高效体外预应力结构锚固成套技术研究与应用通过鉴定

合集下载

关于公路桥梁体外预应力加固施工技术探讨

关于公路桥梁体外预应力加固施工技术探讨

关于公路桥梁体外预应力加固施工技术探讨摘要:对于公路桥梁加固而言,体外预应力是一种效果明显的加固方法。

该种方法具有明确的受力途径,能够明显改善结构的应力状态,大幅提高结构承载力和抗裂度,且施工简单,不妨碍交通。

本文以某桥梁加固设计实例为研究对象,介绍了体外索加固桥梁的设计方法、施工过程,并进行了施工总结,旨在促进公路桥梁体外预应力加固施工技术的不断发展。

[1]关键词:公路桥梁加固;体外预应力;施工中图分类号:x734 文献标识码:a 文章编号:为了促进经济建设的不断深入,国家在交通设施建设方面的投入也在逐年加大。

从具体的使用角度观察,发现相当一部分桥梁工程存在不同程度的质量问题,如桥梁抗震性能不佳、承载力不足、使用年限不达原先设计等。

这些质量问题给桥梁工程的安全性埋下了极大的隐患。

为了消除这些隐患,使用加固技术对旧桥进行维护便显得尤为重要。

体外预应力是一种较为有效的方法,能提高桥梁结构的承载能力,对桥梁起到良好的加固作用。

体外索加固桥梁的设计方法体外索的材料通常由无粘结钢绞线、粗钢筋、槽钢组合而成。

体外索对桥梁受弯构件进行加固时,一般按偏心构件计算梁承载力的大小;按无粘结部分预应力混凝土结构,当截面受弯受损时,梁内的非预应力钢筋将达到屈服,但预应力钢筋没达到强度极限,对使用阶段的应力及结构的变形进行验算;按加筋梁组合结构分别对其受力和使用性能进行分析。

对正使用极限状态的各项指标计算时,按整体变形协调条件计算在外载作用下预应力筋的应力增量。

2.桥梁加固实例分析某大桥为钢筋混凝土t型梁桥,平均跨度为13m,建造时设计载荷为拖-60级、汽-10级。

该桥在服役期间,受到船只多次不同程度地撞击,造成部分混凝土脱落、裂缝、钢筋受损等多种形式的质量问题。

解决这些问题,首要要将松散的混凝土凿除,使用钢丝刷进行除锈操作,然后选用c40混凝土通过挂模浇筑的方式完成修补,最后利用体外预应力完成加固,且保证加固后桥梁的承载力达到汽-15级。

