蒸气云爆炸事故后果分析

蒸气云爆炸事故后果分析
蒸气云爆炸事故后果分析

二、蒸气云爆炸事故后果分析

根据荷兰应用科研院TNO(1979)建议,可按下式预测蒸气云爆炸的冲击波损害半径:

R=C s(N·E)1/3

式中:R—损害半径,m;E—爆炸能量,kJ。

可按下式取:E=VH c

V—参与反应的可燃气体的体积m3;

H c—可燃气体的高燃烧热值,

N—效率因子,其值与燃料浓度持续展开所造成损耗的比例和燃料燃烧所得机械能的数量有关,一般取N=10%

C s—经验常数,取决于损害等级,其取值情况见下表

表7-14 损害等级表

该公司煤气管道布防在整个炼钢、炼铁生产区,现以管径最长,敷设距离最长的一段管道(管径Ф=2000mm,长度L=1000m,转炉煤气管道,起自风机房,终至5万m3转炉煤气柜)发生煤气爆炸事故进行模拟分析。

该段高炉煤气管道的容量约为:3.14×12×1000=3140m3

按转炉煤气的H c=8790kJ/m3。

E=VH c=3140×8700=2.73×107kJ

蒸气云爆炸的冲击波损害半径计算结果如下:

(1)R=C s(N·E)1/3=0.03(0.1×2.73×107)1/3=4.17m

(2)R=C s(N·E)1/3=0.06(0.1×2.73×107)1/3=8.34m

(3)R=C s(N·E)1/3=0.15(0.1×2.73×107)1/3=20.85m

(4)R=C s(N·E)1/3=0.4(0.1×2.73×107)1/3=55.6m

由此可知,当管径Ф=2000mm,长度L=1000m,转炉煤气管道泄漏,发生蒸气云爆炸的冲击波伤害、破坏情况见下表

表7-16蒸气云爆炸的冲击波伤害、破坏半径表

司敷设最长、管径最大的一段高炉煤气管道进行评价,可知,此段煤气管道一旦发生蒸气云爆炸,对周围20.85m范围内人员均会造成不同程度的伤害。

蒸汽云爆炸事故后果模拟分析法

蒸汽云爆炸事故后果模拟分析法 超压: 1)TNT 当量 通常,以TNT 当量法来预测蒸气云爆炸的威力。如某次事故造成的破坏状况与kgTNT 炸药爆炸所造成的破坏相当,则称此次爆炸的威力为kgTNT 当量。 蒸气云爆炸的TNT 当量W TNT 计算式如下: W TNT =×α×W f ×Q f /Q TNT 式中,W TNT —蒸气云的TNT 当量(kg) α—蒸气云的TNT 当量系数,正己烷取α=; W f —蒸气云爆炸中烧掉的总质量(kg) Q f —物质的燃烧热值(kJ/kg), 正己烷的燃烧热值按×106J/kg ,参与爆炸的正己烷按最大使用量792kg 计算,则爆炸能量为×109J 将爆炸能量换算成TNT 当量q ,一般取平均爆破能量为×106J/kg ,因此 W TNT = ×α×W f ×Q f /q TNT + =××792××106/×106 =609kg 2)危害半径 为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区。 死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死亡,其内径为0,外径为R ,表示外周围处人员因冲击波作用导致肺出血而死亡的概率为,它与爆炸量之间的关系为: = m 重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡或受伤。其内径就是死亡半径R 1,外径记为R 2,代表该处 0.37 0.37 1420.4313.613.610001000TNT W R ?? ??== ? ??? ??

人员因冲击波作用耳膜破损的概率为,它要求的冲击波峰值超压为44000Pa 。冲击波超压P ?按下式计算: P ?=++式中: P ?——冲击波超压,Pa ; Z ——中间因子,等于; E ——蒸气云爆炸能量值,J ; P0——大气压,Pa ,取101325 得R 2= 轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。轻伤区的内径为重伤区的外径R 2,外径R 3,表示外边界处耳膜因冲击波作用破裂的概率为,它要求的冲击波峰值 超压为17000Pa 。冲击波超压P ?按下式计算: P ?=++P ?——冲击波超压,Pa ; Z ——中间因子,等于; E ——蒸气云爆炸能量值,J ; P0——大气压,Pa ,取101325 得R 3= m 安全区内人员即使无防护,绝大多数也不会受伤,安全区内径为轻伤区的外径R 3,外径无穷大。 财产损失半径,指在冲击波的作用下建筑物发生三级破坏的半径,单位为m 。按照英国建筑物破坏等级的划分标准规定,建筑物的三级破坏是指房屋不能居住、屋基部分或全部破坏、外墙1 ~ 2面部分破损,承重墙破损严重。财产损失半径可由下式确定。 式中: K ——取值为5. 6 6 /121/3TNT 431751??? ???? ?? ?????+= TNT W KW R 0440********.434 101325P P ?===2 1 3 0R Z E P =?? ? ?? 01700017000 0.168101325P P ?===313 0R Z E P =?? ???

燃气锅炉运行的燃烧事故原因分析及应对措施

燃气锅炉运行的燃烧事故原因分析及应对 措施 民 鲁南铁合金发电厂 文章分析电厂燃气锅炉在运行中发生回火或脱火,灭火及炉膛爆炸事故维护管理,运行监视调整等各方面原因,提出了响应的预防措施,用以提高燃气锅炉安全运行控制水平,确保正常运行。 1、燃气锅炉的回火,脱火的原因及预防措施 影响回火、脱火的根本原因有:燃气的流速,燃气压力的高低,燃烧配置状况,结合各电厂燃气锅炉燃烧运行中回火或脱火,从实际可以看出,回火或脱火大多数是调节燃气流速,燃气压力判断不准确及燃烧设备配置状况差别。下面我主要从这两个方面来分析回火或脱火的原因 1.1回火将燃烧器烧坏,严重时还会在燃烧管道发生燃气爆炸,脱火能使燃烧不稳定,严重时可能导致单只燃烧器或炉膛熄火。气体燃料燃烧时有一定的速度,当气体燃料在空气中的浓度处于燃烧极限浓度围,且可燃气体在燃烧器出口的流速低于燃烧速度时,火焰就会向燃料来源的方向传播而产生回火。炉温越高火焰传播速度就越快,则越产生回火。反之,当可燃气体在燃烧器的流速高于燃烧速度时,会使着火点远离燃烧器而产生脱火,低负荷运行时炉温偏低,更易产生脱火。例如2#燃气炉,炉膛压力不稳定,忽大忽小,烟气中CO2和O2的表计指示有显著变化,火焰的长度及颜色均有变化,并且还有一只

