最优化方法课程实验报告

最优化方法课程实验报告
最优化方法课程实验报告

项目一 一维搜索算法(一)

[实验目的]

编写加步探索法、对分法、Newton 法的程序。 [实验准备]

1.掌握一维收搜索中搜索区间的加步探索法的思想及迭代步骤; 2.掌握对分法的思想及迭代步骤;

3.掌握Newton 法的思想及迭代步骤。 [实验容及步骤]

编程解决以下问题:

1.用加步探索法确定一维最优化问题

1

2)(min 30

+-=≥t t t t ?

的搜索区间,要求选取2,1,000===αh t .

加步探索法算法的计算步骤: (1)选取初始点

])

0[)(0[max 00t t t ,或,∈?∞+∈,计算

)(00t ??=.给出初始步长0

>h

加步系数1α>,令0=k 。

(2) 比较目标函数值.令k k k h t t +=+1,计算 )(11++=k k t ??,若k k ??<+1,转(3),否则转(4)。 (3) 加大探索步长.令

k k h h α=+1,同时,令,k t t =,1+=k k t t 1k k =+,转(2)。

(4) 反向探索.若0=k ,转换探索方向,令,k k h h -=1+=k t t ,转(2)。否则,停止迭代,令

11min{}max{}k k a t t b t t ++==,,,。

加步探索法算法的计算框图

程序清单

加步探索法算法程序见附录1

实验结果

运行结果为:

2.用对分法求解

)2()(min +=t t t ?,

已知初始单谷区间]5,3[],[-=b a ,要求按精度3.0=ε,001.0=ε分别计算.

对分法迭代的计算步骤:

(1)确定初始搜索区间],[b a ,要求'()0'()0a b ??<>,。

(2) 计算],[b a 的中点)(2

1

b a

c +=. (3) 若0)(<'c ?,则c a = ,转(4);若0)(='c ?,则c t =*

,转(5);若0)(>'c ?,则c b = ,转(4).

(4) 若ε<-||b a ,则)(2

1*

b a t +=,转(5);否则转(2).

(5) 打印*

t ,结束

对分法的计算框图

程序清单

对分法程序见附录2

实验结果

运行结果为:

3.用Newton 法求解

1

2)(min 3+-=t t t ?,

已知初始单谷区间]1,0[],[=b a ,要求精度01.0=ε.

Newton 法的计算步骤

(1) 确定初始搜索区间],[b a ,要求 '()0

'()0a b ??<>, (2) 选定0t

(3) 计算

000'()/"()

t t t t ??=- (4) 若 ε≥-||0t t ,则t t =0,转(3);否则转(5).

(5) 打印()t t ?, ,结束.

Newton 法的计算框图

程序清单

Newton 法程序见附录3

实验结果

运行结果为:

项目二 一维搜索算法(二)

[实验目的]

编写黄金分割法、抛物线插值法的程序。 [实验准备]

1.掌握黄金分割法的思想及迭代步骤; 2.掌握抛物线插值法的思想及迭代步骤。 [实验容及步骤]

编程解决以下问题: 1.用黄金分割法求解

)2()(min +=t t t ?, 已知初始单谷区间]5,3[],[-=b a ,要求精度001.0=ε.

黄金分割法迭代步骤:

(1) 确定)(t ?的初始搜索区间][b a ,. (2) 计算)(382.02a b a t -+= (3) 计算)(618.01a b a t -+=

(4) 若ε<-||21t t ,则打印2

2

1*

t t t +=

,结束;否则转(5). (5) 判别是否满足21??≤:若满足,则置12122??===,,

t t t a 然后转(3);否则,置

)()(22221211t a b t t t t b ??βα??=-+====,,,,

然后转(4). 黄金分割法的计算框图:

程序清单

黄金分割法程序见附录4

实验结果

运行结果为:

2.用抛物线插值法求解

3728)(min 23+--=x x x x f ,

已知初始单谷区间001.0]20[][==ε,,,

b a .

抛物线插值法的计算步骤:

(1) )()(0t t ??<,所以相对0t 来说t 是好点,故划掉区间],[20t t ,保留],[01t t 为新区间,

故置)()(0202t t t t ??==,,)()(00t t t t ??==,,1t 保持不变;

(2) )()(0t t ??>,所以相对t 来说0t 是好点,故划掉区间],[1t t ,保留],[2t t 为新区间,

故置)()(11t t t t ??==,

,0t 与2t 保持不变;

程序清单

抛物线插值法程序见附录5

实验结果

运行结果为:

项目三 常用无约束最优化方法(一)

[实验目的]

编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验准备]

1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验容及步骤]

编程解决以下问题: 1.用最速下降法求

22

120min ()25[22]0.01T f X x x X ε=+==,,,.