房屋结构预应力技术的特点及应用

房屋结构预应力技术的特点及应用

第25卷第2期徐州工程学院学报(自然科学版)2010年6月V ol.25N o.2Journal of Xuzho u Institut e of T echnolog y(Natur al Sciences Edition)JU N12010房屋结构预应力技术的特点及应用秦丙寅,李富民,姜蔚,杨巧(中国矿业大学力学与建筑工程学院,江苏徐州221008)摘要:为了推进预应力技术的进一步研究,总结了房屋结构中预应力技术的主要特点,介绍了预应力技术在大跨钢桁架结构、大跨空间屋盖结构、大悬挑桁架、大面积楼盖、板柱结构及转换层结构中的应用实例,分析了预应力技术在房屋结构应用中存在的实际问题,并指出预应力技术的发展方向.关键词:预应力;房屋;结构中图分类号:T U757文献标志码:A文章编号:1674-358X(2010)02-0045-08预应力结构因其自重小、抗裂性能好、抗震性能好等优点,而适用于大型、大跨、重载、高耸等建筑工程[1].北京国家大剧院及国家体育场等国家大型建筑建造过程中均采用了预应力技术,并取得了较好的经济效益和社会效益.本文首先分析房屋结构中采用的预应力技术的主要特点,然后介绍预应力技术在房屋结构中的应用并从中发现一些问题,以求为预应力技术的进一步发展提供参考.1房屋结构预应力技术的特点房屋结构中采用预应力技术具有鲜明的特点,主要体现在以下几个方面:(1)预应力技术实现了房屋的大跨度.由于预应力的作用,不仅克服了混凝土抗拉能力低的弱点,控制了裂缝的出现和开展宽度,提高了构件的抗裂度和构件刚度,而且还由于采用了高强度混凝土及高强度钢材,进而提高了构件的承载力,所以被广泛应用于大跨度框架、大跨井字梁楼盖、大跨钢桁架、大跨钢拱架、大跨空间屋盖等结构中.类似于大跨度结构,由于预应力技术使用了高强度材料,可以减小构件的截面尺寸,降低结构自重;因此广泛应用于大悬挑结构中,可防止大悬挑结构根部破坏.例如贵阳奥体中心5万人体育场的看台挑篷最大悬挑近50m,工程中通过局部施加预应力来提高结构的刚度.(2)预应力技术满足了大面积楼盖不设缝的需求.工程中在浇筑大面积楼盖混凝土时,由于温度和混凝土收缩等作用可能会引起楼盖严重开裂.而在楼盖中采用预应力技术,可抵抗温度和混凝土收缩作用,从而减小开裂;因此大面积楼盖结构中使用预应力技术具有明显的优势.(3)预应力技术保证了板柱结构的抗弯及抗冲切性能.在板柱结构中,如跨度较大,则不仅楼板的厚度及板跨中挠度大,而且板柱交接点冲切力大,那么楼板中采用预应力的方式来抵抗上面荷载,则可以大大减小楼板厚度,降低自重,减小冲切力,同时也因为预应力的作用还可以减小跨中挠度.总之,预应力技术可使无梁结构更经济、更安全.(4)无粘结预应力技术应用于房屋结构中可加快施工进度.采用无粘结预应力结构有利于降低建筑物层高和减轻结构自重;有利于改善结构的使用功能,使楼板挠度小,几乎不存在裂缝;大跨度楼板的使用有利于加大可使用面积,也较容易改变楼层用途;有利于施工操收稿日期:2009-04-02基金项目:徐州市社会发展基金资助项目(XM07C082).作者简介:秦丙寅(1986-),男,硕士研究生,主要从事预应力结构研究.通讯作者:李富民(1972-),男,甘肃静宁人,副教授,博士,主要从事预应力结构及混凝土耐久性研究.作,加快施工进度;有利于节约钢材和混凝土,有较好的经济效益和社会效益.(5)预应力技术满足了结构转换中的大跨、重载的需求.由于转换层结构都为大跨度且要承受其上楼层的很大集中荷载,所以宜采用预应力混凝土结构.大跨度转换层中采用预应力技术可保证转换层有足够的强度和刚度,致使转换层结构构件截面尺寸不至高而大.2 房屋结构中预应力技术的应用2.1 预应力技术在大跨钢桁架中的应用预应力技术应用于大跨钢桁架,可引入与荷载相反的预应力以提高结构承载能力(延伸了材料强度的幅度),改善结构受力状态(调整内力峰值),增大刚度(施加初始位移,扩大结构允许位移范围),达到节约材料,降低造价的目的;因此大跨钢桁架中应用预应力技术比较广泛.图1 北京西站位于北京市丰台区莲花池东路的北京西站是1996年初竣工的北京铁路客运站,是原亚洲规模最大的现代化铁路客运站,是原/亚洲第一大站0.截至2009年,北京西站仍是全国日客流量最大的火车站,大大缓解了北京火车站的客运压力.其外观如图1所示[2].北京西站主站房是/国门0的象征.其正中设有一大/门洞0,/洞0高52.3m,东西宽(跨度)45m,南北厚28.8m./门楼0由4榀预应力主桁架和30榀次桁架组成,桁架高8m.桁架上部置有三重檐四角钢亭.桁架及钢亭自重约1600t,整个钢结构重达5000t 以上,为巨型的大跨重载钢结构工程.经过多方案的比较论证和优化分析,对4榀主桁架采用先进的预应力钢结构技术.这是我国首次设计采用的预应力巨型钢结构工程.(1)预应力筋布置.北京西站主站房门楼由4榀45m 跨的预应力钢桁架(边桁架和中部桁架各2榀)和30榀次桁架及楼盖结构组成.其中中部主桁架(每榀)承受的荷载高达17600kN.这4榀主桁架不仅承受的荷载特大,而且受力复杂.为此,主桁架设计配置了3组预应力束:下弦中部直线束,上弦边部直线束和通过上弦和下弦的折线束.实际结果表明:对主桁架施加预应力后,主桁架上、下弦杆的内力有较大幅度的降低,应力不均匀性有所缓和,大部分斜腹杆的内力也不同程度得到减小.跨中挠度由20.2mm 减至6.8m m,预加应力的效果明显.如表1.表1 预加应力前后中部主桁架各主要杆件的内力变化杆件部位张拉预应力前内力/k N 张拉预应力后内力/k N 上弦跨中杆轴力-3655 603上弦端部杆轴力53951612下弦跨中杆轴力 34911995预加应力后,对中部少量受力较小的杆件和端部受压力腹杆的内力有所增大,但增大的幅度均较小,且都不起控制作用.