燃烧器烧坏,说明有回火或脱火现象,影响安全运行,气体燃料的速度时由压力转变而来的,如若气体管道压力突然变化或调压站的调压器及锅炉的燃气调节阀的特性不佳,便会使入炉的压力忽高忽低,以及当风量调节不当等均有可能造成燃烧器出口气流的不稳定,而引起回火或脱火,经以上分析可知,我们采取控制燃气的压力,保持在规定的数值,为防止回火或脱火在燃气管上装了阻火器,当压过低时未能及时发现,采取防火器,可使火焰自动熄灭,得到很好效果。1.2在燃气锅炉的燃烧过程中,一旦发生回火或脱火,应迅速查明原因,及时处理。 1.2.1首先应检查燃气压力正常与否,若压力过低,应对整个燃气管道进行检查,若锅炉房总供气管道压力降低,先检查调节站调压器的进气压力,发现降低时及时与供气站联系,要求提高供气的压力;若进气压力不正常,则应检查调节器是否有故障,并及时加以排除,同时可以投入备用调压器并开启旁通阀。若采取以上措施仍无效,则应检查整个燃气管道中是否有泄漏,应关闭的阀门是否关闭,若仅炉前的燃气管道压力降低,则应检查该段管道上的各阀门是否正常,开度是否合适,是否出现泄漏情况。当燃气压力无法恢复到正常值时,应减少运行的燃烧器数据,降低负荷运行,直至停止锅炉运行。 1.2.2如若燃压过高,应分段检查整个燃气管道上的各调节阀是否正常,其次检查个燃烧器的风门开度是否合适,检查风道上的总风压和燃烧器前风压是否偏高等,并作出相应的调整。 2、燃气的锅炉灭火及预防

蒸汽云爆炸事故后果模拟分析法

蒸汽云爆炸事故后果模拟分析法 超压: 1) TNT 当量 通常,以TNT 当量法来预测蒸气云爆炸的威力。如某次事故造成的 破坏状况与kgTNT 炸药爆炸所造成的破坏相当,则称此次爆炸的威力 为kgTNT 当量。 蒸气云爆炸的TNT 当量W N T 计算式如下: VWn=1.8 XaX WX Q/Q TNT 式中,W N T —蒸气云的TNT 当量(kg ) a —蒸气云的TNT 当量系数,正己烷取 a =0.04; W —蒸气云爆炸中烧掉的总质量(kg ) Q —物质的燃烧热值(kJ/kg ), 正己烷的燃烧热值按48.27 X 106J/kg ,参与爆炸的正己烷按最大 使用量792kg 计算,则爆炸能量为38.23 X 109J 将爆炸能量换算成TNT 当量q , —般取平均爆破能量为 4.52 X 106J/kg ,因此 W N T = 1.8 XaX WX Q /q TNT + =1.8 X 0.04X 792X 48.27 X 106/4.52 X 106 =609kg 2)危害半径 为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预 测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区。 死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死 亡,其内径为0,外径为R ,表示外周围处人员因冲击波作用导致肺 出血而死亡的概率为0.5,它与爆炸量之间的关系为: =11.3 m R 1 13.6 如 0.37 13.6 420.43 0.37 1000 1000

重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数 人可能死亡或受伤。其内径就是死亡半径R,外径记为R,代表该处 人员因冲击波作用耳膜破损的概率为0.5,它要求的冲击波峰值超压 为44000Pa。冲击波超压P按下式计算: P =0.137Z-3 +0.119Z-2 +0.269Z-1-0.019 44000 44000 P 0.434 F0 101325 E 3 式中: P ――冲击波超压,Pa; Z――中间因子,等于0.996 ; E――蒸气云爆炸能量值,J ; P0——大气压,Pa,取101325 得R2=32.7m 轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。轻伤区的内径为重伤区的外径R2,外径R3, 表示外边界处耳膜因冲击波作用破裂的概率为0.01,它要求的冲击波峰值超压为17000Pa冲击波超压P按下式计算: -3 -2 -1 P =0.137Z 3 +0.119Z2 +0.269Z1-0.019 c 17000 17000 c“c r 5 1 UO R 101325 Z -R31 E 3 P -冲击波超压,Pa; Z—中间因子,等于 1.672 ; E—蒸气云爆炸能量值,J ; P0-大气压,Pa,取 101325

论文-天津港爆炸事故后果分析

化学品爆炸后果分 析 —以天津港爆炸为例

前言 本报告通过对天津港爆炸事故现场数据以及现场爆炸情况、范围的收集,应用事故调查分析的方法,通过模拟计算来分析天津港爆炸事故的后果。本报告说明了了事故经过、原因、人员伤亡和直接经济损失,认定了事故性质,提出了对有关责任人员和责任单位的处理建议,分析了事故暴露出的突出问题和教训,提出了加强和改进工作的意见建议。

2015年8月12日,位于天津市滨海新区天津港的瑞海国际物流有限公司(以下简称瑞海公司)危险品仓库发生特别重大火灾爆炸事故。通过反复的现场勘验、检测鉴定、调查取证、模拟实验、专家论证,查明了事故经过、原因、人员伤亡和直接经济损失,认定了事故性质和责任,提出了对有关责任人员和责任单位的处理建议,分析了事故暴露出的突出问题和教训,提出了加强和改进工作的意见建议。 调查认定,天津港“8·12”瑞海公司危险品仓库火灾爆炸事故是一起特别重大生产安全责任事故。 一、事故基本情况 (一)事故发生的时间和地点。 2015年8月12日22时51分46秒,位于天津市滨海新区吉运二道95号的瑞海公司危险品仓库(北纬39°02′22.98″,东经117 °44′11.64″。地理方位示意图见图1)运抵区(“待申报装船出口货物运抵区”的简称,属于海关监管场所,用金属栅栏与外界隔离。由经营企业申请设立,海关批准,主要用于出口集装箱货物的运抵和报关监管)最先起火,23时34分06秒发生第一次爆炸,23时34分37秒发生第二次更剧烈的爆炸。事故现场形成6处大火点及数十个小火点,8 月14日16时40分,现场明火被扑灭。 (二)事故现场情况。 事故现场按受损程度,分为事故中心区(航拍图见图2)、爆炸冲击波波及区。事故中心区为此次事故中受损最严重区域,该区域东至跃进路、西至海滨高速、南至顺安仓储有限公司、北至吉运三道,面积约为54万平方米。两次爆炸分别形成一个直径15米、深1.1米的月牙形小爆坑和一个直径97米、深2.7米的圆形大爆坑。以大爆坑为爆炸中心,150米范围内的建筑被摧毁。

