6-9) 由式(6-9)可知,只要测出三棱镜顶角A 和对该波长的入射光的最小偏向角δmin ,就可以计 算出三棱镜玻璃对该波长的入射光的折射率。顶角A 和对该波长的最小偏向角δ min 用分光计测定。 折射率是光波波长的函数,对棱镜来说,随着波长的增大,折射率n 则减少,如果是复色光入射,由于三棱镜的作用,入射光中不同颜色的光射出时将沿不同的方向传播,这就是棱镜的色散现象。 【实验内容】

α粒子散射实验报告含思考题

西安交通大学实验报告 第1页(共7页) 课程:_______近代物理实验_______ 实 验 日 期 : 年 月 日 专业班号___ ___组别_______ 交报告日期: 年 月 日 姓 名__Bigger__学号_ _ 报 告 退 发 : (订正、重做) 同 组 者___ ________ 教师审批签字: 实验名称:α粒子散射 一、 实验目的 1) 初步了解近代物理中有关粒子探测技术和相关电子学系统的结构,熟悉半 导体探测器的使用方法。 2) 实验验证瑟福散射的微分散射截面公式。 3) 测量α粒子在空气中的射程。 二、 实验仪器 粒子源,真空室,探测器与计数系统,真空泵 三、 实验原理 1. α粒子散射理论 (1)库仑散射偏转角公式 可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 有如下关系: 设E Ze a 02 42πε=,则a b ctg 22=θ,这就是库仑散射偏转角公式。 (2)卢瑟福散射公式 在上述库仑散射偏转公式中有一个实验中无法测量的参数b ,因此必须设法寻找一个可测量的量代替参数b 的测量。

经常使用的是微分散射截面公式,微分散射截面公式 0d ()d 1d d n n N t σθ=?ΩΩ 其物理意义为,单位面积内垂直入射一个粒子(n =1)时,被这个面积内一个靶原子(10=t N )散射到θ角附近单位立体角内的概率。最终得到 22 24 00d ()d 121d d 44sin 2 n Ze nN t E σθθπε????== ? ?ΩΩ???? 这就是著名的卢瑟福散射公式。 代入各常数值,以E 代表入射α粒子的能量,得到公式: 24d 211.296d sin 2Z E σθ??= ?Ω???? ??? 其中,d d σΩ的单位为sr mb /,E 的单位为MeV 。 2. 卢瑟福理论的实验验证方法 对卢瑟福散射公式,可以从以下几个方面加以验证。 (1) 固定散射角,改变金靶的厚度,验证散射计数率与靶厚度的线性关系 t N ∝。 (2) 更换α粒子源以改变α粒子能量,验证散射计数率与α粒子能量的平方反比关系21E N ∝。 (3) 改变散射角,验证2 sin 1 4θ∝N 。这是卢瑟福散射击中最突出和最重要 的特征。 (4) 固定散射角,使用厚度相等而材料不同的散射靶,验证散射计数率与

辐射防护实验报告

《辐射防护实验报告》 专业:xxx 姓名:xxx 学号:2010xxxx 实验一:γ射线的辐射防护 一、实验目的 1、掌握X-γ剂量率仪的使用方法; 2、了解环境中的γ照射水平; 3、通过不同时间和距离的测量,获得γ外照射防护的直观认识,加强理论与实际的联系。 二、实验原理 闪烁探测器是利用核辐射与某些透明物质相互作用,使其电离和激发而发射荧光的原理来探测核辐射的。γ射线入射到闪烁体内,产生次级电子,使闪烁体内原子电离、激发后产生荧光。这些光信号被传输到光电倍增管的光阴极,经光阴极的光电转换和倍增极的电子倍增作用而转换成电信号,它的幅度正比于该次级电子能量,再由所连接的电子学设备接收、放大、分析和记录。 三、实验内容 1、测量实验室γ照射本底环境; 2、测量一条环境γ照射剂量率剖面; 3、测量岩石的γ照射剂量率; 4、加放射源,测量并计算不同测量时间情况下的剂量; 5、加放射源,测量不同距离情况下的剂量率。 四、实验设备 1、Ra-226源一个; 2、X-γ剂量率仪一台; 3、岩石标本。 五、实验步骤