(2)预应力筋张拉.预应力筋张拉程序采用0y 0.2R con y 0.6R con y 1.0R con (锚固)方法.张拉控制应力R con =0.7f ptk ,单束张拉力P =1320@140/1000=182kN.预应力张拉必须对称、同步进行:对于下弦直线束,应在桁架两端对称进行;对于上弦直线束应在桁架提升就位后,在桁架中部分别对两端进行对称的一端张拉;对于折线束则应在提升就位后在桁架的两端各置一台千斤顶,对两束同步张拉(一端张拉),张拉至设计值后再分别在另一端补足.(3)预应力筋防腐防火措施.徐州工程学院学报(自然科学版) 2010年第2期鉴于本工程有较高的防火防腐要求,预应力筋采用较厚包皮的无粘结钢绞线.外面套<89@4的钢管,预应力束张拉后在钢管内灌注水泥浆.根据本工程结构特点,通过合理的配束分阶段张拉预应力;采用合理的防护措施,大大改善了结构性能,很好地体现了现代预应力技术的优越性,减小了用钢量,具有明显的经济效益.2.2 预应力技术在大跨空间屋盖结构中的应用预应力能够提高结构稳定性、抗震性,改善结构疲劳强度,改进材料低温及抗蚀.在屋盖结构中采用预应力技术更能增加屋盖的跨度和承载力.预应力屋盖结构有预应力混凝土结构、预应力索穹顶结构、预应力张弦桁架结构、悬索结构等.大跨度空间结构中引入现代预应力技术,不仅使结构体形更为丰富,而且也使其先进性、合理性、经济性得到充分展示.第29届奥运会乒乓球馆(北京大学体育馆)位于北京大学校园内,紧邻中国硅谷中关村.该馆的建筑面积26900m 2,南北长122.6m ,东西宽87.7m,由乒乓球馆和游泳馆两部分组成.比赛时可提供固定与活动坐席共7557个.该结构屋盖为新型复杂钢结构体系,其屋盖体系由中央刚性环、中央球壳、辐射桁架、拉索和支撑体系组成.建筑效果如图2所示[3].图2 北京大学乒乓球馆建筑效果图北京大学体育馆是世界上首座专为乒乓球比赛而建造的专门体育馆,更是中国军团2008奥运的夺金重地.屋脊利用金属屋盖上两条螺旋展开的曲面作为形体,合民族、北大、国球、建筑于一脊,被称为/中国脊0.中央的玻璃球及屋顶的可开启窗,保证了室内自然采光和良好的自然通风,满足学校平时训练使用.该结构屋盖平面尺寸为92.4m @71.2m,采用预应力张弦桁架结构.共有32榀辐射桁架,每榀辐射桁架下设置有预应力拉索,为自平衡体系.辐射桁架上弦为受压圆钢管,下弦为型号<5@151的预应力拉索,直径为79m m.拉索一端固定,一端可调.该结构为复杂预应力钢结构体系,32榀辐射桁架呈180b 反对称布置.根据其特殊的结构形式,采用反180b 对称进行预应力张拉.同时施工前仿真模拟张拉工况,以此作为指导张拉的依据.分3个阶段对称张拉,即分别为20%设计张拉力、100%设计张拉力,逐根进行索力调整.张拉时采取双控原则:索力控制为主,伸长值控制为辅,同时考虑结构变形.该体育馆在屋盖中采用预应力技术.这不仅可实现屋盖的外形美观,而且得到了良好的自然通风,并解决了屋盖由于跨度大而造成的自重和变形问题.2.3 预应力技术在大悬挑桁架结构中的应用有粘结及无粘结预应力大悬挑结构体系,是由预应力悬臂式结构形成的大悬挑的挑层结构.其特点是向空间发展,形成空间地皮,节约用地,节约能源.通过建造区域的总体布局以及环境绿化、房屋的内外空间组合,可以达到建筑功能与技术以及环境艺术的和谐.同济大学图书馆主楼系高层大跨度悬挑预应力空间超静定结构,12层,建筑面积9722m 2,总高50m.主楼剖面如图3所示.1~4层为8.3m 方筒体,5层以上由25m 预应力交叉空腹主桁架和边桁架组成的悬挑楼盖.它支承在砼方筒体上,选用<65金属波形管成孔、XM 锚具、7@7<S 5高强钢丝束后张法工艺.经省级鉴定认为采用大吨位高强钢丝束预应力后张法应用在民用高层大跨悬挑结构上属国内首创,达到国内领先秦丙寅,等:房屋结构预应力技术的特点及应用水平,具有广泛的社会、经济效益及推广价值.筒体墙厚450m m,内部墙体厚200m m,筒体四角有截面面积为1.6m 2的多边形柱,混凝土强度等级为C38.预应力悬挑主桁架上下弦断面为400mm @1150mm.除筒体外,最大的腹杆断面为250mm @1400mm,上弦杆内配2@7@7<s5高强钢丝束,混凝土强度等级为C38.预应力悬挑次桁架上下弦断面为350mm @700m m,腹杆断面为400mm @400mm ,上弦杆内配3@7<s 5(10层以上为7@7<s 5),混凝土强度等级为C38.楼板厚为70mm,混凝土强度等级C28.1)地下室;2)主楼筒体;3)目录厅;4)悬挑楼层;5)连接体;6)原图书楼图3 同济大学图书馆主楼剖面图该工程预应力钢丝束张拉时采取应力、应变双控制.主桁架上弦梁长25m,根据设计要求及千斤顶本身的行程,采取两端张拉.次桁架上弦梁长18.2m,采取一端张拉,另一端自锚.施工中考虑钢丝松弛、混凝土徐变等引起的张拉应力损失,采取超张拉方法.张拉顺序为0y 103%R con .主桁架在实际张拉中,为控制两端压力差,分3级张拉.每张拉1级,测一次钢丝束伸长值.实际张拉顺序及张拉值如下:张拉顺序:0y 15%R con y 60%R con y 103%R con .张拉值:0y 147.87kN y 591.5kN y 1015kN .当主桁架两端张拉至103%R con 后,量取最终伸长值及应力应变值,达到标准要求后,即可以顶锚.但两端不能同时顶锚,先在一端顶锚,待另一端补足因顶锚引起的应力损失后,再进行顶压.