燃气锅炉火灾爆炸危险性分析

燃气锅炉火灾爆炸危险性分析及其预防措施 随着社会经济的高速发展,锅炉作为生产热能和动力的工艺设备,在现代工业、电力及人民生活中普遍使用,而燃气锅炉以它优质、环保、清洁的特点满足了人们对环境、安全、自动化的要求,所以很多工程已经采用了燃气锅炉作为其加热设备。但由于各种原因,燃气锅炉爆炸事故的频频发生,它不仅在经济方面造成大量损失,严重的使人们在身心甚至生命都受到威胁。所以研究燃气锅炉爆炸危险性及其预防措施是十分必要的。 一、燃气锅炉及其应用 1.1燃气锅炉结构简介 燃气锅炉包括燃气燃烧设备和锅炉本体两个系统。燃气燃烧设备主要指炉膛和燃烧器,也包括其他与燃烧过程有关的设备,它的主要作用是将一定数量的可燃气体和空气通入燃烧设备中,通过可燃气体的燃烧将化学能转变为热能,给锅炉本体提供持续的热能。锅炉本体就是借助燃烧设备提供的热能将水转化为水蒸汽,使其成为一定数量和质量(压力和湿度)的蒸汽。整个锅炉生产过程就是将一定数量的可燃气体和相应数量的空气送入炉内燃烧,燃烧所发出的热量传递给水,使水在定压下汽化而形成一定压力和温度的水蒸汽。 1.2燃气锅炉的应用 燃气锅炉作为一种产生热能和动力的工艺设备,广泛地应用于电力、机械、化工、纺织造纸等工业部门及宾馆、居民区采暖供热等方面。我国北方城市由于需要采暖供热,在用锅炉数量更大。燃气锅炉已经逐步进入人们生活的周围。 2.燃气锅炉爆炸事故类型及其危害 燃气锅炉运行中出现的事故大致可分为三类: (1)特大事故:锅炉中的主要受压部件——锅筒、管板等发生破裂爆炸的事故,这种事故常导致设备、厂房破坏和人身伤亡,造成重大损失。 (2)重大事故:燃气锅炉无法维持正常运行而被迫停炉的事故,如缺水事故、炉膛爆炸事故等。这类事故虽不象特大事故严重,但也常常造成设备、厂房损坏和人身伤亡,并使燃气锅炉被迫停运,导致用汽部门局部或全部停工停产,造成严重经济损失。 (3)一般事故:在运行中可以排除的事故或经过短暂停炉即可排除的事故,其影响和损失较小。 燃气锅炉事故属于工业热灾害三种主要事故类型中造成损失最大的爆炸事故。主要可分为两种爆炸原因,一是炉膛爆炸,另一种是炉体爆炸。燃气锅炉发生爆炸事故频率较高。 3.燃气锅炉的火灾危险性分析 3.1燃气的危险特性 燃气锅炉的燃料是可燃气体,主要是天然气或煤气。天然气和煤气的主要成分都是甲烷,还搀杂一些简单的烷烃,这些组分都是高度易燃易爆的气体,天然气的爆炸下限为4%,煤气的爆炸下限为6.2%,极易发生爆炸事故。 3.2炉膛爆炸火灾危险性 炉膛爆炸是由于可燃气体漏入并与空气混合形成爆炸性混合物,这种混合物处在爆炸极限范围时一接触到适当的点火源就会发生爆炸事故。伴随着化学变化,炉

爆炸后果分析资料

重大事故后果分析方法:爆炸 爆炸是物质的一种非常急剧的物理、化学变化,也是大量能量在短时间内迅速释放或急剧转化成机械功的现象。它通常借助于气体的膨胀来实现。 从物质运动的表现形式来看,爆炸就是物质剧烈运动的一种表现。物质运动急剧增速,由一种状态迅速地转变成另一种状态,并在瞬间内释放出大量的能。 一般说来,爆炸现象具有以下特征: (1)爆炸过程进行得很快; (2)爆炸点附近压力急剧升高,产生冲击波; (3)发出或大或小的响声; (4)周围介质发生震动或邻近物质遭受破坏。 一般将爆炸过程分为两个阶段:第一阶段是物质的能量以一定的形式(定容、绝热)转变为强压缩能;第二阶段强压缩能急剧绝热膨胀对外做功,引起作用介质变形、移动和破坏。

按爆炸性质可分为物理爆炸和化学爆炸。物理爆炸就是物质状态参数(温度、压力、体积)迅速发生变化,在瞬间放出大量能量并对外做功的现象。物理爆炸的特点是:在爆炸现象发生过程中,造成爆炸发生的介质的化学性质不发生变化,发生变化的仅是介质的状态参数。例如锅炉、压力容器和各种气体或液化气体钢瓶的超压爆炸。化学爆炸就是物质由一种化学结构迅速转变为另一种化学结构,在瞬间放出大量能量并对外做功的现象。例如可燃气体、蒸气或粉尘与空气混合形成爆炸性混合物的爆炸。化学爆炸的特点是:爆炸发生过程中介质的化学性质发生了变化,形成爆炸的能源来自物质迅速发生化学变化时所释放的能量。化学爆炸有3个要素:反应的放热性、反应的快速性和生成气体产物。 从工厂爆炸事故来看,有以下几种化学爆炸类型: (1)蒸气云团的可燃混合气体遇火源突然燃烧,是在无限空间中的气体爆炸; (2)受限空间内可燃混合气体的爆炸; (3)化学反应失控或工艺异常造成压力容器爆炸; (4)不稳定的固体或液体爆炸。 总之,发生化学爆炸时会释放出大量的化学能,爆炸影响范围较大,而物理爆炸仅释放出机械能,其影