布置实验台,注意:严格按照实验步骤进行,首先布置好准直器、探测仪,最后放置放射源,养成良好的操作习惯!! 实验步骤如下: 1、调节准直器以及探测仪器的相对位置; 2、设置好仪器的测量时间为30秒,记录仪器的本底剂量率Nd (连测3次,取平均值); 3、在探测仪器对面布置好放射源,使得射束中轴线和准直器中轴线重合,源探距离为1米,如上图所示,测定并记录仪器的剂量率N01(连测3次,取平均值); 4、调整仪器的测量时间为60秒,测定并记录仪器的剂量率N02(连测3次,取平均值); 5、调整仪器的测量时间为90秒,测定并记录仪器的剂量率N0(连测3次,取平均值); 6、暂时屏蔽放射源,源探距离为米,测定并记录仪器的剂量率N1(连测3次,取平均值); 7、暂时屏蔽放射源,源探距离为2米,测定并记录仪器的剂量率N2(连测3次,取平均值); 8、在校园里测量一条环境γ照射剂量率剖面,记录每个测点的仪器的剂量率(连测3次,取平均值); 9、在博物馆前的岩石标本处测量不同岩性岩石的γ照射剂量率,记录每个测量的剂量率(连测3次,取平均值); 10、数据处理。 数据处理如下: 1)本底剂量率为: 2)在距离放射源、1、2米处不同时间计数率为:

α粒子散射实验 实验报告

α粒子散射实验 实验报告 一.实验目的 1.初步了解近代物理中有关粒子探测技术和相关电子学系统的结构,熟悉半 导体探测器的使用方法; 2.实验验证卢瑟福散射的微分散射截面公式 二.实验原理 1.瞄准距离与散射角的关系 视α粒子和电子均为点电荷,假设两者间作用力只有静电斥力, 如图1,散射角θ,瞄准距离b , α粒子质量为m ,入射速度为0v , 则: (1) (2) 2.卢瑟福微分散射截面公式 设有截面为S 的α粒子束射到厚度为t 的靶上,靶的原子数密度为n , 则α粒子散射到θ 方向单位立体角内每个原子的有效散射截面为: (3) 设实验中探测器的灵敏面积对靶所张的立体角为Δ ,在某段时间内射 2co t 2b D θ= Ω

到靶上的粒子总数为T,则观察到的粒子数为: (4)三.实验仪器 粒子源真空室探测器与计数系统真空泵 四.实验数据及处理 1.原始数据及处理 表1 探测到的粒子数count与散射角的关系 Angle/°Angle /rad count1count2count3count4count5N=count average count median -10-0.175 668 687 634 683 719 678 683 -9-0.157 806 790 738 824 776 787 790 -8-0.140 875 919 924 923 904 909 919 -7-0.122 1020 1002 960 1032 999 1003 1002 -6-0.105 1069 1092 1100 1075 1058 1079 1075 -5-0.087 1149 1188 1201 1115 1149 1160 1149 -4-0.070 1173 1148 1164 1196 1171 1170 1171 -3-0.052 1190 1225 1225 1236 1237 1223 1225 -2-0.035 1222 1256 1288 1283 1225 1255 1256 -1-0.017 1295 1284 1292 1296 1278 1289 1292 00.000 1310 1290 1281 1264 1355 1300 1290 10.017 1275 1264 1299 1231 1253 1264 1264 20.035 1283 1188 1220 1274 1250 1243 1250 30.052 1248 1236 1211 1201 1257 1231 1236 40.070 1107 1134 1083 1116 1132 1114 1116 50.087 1184 1103 1150 1105 1132 1135 1132 60.105 939 919 932 894 934 924 932 70.122 811 882 757 853 837 828 837 80.140 723 697 729 715 715 716 715 90.157 612 622 627 615 610 617 615 100.175 514 501 541 517 501 515 514 110.192 382 381 412 381 405 392 382 120.209 277 279 310 335 294 299 294 130.227 250 225 227 228 163 219 227 140.244 164 176 160 168 179 169 168 150.262 148 108 127 116 135 127 127 160.279 85 82 65 72 78 76 78 170.297 40 43 33 34 45 39 40 180.314 40 43 33 34 45 39 40 190.332 31 29 28 29 22 28 29 200.349 20 25 20 14 24 21 20