每榀主桁架上弦有两束钢丝束,顺序按先张拉下层束,后张拉上层束.2.4预应力技术在大面积楼盖结构中的应用图4 南京国际展览中心预应力技术是解决超大面积楼盖温度应力的新技术,这样可使结构受拉区预先受到压应力作用.这种压应力将能抵消一部分或全部由使用荷载或温度所产生的拉应力,从而推迟裂缝出现的时间和减小裂缝的宽度,提高了结构的耐久性和刚度.近年来,由于在大面积楼盖中的优点得到充分体现,预应力技术更加广泛地应用于大跨度建筑的楼盖中.南京国际展览中心位于南京玄武湖的东面,是古都南京的一项跨世纪的标志性的建筑,是南京市近几十年以来最宏伟、壮观的公益性建筑,于1999年1月25日破土动工,经过桩基施工、主体钢结构、设备安装和装饰工程施工几个阶段,至2000年8月三十日竣工落成.外观如图4所示[4].徐州工程学院学报(自然科学版) 2010年第2期本工程总建筑面积为89000m 2,建筑长度为292.8m,宽度为158.5m,2层楼面为大型展厅,面积约为30000m 2.板厚为150mm ,混凝土强度等级为C40,为双向无粘结预应力平板,南北向采用间距560mm 双根预应力筋,东西向采用间距700mm 单根预应力筋,均以直线形布置于板中.预应力筋起控制混凝土收缩和温差引起的应力及防止板开裂的作用.预应力筋采用强度等级为1860MPa 的低松弛钢绞线,张拉控制应力R con =0.75f ptk .留孔采用壁厚为0.32~0.34mm,直径为70mm 和80mm 的镀锌金属波纹管.两端分别采用Ñ类夹片锚具.由于工程两个方向的长度均较大,为此在沿南北方向设置两条2m 宽的折线形后浇带,预应力筋用连接器连接;东西方向设置一条直线形后浇带,预应力筋通长布置.先张拉南北向中间区段预应力筋,待楼面混凝土浇筑至少4周后方可浇筑后浇带混凝土.后浇带混凝土强度达75%后再张拉两侧的预应力筋.东西方向预应力筋在后浇带混凝土达到预定强度后再进行张拉.该工程因为成功采用了预应力结构,使楼板的承载负荷达到了800kg/m 2的水平.该工程在超大面积楼板和框架梁预应力结构的设计和施工等诸方面进行了成功探索.经过一年半的使用,2层展厅楼板未发生结构性表面裂缝,框架梁无任何开裂和变形,实践证明达到了如期的效果.该项目获得教育部优秀设计一等奖、江苏省优秀勘察设计一等奖、建设部优秀工程设计二等奖等奖项.2.5 预应力技术在板柱结构中的应用板柱结构是由楼板和柱组成承重体系的房屋结构.它的特点是由于室内楼板下设有梁,而使空间通畅简洁,平面布置灵活,降低了建筑物层高.在板柱结构中,跨度较大时荷载较大,使得无梁平板内裂缝控制和挠度控制成为结构设计的重要问题.单纯通过增加板厚来解决结构受力问题,将造成混凝土用量增大,自重增加,用钢量较大等问题;因此,采用预应力结构,在保证结构板厚合理的原则下,增加了平板刚度,改善了平板的抗裂性能.图5 北京科技会展中心北京科技会展中心(图5)工程位于白颐路与北三环交叉口处,由东部、北部两座主体高层及中部裙房组成.主体高层结构为框架剪力墙体系.裙房部分地上3层,层1、2顶板为混凝土平板,屋顶为钢结构体系.内部柱网为9m,边柱网则分别为11m 及9.8m.柱尺寸为800m m @800m m,混凝土平板板厚300mm.柱顶柱帽尺寸为2200mm @2200mm @100m m.柱上板带设暗梁,暗梁宽2000mm.混凝土结构采用C40混凝土.混凝土平板采用无粘结预应力技术,预应力钢筋采用无粘结低松弛钢绞线7<j 15.24,极限强度标准值为1860M Pa.张拉控制应力为1302M Pa.按等代框架布筋原则,板内预应力钢筋双向布置,预应力筋线形为分段抛物线,在混凝土板内建立的预压应力不超过2.5M Pa [5].工程中主体与裙楼之间存在为解决不均匀沉降而预留的后浇带,若等待主体结构封顶,后浇带浇注完成,达到混凝土设计强度,然后再进行预应力张拉,必然使得裙楼模板大量积压,造成较大的经济损失;因此,为节约造价,合理安排施工周期,预应力钢筋的布置充分考虑后浇带的影响.在预应力钢筋布束中,采用内部网格与后浇带处边网格分开布置的方法.这样内部网格的预应力钢筋在后浇带处张拉,裙楼可进行正常施工安排.边网格预应力钢筋锚固在内部网格柱上板带处,待后浇带完成浇注后张拉,对整体结构无较大影响.对北京科技会展中心工程预应力结构的设计充分考虑了结构受力及结构施工过程中的各种问题.这不仅使得结构受力合理,且更有利于合理安排工期,较好地解决了设计及施工中的各项难题.2.6 预应力技术在转换层结构中的应用在高层建筑中,沿房屋高度方向由于功能要求的变化或结构布置上的变化在结构转换的楼层设置水平转换构件,即转换层结构.由于转换层结构都为大跨度且要承受其上楼层的很大荷载,所以最适宜采用预应力混凝土结构.目前在高层建筑中应用的预应力混凝土转换层结构主要有梁式、桁架式、厚板式等.江苏省会议中心建筑面积32064m 2,地下1层,地上30层.大屋顶,顶层标高100.8m.该工程已于秦丙寅,等:房屋结构预应力技术的特点及应用1998年1月竣工交付使用.该工程1~3层为会议室及公共部分,要求有尽可能大的灵活空间,最大跨度为15.6m.4层主楼部分是客房,裙楼部分是屋面.5层以上是标准层,都是客房,3.9m 小开间轴线布置[6].图6 计算简图为了满足建筑功能的要求,保证结构安全可靠,主楼采用抗震性能好的框支剪力墙结构体系,4层设结构转换层.结构转换层为梁式转换层.该梁15.6m 跨的三跨连续梁,截面尺寸为1500m m @3600m m.该梁不仅担负着本轴线4层上、下柱网的改变,而且又是横向转换梁的中间支座,受力很大.为了保证结构可靠工作,布置结构时,使该大梁与下部4层及上部26层墙、梁一起,组成巨型框剪结构体系.计算简图见图6.本梁采用两种形式的预应力筋:梁中,13束8<j15双曲线抛物线加切线形式的无粘结预应力钢绞线;梁顶、梁底各8束9<j 15直线形式的有粘结预应力筋.