事故后果模拟计算

事故后果模拟 中毒 有毒物质泄漏后生成有毒蒸气云,它在空气中飘移、扩散,直接影响现场人员,并可能波及居民区。大量剧毒物质泄漏可能带来严重的人员伤亡和环境污染。 毒物对人员的危害程度取决于毒物的性质、毒物的浓度和人员与毒物接触时间等因素。有毒物质泄漏初期,其毒气形成气团密集在泄漏源周围,随后由于环境温度、地形、风力和湍流等影响气团飘移、扩散,扩散范围变大,浓度减小。在后果分析中,往往不考虑毒物泄漏的初期情况,即工厂范围内的现场情况,主要计算毒气气团在空气中飘移、扩散的范围、浓度、接触毒物的人数等。 有毒液化气体容器破裂时的毒害区估算 液化介质在容器破裂时会发生蒸气爆炸。当液化介质为有毒物质,如液氯、液氨、二氧化硫、硫化氢、氢氰酸等,爆炸后若不燃烧,会造成大面积的毒害区域。 设有毒液化气体质量为W(单位:kg),容器破裂前器内介质温度为t(单位:℃),液体介质比热为C[单位:kJ/(kg·℃)。当容器破裂时,器内压力降至大气压,处于过热状态的液化气温度迅速降至标准沸点t0(单位:℃),此时全部液体所放出的热量为:Q=W·C(t—t0) 设这些热量全部用于器内液体的蒸发,如它的气化热为g(单位:kJ/kg),则其蒸发量:

q t t C W q Q W )(0-?==' 如介质的分子量为M ,则在沸点下蒸发蒸气的体积Vg(单位:m 3)为: 273273)(4.222732734.22000t M t t C W t M W V q g +?-?=+?= 为便于计算,现将压力容器最常用的液氨、液氯、氢氰酸等的有关物理化学性能列于表2-3中。关于一些有毒气体的危险浓度见表2-4。 若已知某种有毒物质的危险浓度,则可求出其危险浓度下的有毒空气体积。如二氧化硫在空气中的浓度达到0.05%时,人吸入5~10min 即致死,则Vg 的二氧化硫可以产生令人致死的有毒空气体积为: V=Vg ×100/0.05=2000 Vg 。 假设这些有毒空气以半球形向地面扩散,则可求出该有毒气体扩散半径为: R=33 421/π?c Vg =30944.2/c Vg 式中 R ——有毒气体的半径,m ; Vg ——有毒介质的蒸气体积,m 3; C ——有毒介质在空气中的危险浓度值,%。 表2-3 一些有毒物质的有关物化性能

锅炉压力容器爆炸事故原因分析及预防措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 锅炉压力容器爆炸事故原因分析及预防措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3673-61 锅炉压力容器爆炸事故原因分析及 预防措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 锅炉爆炸事故的几种原因: 1)水蒸气爆炸:该容器破裂,容器内液面上的压力瞬即下降为大气压力,原工作压力下高于100℃的饱和水此时成了极不稳定、在大气压力下难于存在的"过饱和水",其中的一部分即瞬时汽化,体积骤然膨胀许多倍,在容器周围空间形成爆炸。 2)超压爆炸:由于各种原因使锅炉主要承压部件筒体、封头、管板、炉胆等承受的压力超过其承载能力而造成的锅炉爆炸。预防措施主要是加强运行管理。 3)缺陷导致爆炸:是指锅炉承受的压力并未超过额定压力,但因锅炉主要承压部件出现裂纹、严重变形、腐蚀、组织变化等情况,导致主要承压部件丧失承载能力,突然大面积破裂爆炸。

蒸汽云爆炸事故后果模拟分析法

蒸汽云爆炸事故后果模 拟分析法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

蒸汽云爆炸事故后果模拟分析法 超压: 1)TNT当量 通常,以TNT当量法来预测蒸气云爆炸的威力。如某次事故造成的破坏状况与kgTNT炸药爆炸所造成的破坏相当,则称此次爆炸的威力为kgTNT当量。 蒸气云爆炸的TNT当量W TNT计算式如下: W TNT=×α×W f×Q f/Q TNT 式中,W TNT—蒸气云的TNT当量(kg) α—蒸气云的TNT当量系数,正己烷取α=; W f—蒸气云爆炸中烧掉的总质量(kg) Q f—物质的燃烧热值(kJ/kg), 正己烷的燃烧热值按×106J/kg,参与爆炸的正己烷按最大使用量 792kg计算,则爆炸能量为×109J 将爆炸能量换算成TNT当量q,一般取平均爆破能量为×106J/kg,因此 W TNT= ×α×W f×Q f /q TNT+ =××792××106/×106 =609kg 2)危害半径 为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区。 死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死亡,其内径为0,外径为R ,表示外周围处人员因冲击波作用导致肺出血而死亡的概率为,它与爆炸量之间的关系为: = m 重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡或受伤。其内径就是死亡半径R1,外径记为R2,代表该处人员

因冲击波作用耳膜破损的概率为,它要求的冲击波峰值超压为44000Pa。 ?按下式计算: 冲击波超压P ?=++式中: P ?——冲击波超压,Pa; P Z——中间因子,等于; E——蒸气云爆炸能量值,J; P0——大气压,Pa,取101325 得R2= 轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。轻伤区的内径为重伤区的外径R2,外径R3,表示外边界处耳膜因冲击波作用破裂的概率为,它要求的冲击波峰值超压为17000Pa。冲击波超压P?按下式计算: ?=++P?——冲击波超压,Pa; P Z——中间因子,等于; E——蒸气云爆炸能量值,J; P0——大气压,Pa,取101325 得R3= m 安全区内人员即使无防护,绝大多数也不会受伤,安全区内径为轻伤区的外径R3,外径无穷大。 财产损失半径,指在冲击波的作用下建筑物发生三级破坏的半径,单位为m。按照英国建筑物破坏等级的划分标准规定,建筑物的三级破坏是指房屋不能居住、屋基部分或全部破坏、外墙1 ~ 2面部分破损,承重墙破损严重。财产损失半径可由下式确定。 式中: K——取值为5. 6 正常泄露: 从原料危险性及最大储存使用量两方面综合考虑,选取甲醇的存储为研究对象进行蒸汽云爆炸事故后果模拟分析。