分光计实验报告总结.doc

分光计实验报告 ()

分光计实验报告 【实验目的】 1、了解分光计的结构和工作原理 2、掌握分光计的调整要求和调整方法,并用它来测量三棱镜的顶角和最小偏向角。 3、学会用最小偏向角法测棱镜材料折射率 【实验仪器】 分光计,双面平面镜,汞灯光源、读数用放大镜等。 【实验原理】 1、调整分光计: (1)调整望远镜: a目镜调焦:清楚的看到分划板刻度线。 b调整望远镜对平行光聚焦:分划板调到物镜焦平 面上。 c调整望远镜光轴垂直主轴:当镜面与望远镜光轴 垂直时,反射象落在上十字线中心,平面镜旋转180°后,另一镜面的反射象仍落在原处。 (2)调整平行光管发出平行光并垂直仪器主轴:将被 照明的狭缝调到平行光管物镜焦面上,物镜将出射 平行光。 2、三棱镜最小偏向角原理

介质的折射率可以用很 多方法测定,在分光计上用 最小偏向角法测定玻璃的折 射率,可以达到较高的精度。 这种方法需要将待测材料磨 成一个三棱镜。如果测液体的折射率,可用表面平行的玻璃板做一个中间空的 三棱镜,充入待测的液体,可用类似的方法进行测量。 当平行的单色光,入射到三棱镜的AB 面,经折射后由另一面AC 射出,如图7.1.2-8 所示。入射光线LD 和 AB 面法线的夹角 i 称为入射角,出射光 ER 和AC 面法线的夹角 i’称为出射角,入射光和出射光的夹角δ称为偏向角。 可以证明,当光线对称通过三棱镜,即入射角 i0等于出射角 i0’时,入射光和出射光之间的夹角最小,称为最小偏向角δmin 。由图7.1.2-8可知: δ = ( i-r ) + ( i ’-r’)(6-2) A=r+r ’ (6-3)

大学物理实验分光计实验报告

竭诚为您提供优质文档/双击可除大学物理实验分光计实验报告 篇一:分光计的调节与使用实验报告 分光计的调节与使用实验报告 姓名:学号:专业班级:实验时间: 一、试验目的 1、了解分光计的结构,掌握调节分光计的方法; 2、测量三棱镜玻璃的折射率。二、实验仪器 分光计,三棱镜,准直镜。三、实验原理 1.测折射率原理: 当i1=i2时,δ为最小,此时 ??i1 A 2 ?min 2 ??i1??i1?i1 A

2 1 (?min?A)2 设棱镜材料折射率为n,则 A ??nsinsini1?nsini1 2 i1? n? 故 sini1 ?Asin 2 sin ?min?A Asin 2 由此可知,要求得棱镜材料折射率n,必须测出其顶角A和最小偏向角?min。四、实验步骤 1.调节分光计 1)调整望远镜: a目镜调焦:清楚的看到分划板刻度线。

b调整望远镜对平行光聚焦:分划板调到物镜焦平面上。 c调整望远镜光轴垂直主轴:当镜面与望远镜光轴垂直时,反射象落在上十字线中心,平面镜旋转180°后,另一镜面的反射象仍落在原处。调整平行光管发出平行光并垂直仪器主轴:将被照明的狭缝调到平行光管物镜焦面上,物镜将出射平行光。 2)使载物台轴线垂直望远镜光轴。 a调整载物台的上下台面大致平行,将棱镜放到平台上,是镜三边与台下三螺钉的连线所成三边互相垂直。 b接通目镜照明光源,遮住从平行光管来的光,转动载物台,在望远镜中观察从侧面Ac和Ab返回的十字象,只调节台下三螺钉,使其反射象都落在上十子线处。注意):1、望远镜对平行光聚焦。 2、望远镜,平行光管的光轴垂直一起公共轴。 3、调节动作要轻柔,锁紧螺钉锁住即可。 4、狭缝宽度1mm左右为宜。2.测量最小偏向角 (1)平行光管狭缝对准前方水银灯。 (2)把载物台及望远镜转至(1)处,找出水银灯光谱。 (3)转动载物台,使谱线往偏向角减小的方向移动,望远镜跟踪谱线运动,直到谱线开始逆转为止,固定载物台。谱线对准分划板。 ?,有(4)记下读数?1和?2转至(2),记下读数?1?和?2