如图7所示.预应力筋的抗拉强度标准值f ptk =1860kN/mm 2,取张拉控制应力R con =0.75f ptk .无粘结筋采用VM15-1单根夹片锚;有粘结筋采用<80波纹管留孔,QM 15-9群锚,两端张拉.图7 预应力筋布置示意图转换梁施加预应力的优点是:(1)提高转换梁的抗裂能力,减小挠度.对转换梁施加预应力,最突出的优点就是抗裂、限裂,并可减少截面尺寸,减小挠度.(2)增加耐久性.由于预应力使转换梁抗裂或限裂,从而可保护钢筋免遭锈蚀,增加耐久性.特别在钢骨混凝土梁中,施加预应力可有效地限制裂缝的出现或控制裂缝的开展,使混凝土保护钢骨,免受环境的侵蚀,从而提高钢骨混凝土梁的耐久性.(3)预应力的合理布置可改善转换梁的受力性能.施加预应力产生的轴向压力可提高转换梁的受剪承载力.对于曲梁,预应力对抗弯、抗剪和抗扭均有利.预应力的合理布置不仅可使转换梁变为接近于轴压构件,提高承载力,另外还可抵抗转换梁内的部分甚至全部扭矩.3 预应力技术应用中存在的问题综上所述,预应力技术已经广泛应用于房屋结构中,并且取得了较好的效果,说明预应力技术已经发展到了较高的水平.但是预应力技术还存在许多需要解决的问题,比如更大跨度的需求与目前技术水平间存在差距,大吨位张拉锚固技术的需求与现实技术水平间存在差距,大型工程与环境保护问题,耐久性损伤(氯盐、碳化等引起的钢筋腐蚀;寒冷地区的冻融破坏;碱-骨料反应等)及FRP 预应力筋应用中存在的问题等.这里将主要介绍预应力房屋结构的耐久性损伤问题及FRP 预应力筋应用中存在的问题.徐州工程学院学报(自然科学版) 2010年第2期秦丙寅,等:房屋结构预应力技术的特点及应用3.1预应力房屋结构中耐久性损伤问题影响预应力结构耐久性的因素有很多,例如氯盐侵蚀、碳化、寒冷地区的冻融破坏、碱集料反应、高温等.长期以来,由于对预应力混凝土结构耐久性重视不够,世界范围内发生了大量的耐久性事故.例如贵阳西南工具厂预应力混凝土屋盖,在进行屋面防水处理时发现,使用仅8年的预应力混凝土屋面板,露筋锈蚀现象严重,板面裂缝贯穿,造成雨水渗漏,需作加固处理.混凝土结构所处的环境可以划分为一般大气环境、海洋环境、土壤环境及工业环境等.其中一般大气环境是民用混凝土结构所处的环境状态.与普通钢筋混凝土耐久性相比,预应力混凝土结构的耐久性既有相同之处,又有不同的地方,一般认为有以下两点主要的区别[7]:(1)预应力混凝土结构施工比较复杂,技术含量较高,每一环节的疏漏都有可能使其耐久性能下降.整体施工过程要经历多道工序,如芯管的埋置、预应力筋的张拉及锚固、管道的灌浆、锚具的防腐处理等,每一道环节的质量缺陷都有可能影响结构的耐久性.在上述各种影响因素中,管道的灌浆尤为重要.如果灌浆不密实,将使浆体中存在气泡:当浆体硬化后,形成空隙,有害气体和液体渗入后,极易造成钢筋腐蚀.另外,如果配合比不合适,水泥浆易产生离析,干硬后收缩,产生孔隙,致使粘结强度不足,也会影响耐久性.(2)普通钢筋锈蚀时,会在表面产生锈斑,引起混凝土保护层的剥落、层裂等外在现象.而预应力钢丝在很多情况下,会发生无任何预兆的脆性断裂,导致结构的突然破坏.预应力筋的锈蚀较为复杂,除普通钢筋发生的电化学腐蚀外,还有其特有的应力腐蚀.预应力筋的截面较小,自开始张拉一直就处于高应力状态下,对应力腐蚀极为敏感,并且自腐蚀开始至失效过程很短,表现为明显的脆性破坏形态.在有应力腐蚀的情况下,当钢筋的应力远低于极限抗拉强度时,钢筋就会出现裂纹或破坏.所以,在预应力混凝土的设计中必须足够重视预应力的应力腐蚀问题.预应力结构的耐久性问题主要体现在预应力钢筋的锈蚀问题上.为了解决以上问题,新型、高强、性能优越的预应力材料越来越多出现在预应力结构中,如FRP筋、新型无粘结CFRP预应力筋及低松弛、耐腐蚀、高强度的钢材类预应力筋代替了普通的预应力钢筋.但是FRP筋力学性能、粘结滑移性能等也存在一些不足,还有待于进一步研究.3.2新型FRP预应力筋应用中存在的问题钢筋混凝土结构中一直存在钢筋锈蚀引起的结构耐久性问题.钢筋锈蚀将严重地影响结构功能的正常发挥,并大大地降低结构的使用寿命.解决钢筋锈蚀所引起的混凝土结构耐久性问题的一个有效方法是利用纤维增强塑料(Fiber Reinfor ced Plastics,简称FRP)筋来代替钢筋和预应力钢筋.由于FRP筋具有抗拉强度高、抗腐蚀性能好、重量轻、抗疲劳性能优良、电磁绝缘性好等优良特性而广泛用于土木工程.但是随着研究的深入,也发现了FRP筋存在着很多的不足之处.主要表现在[8-9]:(1)弹性模量较低.FRP筋的抗拉弹性模量通常约为普通钢筋20%~75%;因此,其受力后变形明显大于普通钢筋.用于混凝土结构中,若不施加预应力,构件受拉或承受力矩后的裂缝、挠度均较使用普通钢筋大.(2)抗剪强度低.FRP筋为各向异性的,其横向抗剪强度仅有50~60Mpa,不超过抗拉强度的10%,可以很容易地被剪断;所以在进行FRP筋材料试验以及将FRP筋作为预应力筋时,需研制专门的锚具、夹具.(3)FRP筋与混凝土的粘结性能较差.FRP筋与混凝土界面的粘结性能较弱,这是阻碍FRP筋发展的主要瓶颈.许多研究表明,FRP筋混凝土梁的破坏形态大多为FRP筋不断滑移而被拔出.这些都说明FRP筋与混凝土界面的粘结性不如普通钢筋.(4)热稳定性较差.FRP筋由于基体材料为树脂等有机材料,而树脂材料的耐火、耐高温性能均较差;因此,在高温环境里, FRP筋的性能会明显下降.此外,FRP筋还有不宜现场加工、易老化、抗蠕变性能差以及价格较贵等缺点;因此其技术还有待于进一步的发展.随着研究工作不断深入和计算方法不断改进,FRP筋在混凝土结构中的应用将会更加广泛和经济.。