事故后果分析安评教材

4 事故后果分析 对一种可能发生的事故只有知道其后果时,对其危险性分析才算是完整的。后果分析是危险源危险性分析的一个主要组成部分,其目的在于定量地描述一个可能发生的重大事故对工厂、对厂内职工、对厂外居民甚至对环境造成危害的严重程度。后果分析为企业或企业主管部门提供关于重大事故后果的信息,为企业决策者和设计者提供采取何种防护措施的信息。由于事故的发生是一个概率事件,完全杜绝生产过程中的事故是不可能的,因此对事故后果的控制就成为安全工作者必须关注的一个重要课题。 泄漏事故、火灾事故、爆炸事故、中毒事故是可能造成重大恶果的生产事故,也是我们进行后果分析的重点。 4.1 泄漏事故后果分析 火灾和因有毒气体引起的中毒事故都与物质的泄漏有着直接的联系。确定重大事故,尤其是泄漏和火灾事故时的危险区域是在确定有毒物质泄漏后的扩散范围的基础上进行的。因此,要首先从有毒、有害物质泄漏分析开始。 4.1.1 泄漏的主要设备 根据泄漏情况,可以把化工生产中容易发生泄漏的设备归纳为10类,即管道、挠性连接器、过滤器、阀门、压力容器或反应罐、泵、压缩机、储罐、加压或冷冻气体容器和火炬燃烧器或放散管。 (1)管道 包括直管、弯管、法兰管、接头几部分,其典型泄漏情况和裂口尺寸为: ?管道泄漏,裂口尺寸取管径的20-100%; ?法兰泄漏,裂口尺寸取管径的20%; ?接头泄漏,裂口尺寸取管径的20-100%; (2)挠性连接器 包括软管、波纹管、铰接臂等生产挠性变形的连接部件,其典型泄漏情况和裂口尺寸为:?连接器本体破裂泄漏,裂口尺寸取管径的20-100%; ?接头泄漏,裂口尺寸取管径的20%; ?连接装置损坏而泄漏,裂口尺寸取管径的100%; (3)过滤器 由过滤器本体、管道、滤网等组成,其典型泄漏情况和裂口尺寸为: ?过滤器本体泄漏,裂口尺寸取管径的20-100%; ?管道泄漏,与过滤器连接的管道发生的泄漏,裂口尺寸取管径20%; (4)阀 包括化工生产中应用的各种阀门,其典型泄漏情况和裂口尺寸为: ?阀壳体泄漏裂口尺寸取与阀连接管道管径的20-100%; ?阀盖泄漏,裂口尺寸取管径的20%; ?阀杆损坏而泄漏,裂口尺寸取管径的20%; (5)压力容器 包括化工生产中常用的分离、气体洗涤器、反应釜、热交换器、各种罐和容器等,其常见泄漏情况和裂口尺寸为:

蒸汽云爆炸伤害半径计算模型

C.7蒸汽云爆炸模型分析 该工程建设项目原料罐区设100m 3异丁烯储罐2台,如1台不慎发生爆裂,发生火灾爆炸,其气体泄漏量计算公式如下: gh p p p A C Q d L 220+??? ? ??-=ρ 式中: Q L ——液体泄漏速度,kg/s ; C d ——液体泄漏系数; A ——裂口面积,m 2; ρ——泄漏介质密度,kg/m 3; P ——容器内介质压力,Pa ; P 0——环境压力,Pa ; g ——重力加速度; h ——裂口之上液位高度,m 。 现假设异丁烯储罐破裂形成80mm ,宽20mm 的长方形裂口,裂口之上液位高度忽略,泄漏时间取1min ,液体密度取670kg/m 3,环境大气压取0.1MPa ,介质压力取0.6MPa ,液体泄漏系数取0.5。经计算,异丁烯泄漏速度为1.695kg/s ,泄漏量为101.7kg 。 根据荷兰应用科研院提供的蒸汽云爆炸冲击波伤害半径计算公式计算伤害半径: ()3 /1C S H V N C R ??= 式中: R ——损害半径,m ;

C S——经验常数,取决于损害等级,具体损害等级见表C-5; N——效率因子,一般取10%; V——参与爆炸的可燃气体体积,m3; H C——高热值,kJ/m3,取240771.7 kJ/m3; 表C-5 损害等级表 损害 等级 Cs 人员伤害设备损坏备注 1 0.03 1%死亡于肺部伤害 >50%耳膜破裂 >50%被碎片击伤。 重创建筑物和设备 2 0.06 1%耳膜破裂。 1%被碎片击伤。 造成建筑物外表的可 修复性破坏 3 0.15 被玻璃击伤玻璃破碎 4 0.4 10%玻璃破碎 通过现假设异丁烯储罐破裂并泄漏1min,计算出泄漏量为101.7kg,折算成气体体积为40599.7704m3。异丁烯的高热值取120772.321kJ/m3。 结合表C-5中C S的值,带入公式,计算出不同损害等级的半径如下: 表C-6 损害半径表 损害 等级 Cs 人员伤害设备损坏损害半径(m)备注 1 0.03 1%死亡于肺部伤害 >50%耳膜破裂 >50%被碎片击伤 重创建筑物和设备23.66 2 0.06 1%耳膜破裂 1%被碎片击伤 造成建筑物外表的可 修复性破坏 47.32 3 0.15 被玻璃击伤玻璃破碎118.3 4 0.4 10%玻璃破碎315.42 从伤害模型的计算结果可以看出:当异丁烯储罐泄漏,假设泄漏时间1min,泄漏的异丁烯全部气化,在爆炸中心周边23.66m范围内

CNG储气瓶泄漏事故后果模拟分析评价

CNG储气瓶泄漏事故后果模拟分析评价 摘要:CNG储气瓶由于高压和介质可燃爆两大事故因素,无论发生何种事故,都可能引发泄漏,火灾,化学爆炸和物理爆炸。本文即对CNG储气瓶泄漏后导致爆炸事故进行事故后果模拟分析,计算其爆炸冲击波的伤害范围。 关键词:CNG储气瓶泄漏事故后果 一、引言 随着天然气在汽车能源中所占比重的增大,越来越多的加气站被建立,压缩天然气(CompressedNaturalGas,简称CNG)加气站是常见的一类,在各种CNG 加气站里,通过压缩机加压压缩,强行将天然气储存在特制容器内,专供汽车加气的备用装置或系统,称为储气装置或储气技术[1]。CNG储气瓶是加气站常用的储气装置,该装置一般具有25~30MPa的高压,其储存的压缩天然气的主要成分是甲烷,属一级可燃气体,甲类火灾危险性,爆炸极限为5%~15%,最小点火能量仅为0.28mJ,燃烧速度快,燃烧热值高,对空气的比重为0.55,扩散系数为0.196,极易燃烧,爆炸,并且扩散能力强,火势蔓延迅速,一旦发生事故,难以控制[2]。 CNG储气瓶由于高压和介质可燃爆两大事故因素,无论发生何种事故,都可能引发泄漏,火灾,化学爆炸和物理爆炸,如果事故得不到有效控制,还可相互作用,相互影响,促使事故扩大蔓延及至产生巨大的冲击波危害,因此,对其危害后果做出合理评价具有重大意义[1]。 二、泄漏事故后果模拟分析 假设某一加气子站内有3支4m3大容积储气瓶,其中一支储气瓶的瓶口处发生天然气泄漏,模拟分析如下: 1.泄漏量计算 1.1 泄漏类型判断 P-储气瓶组内介质压力,取25MPa P0 -环境压力,取0.1 MPa,则P0 / P = 0.004 k-介质的绝热指数,取1.316 ,则介质流动属音速流动。 1.2泄漏孔面积和喷射孔等价直径