粒度仪实验报告

实验一 ls230/vsm+激光粒度仪测定果汁饮料粒度 1实验目的 1.1了解激光粒度仪的基本操作; 1.2了解激光粒度仪测定的基本原理。 2实验原理 激光粒度分析仪的原理是基于激光的散射或衍射,颗粒的大小可直接通过散射角的大小 表现出来,小颗粒对激光的散射角大,大颗粒对激光的散射角小,通过对颗粒角向散射光强 的测量(不同颗粒散射的叠加),再运用矩阵反演分解角向散射光强即可获得样品的粒度分布。 激光粒度仪原理图如图1所示,来自固体激光器的一束窄光束经扩充系统扩充后,平行 地照射在样品池中的被测颗粒群上,由颗粒群产生的衍射光或散射光经会聚透镜会聚后,利 用光电探测器进行信号的光电转换,并通过信号放大、a/d变换、数据采集送到计算机中, 通过预先编制的优化程序,即可快速求出颗粒群的尺寸分布。 3实验试剂与仪器 3.1实验样品:果汁饮料。 3.2实验仪器:ls230/vsm+激光粒度仪。 4实验步骤 4.1按照粒度仪、计算机、打印机的顺序将电源打开,并使样品台里充满蒸馏水,开泵, 仪器预热10分钟。 4.2进入ls230的操作程序,建立连接,再进行相应的参数设置: 启动run-run cycle(运行信息) (1)选择measure offset(测量补偿),alignment(光路校正),measure background(测量空白),loading(加样浓度),start 1 run(开始测量 (2)输入样品的基本信息,并将分析时间设为60秒,点击start(开始)。 如需要测量小于0.4μm以下的颗粒,选择include pids,并将分析时 间改为90秒后,点击start(开始) (3)泵速的设定根据样品的大小来定,一般设在50,颗粒越大,泵速越高, 反之亦然。 4.3在测量补偿,光路校正,测量空白的工作通过后,根据软件的提示,加入样品控制 好浓度,obscuration应稳定在8-12%:假如选择了pids,则要把pids稳定在40-50%,待软 件出现ok提示后,点击done(完成)。 4.4分析结束后,排液,并加水清洗样品台,准备下一次分析。 4.5作平行试验,保存好结果,根据要求打印报告。 4.6退出程序,关电源,样品台里加满水,防止残余颗粒附着在镜片上。 5实验结果与讨论 5.1实验结果 由实验结果显示: 平均粒径:141.7μm 6思考题 6.1 ls230/vsm+激光粒度仪的技术特点 ls230/vsm+激光粒度仪的特点是测量的动态范围宽、测量速度快、操作方便,尤其适合 测量粒度分布范围宽的粉体和液体雾滴。 (1)双镜头专利技术:避免了更换镜头的麻烦,测量宽分布颗粒时,大、小颗粒的信息 在一次分析中都可得到,大大提高了分析精度。 (2)pids(偏振光强度差)专利技术:用三种方法改进了对小颗粒的测定:多波长(450nm,