(最全119项)2013-2020年全部公路水运工程试验检测继续教育答案

(最全119项)2013-2020年全部公路水运工程试验检测继续教育答案

目录1、钢筋 (5)2、沥青 (7)3、路基路面 (14)4、石料、粗集料 (23)5、水泥 (33)6、土 (41)7、无机结合料稳定材料 (44)8、细集料、集料(矿粉) (50)9、沥青混合料 (60)10、水泥混凝土、砂浆(一) (70)11、水泥混凝土、砂浆(二) (78)12、超前地质预报技术在隧道中的应用-大工检测 (85)13、工地实验室管理 (88)14、回弹法及超声回弹综合法检测混凝土强度 (94)15、桥梁加固交工验收检测 (96)16、桥梁预应力结构施工质量控制及其检测技术 (98)17、试验检测行业标准化 (103)18、试验检测行业信息化、智能化发展概要 (107)19、隧道质量安全控制及紧急救援 (109)20、职业道德 (111)21、数值修约规则与极限数值的表示和判定 (115)22、公路工程路基路面压实度检测与评价 (116)23、隧道工程监控制度与管理 (119)24、路面平整度及其检测评价 (125)25、桥梁结构无损检测技术 (127)26、试验检测机构等级评定及换证复核管理 (130)27、钢绞线常规项目试验 (135)28、公路工程试验检测数据处理与挖掘技术 (137)29、公路交通专业计量管理体系考试 (140)30、桩基检测技术 (146)31、公路滑坡监测技术简介 (149)32、桥梁健康检测技术简介自测 (152)33、混凝土外加剂 (157)34、水质 (160)35、钢筋保护层厚度检测方法 (164)36、基桩检测应力波理论 (167)37、抗氯离子渗透试验电通量法 (174)38、橡胶支座检验方法 (177)39、用于水泥和混凝土中的粉煤灰检测方法 (179)40、金属波纹管检测方法 (181)41、塑料波纹管检测方法 (183)42、外加剂匀质性试验 (184)43、基桩检测的基本规定 (187)44、超声波的基本知识 (189)45、桩的基本知识 (193)46、超声波检测技术 (197)47、低应变检测技术 (200)48、混凝土力学性能检测 (206)49、基桩高应变检测技术 (208)50、静载荷试验法 (221)51、成孔(槽)质量检测 (225)52、钻芯法检测技术 (228)59、挂篮悬浇连续梁桥的施工监控 (263)60、化学分析标准溶液配制及标定的讨论 (266)61、检测技术在对外承包工程中的应用 (269)62、桥梁病害成因分析及其处置对策(上、下) (276)63、桥梁健康监测技术的发展与挑战 (278)64、17版公路工程标准路面工程修订内容解读 (279)65、成品湿法橡胶沥青在断级配沥青混合料中的应用 (281)66、大跨径钢桥面铺装技术 (289)67、混凝土结构裂缝产生原因分析 (293)68、交通安全设施交工验收检测 (295)69、泡沫温拌沥青混合料性能评价和施工技术 (299)70、隧道监控量测及控制标准(一)(二)(三) (303)71、常见桥梁结构受力特点和养护检查要点 (305)72、水泥氧化镁含量 (308)73、公路桥梁荷载试验(一)(二) (309)74、光纤数字传输系统 (314)75、普通混凝土配合比设计、试配与确定 (318)76、桥梁上、下部结构维修加固案例分析 (323)77、实验用危化品管理 (325)78、收费站入口车道设备检测 (331)79、岩土工程原位测量技术 (338)80、自锚式悬索桥的施工监控 (341)81、大体积混凝土施工检测技术 (344)82、《波形梁钢护栏》(GB/T31439-2015)解读 (348)83、公路隧道养护检查与技术状况评定(土建结构) (351)84、试验检测能力验证和比对试验 (358)85、公路水运工试验检测机构等级标准解读 (362)86、公路隧道施工盾构法、沉管法介绍 (365)87、公路隧道施工过程监测技术 (370)88、隧道养护检查的快速检测方法 (375)89、隧道养护信息化管理技术 (381)90、弯沉检测技术回顾与展望 (386)91、公路桥梁基桩检测技术1 (391)92、工地试验室管理质量通病防治措施 (396)93、路面标线用玻璃珠 (405)94、桥梁荷载试验和承载能力评定(一)(二)(三) (413)95、桥梁技术状况评定标准(JTG/T H21-2011) (420)97、试验检测仪器设备的管理 (426)98、防水涂料试验(干燥时间)参照GB/T16777-2008 (429)99、钢构件镀锌层附着量检测 (430)100、硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 (437)101、漆膜试验(附着力拉脱法) (438)102、交通水运试验检测仪器计量管理与应用 (439)103、高密度聚乙烯硅芯管试验 (443)104、道路路况快递检测与评价技术 (447)105、公路桥梁外观检查与常见病害 (451)106、公路水运工程试验检测新技术-智慧检测云平台 (453)107、预应力混凝土结构孔道压浆密实度检测 (457)108、地质雷达探测技术在路基病害检测中的应用 (460)109、公路隧道仰拱取芯检测技术 (464)110、公路隧道风机支承结构检测 (467)111、桥梁加固交工验收检测 (470)112、工地试验室管理 (473)119、公路边坡锚杆承载力检测技术及施工质量分析 (496)1、钢筋第1题热轧光圆钢筋拉伸试验用试样数量为()。

预应力加固技术在公路桥梁施工中的应用分析

预应力加固技术在公路桥梁施工中的应用分析
1 . 1理 论
1 O 级、 拖一 ( ; o , 由于船体的撞 击, 下缘混凝土破损, 部分混凝 土脱 落, 已出现
为 了满足加 固后 旧桥承 载力 的需要, 体外索一般 采用折线形, 同时满 足梁正截面抗弯强度 和抗剪强度 的要求 , 体外索材 料一 般由无 粘结钢绞 线、 粗钢筋与槽钢组合而成, 体外索布置( 如图1 ) 所示。 体外索加 固桥梁受弯 构件时 , 可按偏心构件验算梁的承载力; 按无粘结部分 预应 力混凝 土结构,
有 效 预应 力 为6 2 2 1 5 MP a 。
加固后桥梁,采用前 轴为5 5 k N、后轴为1 5 5 k N, 两辆载重汽车进行现场荷 载试验,现场测试 布置 见 图3 、图4 。对主梁跨中挠 度 、钢筋和混凝土的应力 进 行分析 ,并确认 其加 固
效果 。
说鞭 士戊 韭 片 娆度I t 蕾 . 筋应 变 片

£ . . I £! L
图3测 点 纵 向布 置 图
】 7 8 I . I 7 B
图1体 外 索布 置 图
通过分析计算我们可
以计算 出主梁跨 中挠度为
‘ { ’

1 . 2钢筋混凝土梁加 固后抗 弯强度验 算
. 4 3 mm, 满足桥 梁规范要 按公路桥规范的允许应力计算法, 验算 在使用荷载作用下的正截面强 5 求 静 活 载 挠 度 不 超 过 度, 以T 型梁为例, 截 面内力及应力分布如图2 所示, 平衡方程为
图2 截 面 内力 及 应 力分 布
2 . 桥梁 加 固设 计实例
某大桥 为平均跨距L 为1 3 n l 的钢筋混凝 土T 型梁桥, 原设计荷载 为汽

1 . 理论概 述

浅谈桥梁结构加固

浅谈桥梁结构加固
| 技 回程 术
浅谈桥梁结构加固
杨 帆 鄂尔多斯市公路工程监理所
加 ¨ 希 一, 1 《 . 带最零,鲫 组成 分,桥誊 术和 材料。在旧桥 利用 、 固、改造 工作 中总结 ^ \ 。
5 改变结构受力体 系加 固法 、 改变结构受 力体系加固法是通 过改变桥梁
鼹 痘密 切 》,挢位 选镡 虚谅燃 个路 线辑 。 出多种切 实可行的 方法 , 为开辟 一条新 路打 下

提 经济安 全, 使得桥梁加固做 到 “ 有法可依” 。 并取得 了良好 的社会 效益和 经济效 益。此 举极 够大幅 度改善和 调整 原结构 的受 力状 况 , 高 理 、 大地推动了公路 旧桥加 固、 改造技 术研究 , 在公 j 承重结 构 的刚度和 抗裂性 能。 由于 承重 结构 自
掀 展最痔有利.所ll大 开慷l危桥砖 ≤ 媛' 1 日
关 梁 露术 羹词桥 加技 键