锅炉压力容器爆炸原因分析及预防措施

仅供参考[整理] 安全管理文书 锅炉压力容器爆炸原因分析及预防措施 日期:__________________ 单位:__________________ 第1 页共7 页

锅炉压力容器爆炸原因分析及预防措施 一、锅炉爆炸事故的几种原因: (1)水蒸气爆炸:该容器破裂,容器内液面上的压力瞬即下降为大气压力,原工作压力下高于100℃的饱和水此时成了极不稳定、在大气压力下难于存在的过饱和水,其中的一部分即瞬时汽化,体积骤然膨胀许多倍,在容器周围空间形成爆炸。 (2)超压爆炸:由于各种原因使锅炉主要承压部件筒体、封头、管板、炉胆等承受的压力超过其承载能力而造成的锅炉爆炸。预防措施主要是加强运行管理。 (3)缺陷导致爆炸:是指锅炉承受的压力并未超过额定压力,但因锅炉主要承压部件出现裂纹、严重变形、腐蚀、组织变化等情况,导致主要承压部件丧失承载能力,突然大面积破裂爆炸。 预防措施主要是加强锅炉检验,避免锅炉主要承压部件带缺陷运行。 (4)严重缺水导致爆炸:锅炉的主要承压部件如锅筒、封头、管板、炉胆等,不少是直接受火焰加热的。锅炉一旦严重缺水,上述主要受压部件得不到正常冷却,甚至被烧,金属温度急剧上升甚至被烧红。在这样的缺水情况下是严禁加水的,应立即停炉。如给严重缺水的锅炉上水,往往酿成爆炸事故。长时间缺水干烧的锅炉也会爆炸。 防止这类爆炸的主要措施也是加强运行管理。 二、压力容器爆炸事故原因及预防措施 原因:超压,超温,容器局部损坏、安全装置失灵等。 危害: a.冲击波及其破坏作用:冲击波超压会造成人员伤亡和建筑物的破 第 2 页共 7 页

坏。 b.爆破碎片的破坏作用:致人重伤或死亡,损坏附近的设备和管道,并引起继发事故。 c.介质伤害:介质伤害主要是有毒介质的毒害和高温水汽的烫伤。 d.二次爆炸及燃烧:当容器所盛装的介质为可燃液化气体时,容器破裂爆炸在现场形成大量可燃蒸气,并迅即与空气混合形成可爆性混合气,在扩散中遇明火即形成二次爆炸,常使现场附近变成一片火海,造成重大危害。 预防: (1)在设计上,应采用合理的结构。 (2)制造,修理、安装、改造时,加强焊接管理,提高焊接质量并按规范要求进行热处理和探伤;加强材料管理,避免采用有缺陷的材料或用错钢材、焊接材料。 (3)加强使用管理,避免操作失误,超温、超压、超负荷运行、失检、失修、安全装置失灵等。 (4)加强检验工作,及时发现缺陷并采取有效措施。 三、锅炉尾部再燃烧原因及预防措施 尾部烟道二次燃烧主要发生在燃油锅炉上。当锅炉运行中燃烧不完全时,部分可燃物随着烟气进入尾部烟道,积存于烟道内或粘附在尾部受热面上,在一定条件下这些可燃物自行着火燃烧,条件是:①可燃物堆积,②达到一定的温度,③有一定量的空气。 危害:常将空气预热器、省煤器破坏 防止产生尾部二次燃烧的方法:尽可能减少不完全燃烧损失,减少锅炉的启停次数;加强尾部受热面的吹灰:保证烟道各种门孔及烟风挡 第 3 页共 7 页

大型油罐火灾爆炸危害性研究参考文本

大型油罐火灾爆炸危害性研究参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

大型油罐火灾爆炸危害性研究参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 引言 随着我国石油化工工业的发展以及国家原油战略储备 库项目的实施,油罐的大型化将成为发展的必然趋势[1]。 1962年,美国首先建成了10×104m3浮顶罐;1967年, 在委内瑞拉建成了15×104m3浮顶罐;1971年日本建成 了16×104m3浮顶罐;沙特阿拉伯则成功地建造了20× 104m3浮顶罐。目前世界上单罐容量已高达24万m3。 我国于1985年从日本引进10万m3浮顶罐的设计和施工 技术,其后十余年间建造10万m3大型储罐达20多台 [2]。现在10万m3的储罐已经是屡见不鲜了,如此巨大的 油罐一旦发生火灾爆炸,其后果是难以想象的。 油罐的火灾爆炸事故危害极大,不仅严重威胁人民生

命安全,还给国家和企业带来重大经济损失。例如:黄岛油库“八·一二”重大火灾事故,造成直接经济损失3540万元,600吨原油流入海里,使附近海域和沿岸受到一定程度的污染;1994年11月,埃及艾斯龙特市石油基地储油罐发生火灾爆炸,死亡500人[3]。据统计,在油库事故中,火灾爆炸事故占事故总数的42.4%以上。而在油库着火爆炸事故中,油罐着火爆炸事故数占总爆炸事故数的25.6%[4]。对于管理有素的现代石化企业来讲,尽管油罐火灾爆炸事故的发生几率很低,甚至可以说是百年不遇的。然而,此类事故一旦发生,处理起来较为麻烦。稍有不慎,便会使企业遭受重大损失,甚至可能会给企业带来灭顶之灾。因此,做好事故预防,非常重要[5]。 1火灾爆炸危害性评价方法及其发展 火灾爆炸危害性的评价方法有近百种,下面只介绍几