α粒子散射实验带来的科学与技术的进步

α粒子散射实验带来的科学与技术的进步 卢瑟福的α粒子散射实验可以说的上近代科学发展史上最重要的物理实验之一,他不仅为建立原子的核式结构模型奠定了实验基础,而且还开创了一种重要的研究微观世界的科学方法——用高速粒子“轰击”。这一实验在科学发展史上具有里程碑式的意义,可以说它打开了微观世界的大门,同时也带来了研究微观世界的“钥匙”,直至今日,依赖于粒子加速器的高能物理学依然是最为尖端的学科,量子力学和相对论的研究都离不开这些长长的加速管道。 起初,卢瑟福设计将原子用高速粒子砸开之一大胆的想法其实是想验证1897年汤姆逊提出的原子“枣糕模型”。他用高速飞行、能量足够高的α粒子作为“炮弹”去“轰击”原子,根据α粒子飞行路径的改变,便可推算出原子的内部构造情况。实验所用装置如图所示,作为“炮弹”的α粒子由放射源R提供,金箔F则作为被轰击的靶。为了便于进行定量的讨论,在R的前方开一个狭缝,使得射到F上的α粒子束方向单一。尽管α粒子与靶原子的碰撞细节无法直接看到,但是它们的碰撞结果却会在荧光屏S上反映出来——打到S上的α粒子会使荧光屏发亮,这样的闪光可以用放大镜M观察。放大镜M可以绕着碰撞中心转动,这样就能够读出不同方向上(各种不同的θ角)被散射α粒子的个数。此外,为避免空气分子对α粒子的影响,整个实验都安排在真空中进行(放大镜M除外)。 这项实验开始进行的并不顺利,大多数α粒子轻易地穿透了金箔,直到1910年底,卢瑟福的学生盖革和马斯顿竟然观察到有些α粒子既然被金箔反弹回来了。用卢瑟福的话说这简直相当于一枚重磅炮弹(15英寸)去轰击一张薄纸,炮弹竟然被纸片弹了回去。后来通过进一步观察表明绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数α粒子发生可较大的偏,并且极少数α粒子的偏转超过90°,有的甚至几乎达到180°而被反弹。 卢瑟福根据实验现象经过分析后认为,汤姆逊的“枣糕模型”是错误的,因为电子的质量不到α粒子的1/7000,α粒子碰到它是不会发生运动方向的变化,而“枣糕模型”中认为原子内部正电荷均匀分布,原子穿过时收到的电荷斥力相互抵消,也不会发生偏转。卢瑟福认为少数α粒子发生了大角度偏转甚至反弹回来,表明这些α粒子在原子中的某个地方受到了质量、电量均比自身大很多的粒子的作用;而绝大多数电子穿过金箔时相当于穿过几千个金原子,但它的运动方向却没有改变,表明原子中绝大多数部分是很空的。由此,卢瑟福在1911年提出了原子的核式结构模型,认为原子的中心有一个很小的核,原子的全部正电荷和全部的质量几乎都集中在了原子核里,大夫点的电子在核外空间里绕着核旋转。 今天的我们回头看100年前这个精巧有趣的实验可以发现很多东西,比如卢瑟福设计实验的大胆创新与精巧构思,比如科学研究的执着认真,比如对于反常实验结果的思索等等,而我在这里想要说的是科学与技术之间的关系。 我们常常把科学与技术放在一起说,高校里院系一般都是××科学与技术学院,“科学”与“技术”作为两个不同的范畴,是对“科学是什么”的思考过程中不可绕开的部分。瓦托夫斯基如此定义科学:科学是一种用普遍的定律和原理建构的有组织的或系统化的知识体系。进一步来说,人们能够彻底理解自身所看到的自然现象的运作、根源、本质,并进一步运用获得的知识作为指导思想,对未来进行预测。因此严格意义上的“科学”进步终极目标是在改变世界的同时改变人们的世界观。与之相对应的,“技术”是解决现实世界中具体问题的能力和方法。科学与技术无疑关系紧密,科学的发展很大程度上会促进新技术的产生,而新的技术则也会促进科学的发展。但从本质上来说,他们又是矛盾的,科学是未知,是对未知世界的探索,而技术是已知,是对现有知识的应用。科学天然带有一种“破”,许许多多的科学发现往往会颠覆人们的对世界的认知,卢瑟福的发现推翻了汤姆逊的学说,而相对

大学物理实验报告答案大全(实验数据)

U 2 I 2 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的 (1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 实验方法原理 根据欧姆定律, R = U ,如测得 U 和 I 则可计算出 R 。值得注意的是,本实验待测电阻有两只, 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。 实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学 生参照第 2 章中的第 2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。对每一个电阻测量 3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由 U = U max ? 1.5% ,得到 U 1 = 0.15V , U 2 = 0.075V ; (2) 由 I = I max ? 1.5% ,得到 I 1 = 0.075mA , I 2 = 0.75mA ; (3) 再由 u R = R ( 3V ) + ( 3I ) ,求得 u R 1 = 9 ? 101 &, u R 2 = 1& ; (4) 结果表示 R 1 = (2.92 ± 0.09) ?10 3 &, R 2 = (44 ± 1)& 光栅衍射 实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。 (3) 观测汞灯在可见光范围内几条光谱线的波长 实验方法原理