0 l }
防止 钢筋锈蚀 , 增强现浇 板的整体受荷性 能, 提 柱 采用砖柱、 钢筋混凝土柱、 钢管注或型钢柱 , 桥梁 不仅是 交通 工程的建筑 物 , 且还是 高抗 剪能 力; 而 后者可 以提高楼 板结 构的承 载能 托 架、 托梁常为钢 筋混 凝土结构或钢结构。 增设 个地区、 市环境 的重要组 成部 分 城 随着世界 力, 起到补强加 固作用。 由于树脂玻璃 纤维加固 支点按其支撑刚性不同, 分为刚性 支点和弹性支
桩 型复 合地 基 。 4 体外预应力加固法 、 对于 钢筋混 凝土桥 , 应 力混 凝土梁 桥或 预 桥梁的加 固维修技 术 , 最近兴起 的一门 是
粱 桥和双 曲拱桥 , 的 是 对这些桥 梁 使用状况 板桥 , 目 采用对受拉 区施 以体外预加力进行加 固,

建筑结构检测、鉴定加固课件

建筑结构检测、鉴定加固课件
结构刚度
评估结构在受到外力作用时,抵抗 变形的能力。
结构可靠性评估
结构可靠性是指在规定的时间内和规 定的条件下,结构实现预定功能的能 力。评估结构可靠性需要考虑结构的 安全性、适用性和耐久性。
结构可靠性评估需要考虑各种可能出 现的自然灾害、人为因素等偶然事件 的影响,以及结构的可修复性和可替 换性等因素。
结构可靠性评估包括对结构的承载能 力、刚度、稳定性等性能指标的评估, 以及对结构材料、连接、基础等方面 的评估。
结构耐久性评估
结构耐久性是指在正常使用和维护条件 下,结构能够维持其预定功能的时间。 评估结构耐久性需要考虑结构的材料性 能、环境因素、使用条件等因素的影响。
结构耐久性评估需要考虑结构的防腐、 防锈、防水、保温等方面的措施和维护 状况,以及结构的损伤和老化等因素。
随着科技的发展,新的检测、鉴定和加固 技术将不断涌现,提高建筑结构安全性和 耐久性。
利用人工智能、大数据和物联网等技术, 实现建筑结构的智能化检测、鉴定和加固 ,提高工作效率和准确性。
绿色与可持续发展
标准化与规范化
未来建筑结构检测、鉴定和加固将更加注 重环保和可持续发展,减少对环境的影响 ,同时满足建筑结构的性能需求。
加固施工
采用体外预应力加固法 对桥梁的主梁进行加固 ,同时对桥墩进行加固
处理。
施工要点
在施工前进行详细的结 构检测,确定加固范围 和方案;施工过程中应 严格控制施工质量,确 保加固效果;在施工过 程中应采取必要的安全 措施,确保施工安全。
加固效果
加固后桥梁的承载能力 得到显著提升,能够满 足日益增长的交通需求 ;同时,加固施工对桥 梁的通行影响较小,保
04
对检测数据进行处理和 分析,为建筑结构的鉴 定和加固提供依据。

体外预应力在混凝土连续梁桥加固中应用

体外预应力在混凝土连续梁桥加固中的应用摘要:本文概述了在当前桥梁加固中常用的加固方法,以体外预应力方法为主要探讨对象,对桥梁体外预应力加固机理、体外预应力计算方法和计算步骤以及预应力损失的计算方法进行了论述,可为利用体外预应力法加固桥梁提供参考。

关键词:桥梁加固;体外预应力法中图分类号: k928.78文献标识码:a 文章编号:1、概述在过去几十年的发展中,我国修建了数量极其庞大的公路、铁路桥梁。

随着时间的推移,桥梁在使用过程中的磨损和自然老化的原因,导致了数量众多的桥梁存在不同程度的安全问题。

桥梁的维修和加固问题已经逐渐成为工程热点研究对象。

国内对既有桥梁的维修和加固问题的研究和实践可以追溯到上世纪80年代末期。

为了检验过去修建桥梁的实际使用情况,并进行必要的维修和加固,交通部曾经颁布了《公路旧桥承载力鉴定试验方法》,并在1989年原铁道部进行了“体外预应力混凝土梁弯曲性能”、“锚固区应力分布”等方面的研究。

这些早期的研究成果为后来的桥梁维修加固技术奠定了基础。

在今年来,对桥梁的改造和加固问题的研究更加深入,通过总结国内研究实践经验和国外参考案例,逐渐形成了桥梁加固和改造的主要技术途径,概括起来大致有以下五种基本的方式:通过加强桥梁薄弱部位和构件来事先桥梁的加固改造桥梁的整体强度上存在某种程度的短板效应,对于保持桥梁正常功能发挥的关键部位(通常是桥梁的受拉区,也是老化比较严重的部位)如桥梁的跨中、支座,拱顶、拱顶、拱脚、桥梁的变截面部位等进行必要的补强。

对于这些薄弱部位的加强措施,一般是采用喷射混凝土、强化主梁或拱圈截面、增加预应力钢筋等。

增设桥梁辅助构件来加固桥梁增设桥梁辅助构件来加固桥梁的方式是在桥梁存在承载力问题时,在原有桥梁的机构上增设新的受力构件来辅助原有桥梁结构,使之提高承载力,如增设主梁和横隔梁、在梁下部增加支撑、为简支梁桥增设辅助构件等。

这类桥梁补强方法,本质上是通过外在辅助构件来一定程度改变桥梁原有的受力结构,而不是对桥梁的原有结构进行修复。

某桥梁工程体外预应力加固施工探讨


图 1 所示。 ) 体外索加 固桥梁受弯构件 时, 可按偏心构件验算梁的 承载力: 按无粘结部分预应力混凝土结构, 认为截面受弯破坏时, 梁 内的非预应力钢筋达到屈服, 而预应力钢筋达不到极限强度, 验算 使用阶段 的应力及结构 的变形; 按加劲梁组合 结构分别对其受力 和使用性能进行分析 。 在正使用极 限状态的各项指标计算时, 按整 体变形协调条件计算在外载作用下预应力筋的应力增量 。
图 3 跨中横 向测点布置图( 单位: c m)
由表 1 据 表 明主 梁 跨 中挠 度 为 54 m 数 .3 m。满足 桥 梁 规 范 要
求静活载挠度不超过 (/0 ) 1 0 L的要求, 6 校验系数满足 06 09旧 .~ . 桥鉴定 的要求 。结构具有足够 的抗弯刚度。 达到汽一 5荷载标准 1
测 结 果 见 表 12 -。
有效改善结构 的应力状态。