氯气泄漏重大事故后果模拟分汇总

国内外统计资料显示,因防爆装置不作用而造成焊缝爆裂或大裂纹泄漏的重大事故概率仅约为6.9×10-7~6.9×10-8/年左右,一般发生的泄漏事故多为进出料管道连接处的泄漏。据我国不完全统计,设备容器一般破裂泄漏的事故概率在1×10-5/年。此外,据储罐事故分析报道,储存系统发生火灾爆炸等重大事故概率小于1×10-6,随着近年来防灾技术水平的提高,呈下降趋势。 第七章氯气泄漏重大事故后果模拟分析 7.1危险区域的确定 概述: 泄漏类型分为连续泄漏(小量泄漏)和瞬间泄漏(大量泄漏),前者是指容器或管道破裂、阀门损坏、单个包装的单处泄漏,特点是连续释放但流速不变,使连续少量泄漏形成有毒气体呈扇形向下风扩散;后者是指化学容器爆炸解体瞬间、大包装容器的泄漏、许多小包装的多处泄漏,使大量泄漏物形成一定高度的毒气云团呈扇形向下风扩散。 氯泄漏后虽不燃烧,但是会造成大面积的毒害区域,会在较大范围內对环境造成破坏,致人中毒,甚至死亡。根据不同的事故类型、氯气泄漏扩散模型,危害区域会有所不同。氯设备泄漏、爆炸事故概率低,一旦发生可造成严重的后果。 以下液氯钢瓶中的液氯泄漏作为事故模型进行危险区域分析。 毒害区域的计算方法: (1)设液氯重量为W(kg),破裂前液氯温度为t(℃),液氯比热为C(kj/kg .℃),当钢瓶破裂时瓶内压力降至大气压,处于过热状态的液氯迅速降至标准沸点t0(℃),此时全部液氯放出的热量为:

Q=WC(t-t0) 设这些热量全部用于液氯蒸发,如汽化热为q(kj/kg),则其蒸发量W为: W=Q/q=WC(t-t0)/q 氯的相对分子质量为M r,则在沸点下蒸发的液氯体积V g(m3)为: V g =22.4W/M r273+t0/273 V g =22.4WC(t-t0)/ M r q273+t0 /273 氯的有关理化数据和有毒气体的危险浓度如下: 相对分子质量:71 沸点: -34℃ 液体平均此热:0.98kj/kg.℃ 汽化热: 2.89×102kj/kg 吸入5-10mim致死浓度:0.09% 吸入0.5-1h致死浓度: 0.0035-0.005% 吸入0.5-1h致重病浓度:0.0014-0.0021% 已知氯的危险浓度,则可求出其危险浓度下的有毒空气体积: 氯在空气中的浓度达到0.09%时,人吸入5~10min即致死。则V g(m3)的液氯可以产生令人致死的有毒空气体积为: V1 = V g×100/0.09 = 1111V g(m3) 氯在空气中的浓度达到0.00425(0.0035~0.005)%时,人吸入0.5~1h,则V g(m3)的液氯可以产生令人致死的有毒空气体积为: V2=V g×100/0.00425=23529V g(m3) 氯在空气中的浓度达到0.00175(0.0014~0.0021)%时,人吸入0.5~1 h,则

蒸汽锅炉爆炸危险性分析及预防措施

仅供参考[整理] 安全管理文书 蒸汽锅炉爆炸危险性分析及预防措施 日期:__________________ 单位:__________________ 第1 页共11 页

蒸汽锅炉爆炸危险性分析及预防措施 引言 动力车间有3台DG35-3.82/450-Y油气混烧锅炉,生产3.5MPa、450℃蒸汽,是为装置生产提供热能动力的设备,常被誉为总厂的心脏。锅炉在正常运行时,系统中储存着大量的热能,它不仅要承受高温高压,还要承受介质侵蚀和飞灰磨损,工作环境比较恶劣,万一由于某些原因促使储能意外释放,就会造成巨大的财产损失及人员伤亡,属于具有潜在爆炸危险的重大危险源。而且,动力车间的锅炉自投入运行已将近20个年头了,正步入设备寿命的后半期,其运行危险性尤为突出。因此,对锅炉爆炸危险性进行分析,并采取相应的预防措施,以确保避免锅炉爆炸恶性事故的发生,显得尤为必要。 一锅炉爆炸的机理 锅炉爆炸是锅炉系统中储存的大量能量意外瞬间释放,转化为机械能的现象。在锅炉运行过程中,由于受压元件的某些部位超过了材料的极限强度,薄弱处发生断裂,或是由于炉膛燃爆导致某些锅炉受压部件损坏,使得储存在锅炉中的水及蒸气立即从破口处冲出来,发生锅炉爆炸。此时,由于锅内压力瞬间降至外界大气压力,锅内的饱和水立即剧烈汽化、膨胀,蒸汽也随之剧烈膨胀,造成压力再次升高,破口进一步扩大。由于从破口处冲出的汽、水有很高的速度,形成强烈的冲击波,当与空气或地面接触后,便会产生强大的反作用力,使锅炉腾空而起或朝反作用力 的方向运动、翻滚。锅炉爆炸时所释放的能量除了很少一部分消耗在撕裂钢板、将部分碎片以及与锅炉相连的汽水管道、阀门和本体抛离原地外,其余大部分能量将以冲击波的形式作用于周围环境,造成建筑 第 2 页共 11 页

蒸气云爆炸模型

5.4.1 蒸气云爆炸模型分析 蒸气云爆炸能产生多种破坏效应,如冲击波超压、热辐射、碎片作用等,但最危险、破坏力最强的是冲击波的破坏效应。常见的冲击波伤害-破坏准则有:超压准则、冲量准则、压力-冲量准则等。本次评价采用超压准则。 蒸气云爆炸的超压使用TNT 当量法进行计算。蒸气云爆炸的TNT 当量可用下式估算: TNT f f TNT Q Q W W α8.1= 式中:1.8:地面爆炸系数; α:蒸气云的TNT 当量系数,0.04; W f :液化石油气形成的蒸汽云中参与爆炸的燃料的质量, kg ; Q f :燃料的燃烧热,kJ/kg ; Q TNT :TNT 的爆热,4520kJ/kg ; W TNT :蒸气云的TNT 当量,kg ; 根据项目单位提供的资料,液化石油气成份为50%的丙烷、50%的丁烷。查物质系数和特性表可知,丙烷燃烧热Hc/(103Btu.lb -1)为19.9,丁烷燃烧热Hc/(103Btu.lb -1)为19.4,则: 液化石油气的燃烧热Q f =19.9×103×0.5+19.4×103×0.5=19.7×103(Btu/lb )=19.7×103×1.055÷0.454=45779(kJ/kg ) 液化石油气密度取0.51t/m 3,充装系数取0.9,设泄露的液化石油