粒度仪实验报告

粒度的测定实验报告 1.实验名称:利用LS230/VSM+激光粒度仪对果珍果汁进行粒度分析 2.实验目的:(1)了解粒度仪的原理及使用方法; (2)对果珍果汁的粒径进行测定分析。 3.实验步骤:(1)前期准备:去离子水,果汁,滴管; (2)利用粒度仪对果汁的粒度进行测定; (3)对数据进行分析处理。 4.粒度仪原理:通过动态光散射进行粒度测量 4.1粒子的布朗运动 悬浮在液体中的粒子由于同溶剂分子的随机碰撞而产生布朗运动。这种运动会造成粒子在整个媒介中扩散。根据斯托克斯爱因斯坦方程,扩散系数D与粒度成反比: D:扩散系数;k B:波耳兹曼常数;T:绝对温度;η0:粘度;d:流体力学直径 此方程表明,对于较大的粒子,D会相对较小,因而粒子会缓慢移动;而对于较小粒子,D会较大,并且粒子将更快速地移动。因此,通过观察布朗运动以及测定液体媒介中粒子的扩散系数,便可以测定粒子的粒径。 4.2来自布朗运动中粒子的光散射 在动态光散射中,测量布朗运动中粒子所散射光线随时间的波动。图2.1.2通过动态光散射测定粒度通过示意图表明如何通过光散射法来测定粒度及其粒度分布。当激光向粒子照射时,激光光线会向所有方向散射。所观察到的散射光线来源于在一个散射量内的一组散射元素,散射量通过散射角度和检测孔来确定。在任何时刻所观察到的散射光的强度将是每个元素所散射光的干涉的结果,因此将取决于元素的相对位置。如果微粒在运动,则微粒的相对位置将随时间变化,并且因此将会观察到散射强度在时间上的波动。 由于布朗运动中的粒子是随机移动的,所以散射强度的波动也是随机的。对于快速运动的较小粒子,波动将会快速地发生;而对于较慢运动的较大粒子,波动会慢一些。使用自相关函数对散射光的波动进行分析。

分光计的调节与使用实验报告

分光计的调节与使用实验报告 姓名: 学号: 专业班级: 实验时间: 12周 星期四 上午10:00-12:00 一、试验目的 1、了解分光计的结构,掌握调节分光计的方法; 2、测量三棱镜玻璃的折射率。 二、实验仪器 分光计,三棱镜,准直镜。 三、实验原理 1.测折射率原理: 当i 1=i 2'时,δ为最小,此时 21 A i =' 22 11 1min A i i i -='-=δ )(21 min 1A i += δ 设棱镜材料折射率为n ,则

2sin sin sin 1 1A n i n i ='= 故 2 sin 2sin 2 sin sin min 1 A A A i n +== δ 由此可知,要求得棱镜材料折射率n ,必须测出其顶角A和最小偏向角min δ。 四、实验步骤 1.调节分光计 1)调整望远镜: a 目镜调焦:清楚的看到分划板刻度线。 b 调整望远镜对平行光聚焦:分划板调到物镜焦平面上。 c 调整望远镜光轴垂直主轴:当镜面与望远镜光轴垂直时,反射象落在 上十字线中心,平面镜旋转180°后,另一镜面的反射象仍落在原处。 调整平行光管发出平行光并垂直仪器主轴:将被照明的狭缝调到平行光管物镜焦面上,物镜将出射平行光。 2)使载物台轴线垂直望远镜光轴。 a 调整载物台的上下台面大致平行,将棱镜放到平台上,是镜三边与台下三螺钉的连线所成三边互相垂直。 b 接通目镜照明光源,遮住从平行光管来的光,转动载物台,在望远镜中观察从侧面AC 和AB 返回的十字象,只调节台下三螺钉,使其反射象都落在上十子线处。 注意): 1、望远镜对平行光聚焦。

相关文档
最新文档