1 体 外索加 固桥 梁设计方法
为 了满足加 固后 旧桥承载 力的需要。体外索一般采用折线 形。 同时满足梁 正截面抗弯强度和抗剪 强度 的要求 。体外索材料

图 2 测点纵向布置 图( 单位: c m)
般 由无粘结钢绞线、 粗钢筋与槽钢组合而成 。体外索布置 ( 如


端 与张 拉 端 交叉 布 置 。 预 应 力 钢 绞 线 的 张 拉 控 制 应 力 为
8 5 a 效 预 应 力 为 6 2 5 a 5 MP . 有 2 1MP 。
随着我 国经济快速发展,政府对 国内的公共设施 的投 资建 设也越来越大, 公路 网已基本形成, 但公路网 中部分桥梁抗 震性 能不 良、 承载力不足. 影响其 安全性和使用功 能, 需采用 加固措施 提 高承载力 以适应交通需要。旧桥 加固将 是桥梁 工程 界一个 非 常迫切 的任务 。体外预应力是一种有效 的桥梁加固方法 简单易

桥梁工程体外预应力加固的施工技术探讨


0 前


三 、

图 1 测 点 纵 向布 置 图 ( 位 :e 单 m)
随着我 国经济 建设 的发 展 ,公路 网 已基 本形 成 ,但公 路网 中部分桥梁抗震性能不 良、承载力不 足 ,施 工不规范 , 影响其 安全性和使 用功 能 ,需采用 加 固措施 提高承 载力 以 适应交通 需要 。地 区桥梁 病 害主 要有 :桥 梁铺 装层 过 薄 , 钢筋位置错误 ,桥 面开 裂 ;桥梁 现浇板 厚度分 层施 工桥板
总应力。
施加体外预应力 加 固,加 固后桥 梁承 载能 力要求 提高 到汽 1 5级 。T型主 梁翼缘宽 1 8e 7 m,翼 缘厚 1 m,梁肋宽 1 2e 8
e m,受 拉 Ⅱ级 ,钢 筋 面 积 为 4 .7 m,采 用 C 5混 凝 土 , 42 2e 2
由表 1 据表 明主梁 跨 中挠度 为 5 4 /,满 足桥 梁 数 .3 m/ 1
规 范要 求 静 活 载挠 度不 超过 ( / 0 ) 的要 求 ,校 验 系 数 满 16 0 足 0 6— . . 0 9旧桥 鉴 定 的 要 求 。 结 构 具 有 足 够 的 抗 弯 刚 度 , 达 到 汽 一1 载标 准作 用 的使 用要 求 。 5荷 由 表 2数 据 表 明 :施 加 预 应 力 ,使 主 梁 的 上 边 缘 混 凝
偏 心 加 载 1

=Y / 1 L Y
O6 .8
O. 3 7
54 .5
4. 0 4
8 O .1
6 O . l
极限强度 ,验算 使用 阶段 的应力及 结构 的变形 ;按 加筋 梁
组合结构分别对 其受力 和使 用性 能进行 分析 。在 正使用 极 限状态 的各项指标 计算 时 ,按整 体变形 协调 条件 计算在 外

GB-50367-2006-混凝土结构加固设计规范

GB-50367-2006-混凝土结构加固设计规范1中华人民共和国国家标准混凝土结构加固设计规范!" #$%&’—($$&) 总则)* $* ) 为使混凝土结构的加固,做到技术可靠、安全适用、经济合理、确保质量,制定本规范。

)* $* ( 本规范适用于房屋和一般构筑物钢筋混凝土承重结构加固的设计。

)* $* % 混凝土结构加固前,应根据建筑物的种类,分别按现行国家标准《工业厂房可靠性鉴定标准》!" #$)++ 和《民用建筑可靠性鉴定标准》!" #$(,( 进行可靠性鉴定。

当与抗震加固结合进行时,尚应按现行国家标准《建筑抗震设计规范》!" #$$))或《建筑抗震鉴定标准》!" #$$(% 进行抗震能力鉴定。

)* $* + 混凝土结构加固的设计,除应遵守本规范规定外,尚应符合国家现行有关标准的要求。

( 术语、符号(*) 术语(* )* ) 已有结构加固-./012.301412 56 074-.412 -./89.8/0-对可靠性不足或业主要求提高可靠度的承重结构、构件及其相关部分采取增强、局部更换或调整其内力等措施,使其具有现行设计规范及业主所要求的安全性、耐久性和适用性。

(* )* ( 原构件074-.412 -./89.8/0 :0:;0/实施加固前的原有构件。

(* )* % 重要构件4:<5/.=1. -./89.8/0 :0:;0/其自身失效将影响或危及承重结构体系整体工作的承重构件。

(* )* + 一般构件2010/=> -./89.8/0 :0:;0/其自身失效为孤立事件,不影响承重结构体系整体工作的承重构件。

(* )* # 增大截面加固法-./89.8/0 :0:;0/ -./012.301.412 ?4.3 /04165/90@ 9519/0.02增大原构件截面面积或增配钢筋,以提高其承载力和刚度,或改变其自振频率的一种直接加固法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安全管理编号:LX-FS-A31381
高效体外预应力结构锚固成套技术研究与应用通过鉴定
In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or
activity reaches the specified standard
编写:_________________________
审批:_________________________
时间:________年_____月_____日
A4打印/ 新修订/ 完整/ 内容可编辑
高效体外预应力结构锚固成套技术研究与应用通过鉴定
使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。

资料内容可按真实状况进行条款调整,套用时请仔细阅读。

由北京市建筑工程研究院承担并完成的北京市科技新星计划资助项目“高效体外预应力结构锚固成套技术研究与应用”日前通过北京市科委组织的专家鉴定,且成套技术中的“体外预应力弯折器”获得国家实用新型专利。

专家们一致认为:该课题组对高效体外预应力群锚锚固系统研究采用有限元分析与应变测试方法,可优化设计且准确掌握内应力状态,并对体外锚固系统组装件进行了静载与疲劳实验,对锚固系统的分析研究达到了国际先进水平。

北京市建筑工程研究院利用自行研制的静载综合实验台座和数据自动采集系统,对体外预应力索进行弯折实验研究,首次提出了弯折强度计算理论公式;并对体外预应力索耐腐蚀防护材料等方面进行了深入的实验研究,提出了新的实验标准并研制出高性能灌浆料,均已达到国内领先水平。

请在该处输入组织/单位名称
Please Enter The Name Of Organization / Organization Here。

相关文档
最新文档