气形成的蒸汽云中参与爆炸的总体积百分数为30%,假设这个Ⅱ级供应站6m 3的液化石油气全部泄露(实际是不可能全部泄露的)。则: 6m 3的液化石油气全部发生泄漏时,液化石油气形成的蒸汽云中参与爆炸的燃料的质量W f =6×0.51×103×0.9×30%=826(kg ) W TNT =1.8×0.04×826×45779/4520=602.3(kg ) ①死亡区 该区内的人员如缺少防护,则被认为将无例外地蒙受严重伤害或死亡,其内径为零,外径记为R 0,表示外圆周处人员因冲击波作用导致肺出血而死亡的概率为50%,它与爆炸量间的关系由下式确定: 37.00)1000/(6.13TNT W R 式中:W TNT 为爆源的TNT 当量,kg 。 代入W TNT =602.3(kg ,TNT ) 得死亡半径R 0=11.3m 可以认为该圆周内没有死亡的人数正好等于圆周外死亡的人数,即死亡区内的人员将全部死亡,而死亡区外的人员将无一死亡。这一假设在破坏效应随距离急剧衰减的情况下是近似成立的。 ②重伤区 该区内的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡或受伤。其内径就是死亡半径R 0,外径记为R 1,代表该处人员因冲击波作用耳膜破裂的概率为50%,它要求冲击波峰值超压为44000Pa 。冲击波超压△Ps 可按下式计算: △Ps=0.137Z-3+0.119Z-2-0.019

蒸气云爆炸事故后果模拟分析法在安全评价中的应用

蒸气云爆炸事故后果模拟分析法在安全评价中的应用 发表时间:2015-11-20T14:10:44.590Z 来源:《基层建设》2015年16期作者:朱雪梅 [导读] 广西桂能工程咨询集团有限公司蒸气云爆炸主要因冲击波造成伤害,若已知可燃气体装置区域的人员密度和财产密度,即可以评价确定人员伤亡数量和财产损失大小。 朱雪梅 广西桂能工程咨询集团有限公司 摘要:本文主要结合化工行业企业中安全评价运用特点,针对化工企业的特点,利用蒸气云爆炸事故后果模拟分析法对项目安全情况进行预评价,分析项目中存在的一些危险因素与薄弱环节,并结合实际提出相应的预防措施。 关键词:蒸气云爆炸事故后果模拟分析法;安全评价;应用 在涉及危险化学品的安全运行中,要注重安全评价的方法和模型的运用,可以形成安全系统工程以及安全控制的原理与方法控制,并针对项目在运行过程中可能出现的各种危险因素,尤其是对于危险系数相对较大的项目,通过蒸气云爆炸事故后果模拟分析法的安全评价模式,能做出相应的科学预防措施,对于提升企业的综合能力,将有很大的帮助。 1项目概述 1.1项目基本情况 广西河池某燃气公司拟建设城市燃气管网项目,规划近期(2013-2015年)供应天然气量为1871.86×104Nm3/a;远期(2016-2020年)供应天然气7215.9×104Nm3/a。 主要建设内容包括:门站(含调压工艺装置、LNG气化系统等)1座、次高压管道(0.8MPa,共8.78km)、中压管道(0.4MPa,共31.8km)、次高-中压调压站2座;远期拟对门站进行扩建(增加高压球罐及相关调峰设施),并拟建中压管道(0.4MPa,共50km)、次高-中压调压站1座。 1.2主要危险、有害物质 1)天然气(压缩的),危险分类别编号为21007,数量为2×1000m3,浓度为甲烷含量97%以上,温度为常温,压力为 0.4MPa~1.6MPa; 2)天然气(液化的),危险分类别编号为21008,数量为2×50m3,浓度为甲烷含量97%以上,温度为-162℃,压力为0.6MPa; 3)四氢噻吩,危险分类别编号为32111,数量为少量,浓度为99%,状态为液态,常温常压。 1.3重大危险源识别 1)定义 根据《危险化学品重大危险源辨识》(GB18218-2009),定义如下: 单元:是指一个(套)生产装置、设施或场所,或同属一个生产经营单位的且边缘距离小于500m的几个(套)生产装置、设施或场所。 临界量:是指对于某种或某类危险化学品规定的数量,若单元中的危险化学品数量等于和超过该数量,则该单元定为重大危险源。 危险物质超过其临界量包括以下两种情况: (1)单元内任一种危险物品的数量达到或超过临界量; (2)单元内多种危险物品的数量满足下面的公式: 式中:qi—单元中的第I种危险物品的实际贮存量;Qi—标准中规定的第I种危险物品的临界量;n—单元中危险物品的种类数。 危险化学品重大危险源:是指长期地或临时地生产、加工、使用或储存危险化学品,且危险化学品的数量等于或超过临界量的单元。 2)辨识结果 近期:按公式计算:37.8/50=0.756<1, 本项目近期天然气的实际储存量为37.8t,未超过临界量50t。因此,本项目近期未构成危险化学品重大危险源。 远期:按公式计算:(37.8+24.4)/50=1.244>1, 远期天然气的实际储存量为62.2t,储存量超过临界量50t。因此,本项目远期将构成危险化学品重大危险源。 根据分级标准,项目远期在投用2座1000m3天然气高压球罐的情况下,危险化学品重大危险源的级别为四级 2蒸气云爆炸事故后果模拟分析法的运用 2.1分析法简介 爆炸性的气体以液态储存,如果瞬间泄漏遇到延迟点火,或以气体储存时泄漏到空气中遇到火源,就有可能发生蒸气云爆炸。导致蒸气云爆炸形成的力来自容器内含有的能量或可燃物含有的内能,或两者兼有之。一般说来,只有压缩能和热能才能单独导致形成蒸气云〔1〕。 蒸气云爆炸主要因冲击波造成伤害,若已知可燃气体装置区域的人员密度和财产密度,即可以评价确定人员伤亡数量和财产损失大小。 2.2分析过程 本项目近期拟设置容积为50m3的LNG储罐2座,远期拟增设1000m3的高压球罐2座,罐内储存有大量易燃、易爆液化天然气。以下采用TNO蒸气云爆炸模型分别对1座50m3的LNG储罐和1座1000m3的天然气球罐天然气泄漏后发生爆炸事故进行分析。气体空间爆炸是一种发生概率相对较大,破坏结果极为严重的一种事故灾害。其主要危险为爆炸产生的冲击波,能导致人员伤亡及设备、设施、建筑的破坏。 TNO模型以半球形气云为模型,假设中心点火,火焰以恒定的速度传播,从而以数值方法计算不同燃烧速度下的蒸气云爆炸产生冲击波的影响范围。蒸气云爆炸产生的冲击波损害半径可按下列两式计算: E=1.8aWQ R=Cs(NE)1/3 式中:E—可燃气体爆炸能量,J;W—蒸气云可燃气体的总质量,kg;a—可燃气体蒸气云当量系数,UKHSH(1986)推荐a=0.03; 1.8—地面爆炸系数;Q—可燃气体的燃烧热,J/kg;R—损害半径,m;N—效率因子,一般取N=10%;Cs—经验常数,取决于损害等

相关文档
最新文档