最速下降法计算步骤 (1)0,0)(,)

0(=>k X 令精度容许误差取初始点ε

(2))()()

(k k X f p -?=计算

(3)0)()

(4,,?否则转取若是迭代终止检验k k X X p

=≤*ε

(4)))(()(min :)()()()

(0

一维搜索求最优步长k k k k k k p X f p X

f λλλλ+=+≥

)()()1(2,1:,转令令+=+=+k k p X X k k k k λ

最速下降法的计算框图

程序清单

最速下降法程序见附录6

实验结果

运行结果为:

最优化实验报告

最优化方法 课程设计报告班级:________________ 姓名: ______ 学号: __________ 成绩: 2017年 5月 21 日

目录 一、摘要 (1) 二、单纯形算法 (2) 1.1 单纯形算法的基本思路 (2) 1.2 算法流程图 (3) 1.3 用matlab编写源程序 (4) 二、黄金分割法 (7) 2.1 黄金分割法的基本思路 (7) 2.2 算法流程图 (8) 2.3 用matlab编写源程序 (9) 2.4 黄金分割法应用举例 (11) 三、最速下降法 (11) 3.1 最速下降法的基本思路 (11) 3.2 算法流程图 (13) 3.3 用matlab编写源程序 (13) 3.4 最速下降法应用举例 (13) 四、惩罚函数法 (17) 4.1 惩罚函数法的基本思路 (17) 4.2 算法流程图 (18) 4.3 用matlab编写源程序 (18) 4.4 惩罚函数法应用举例 (19) 五、自我总结 (20) 六、参考文献 (20)

一、摘要 运筹学是一门以人机系统的组织、管理为对象,应用数学和计算机等工具来研究各类有限资源的合理规划使用并提供优化决策方案的科学。通过对数据的调查、收集和统计分析,以及具体模型的建立。收集和统计上述拟定之模型所需要的各种基础数据,并最终将数据整理形成分析和解决问题的具体模型。 最优化理论和方法日益受到重视,已经渗透到生产、管理、商业、军事、决策等各个领域,而最优化模型与方法广泛应用于工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各个部门及各个领域。伴随着计算机技术的高速发展,最优化理论与方法的迅速进步为解决实际最优化问题的软件也在飞速发展。其中,MATLAB软件已经成为最优化领域应用最广的软件之一。有了MATLAB 这个强大的计算平台,既可以利用MATLAB优化工具箱(OptimizationToolbox)中的函数,又可以通过算法变成实现相应的最优化计算。 关键词:优化、线性规划、黄金分割法、最速下降法、惩罚函数法

最优化论文

厂址选择问题最优化论文 目录 摘要 (3) 1 问题重述 (4) 2 模型假设 (4) 3 模型的分析与建立 (4) 3.1模型分析与建立 (4) 4 模型的求解及结果分析 (6) 4.1问题的求解 (6) 4.2求解结果的分析 (7) 5模型优缺点分析 (7) 参考文献 (8) 附录 (8)

厂址选择问题 摘要 优化理论是一门实践性很强的学科,广泛应用于生产管理、军事指挥和科学试验等各种领域,Matlab优化工具箱提供了对各种优化问题的一个完整的解决方案。在应用于生产管理中时,为了使总的消费费用最小,常常需要解决一些厂址的选择问题。 对于该问题的厂址建设及规模分配,根据题意给出的一系列数据,可以建立数学模型,运用线性规划问题给出目标函数及约束条件,然后根据模型中的约束条件知,其中有等式约束和不等式约束,所以选用常用约束最优化方法中的外点罚函数来求解,因为外点罚函数是通过一系列惩罚因子{M k ,k=0,1,2, }, 求F(X,M k )的极小点来逼近原约束问题的最优点,当M k 趋于无穷大时,F(X,M k ) 的极小值点就是原问题的最优点X*。其中目标函数为F(X,M K )=f(X)+M K a(X),其 中 )) ( ( )] ( [ )] ( [ 1 2 1 2x g u x g x h i l i i m j j∑ ∑ = = + 给定终止限ε。根据外点罚的步骤及流 程图,编写出源程序,然后根据任意选取的初始点,并且罚因子及递增系数应取适当较大的值,从D外迭代点逼近D内最优解。 最后,根据外点罚函数的流程图,运用Matlab软件编写程序,求出最优解,即最优方案,使费用最小,并且也在规定的规模中。 关键字:Matlab 外点罚函数罚因子

最优化方法实验报告(1)

最优化方法实验报告Numerical Linear Algebra And Its Applications 学生所在学院:理学院 学生所在班级:计算数学10-1 学生姓名:甘纯 指导教师:单锐 教务处 2013年5月

实验一 实验名称:熟悉matlab基本功能 实验时间: 2013年05月10日星期三实验成绩: 一、实验目的: 在本次实验中,通过亲临使用MATLAB,对该软件做一全面了解并掌握重点内容。 二、实验内容: 1. 全面了解MATLAB系统 2. 实验常用工具的具体操作和功能 实验二 实验名称:一维搜索方法的MATLAB实现 实验时间: 2013年05月10日星期三实验成绩: 一、实验目的: 通过上机利用Matlab数学软件进行一维搜索,并学会对具体问题进行分析。并且熟悉Matlab软件的实用方法,并且做到学习与使用并存,增加学习的实际动手性,不再让学习局限于书本和纸上,而是利用计算机学习来增加我们的学习兴趣。 二、实验背景: (一)0.618法(黄金分割法),它是一种基于区间收缩的极小点搜索

算法,当用进退法确定搜索区间后,我们只知道极小点包含于搜索区间内,但是具体哪个点,无法得知。 1、算法原理 黄金分割法的思想很直接,既然极小点包含于搜索区间内,那么可以不断的缩小搜索区间,就可以使搜索区间的端点逼近到极小点。 2、算法步骤 用黄金分割法求无约束问题min (),f x x R ∈的基本步骤如下: (1)选定初始区间11[,]a b 及精度0ε>,计算试探点: 11110.382*()a b a λ=+- 11110.618*()a b a μ=+-。 (2)若k k b a ε-<,则停止计算。否则当()()k k f f λμ>时转步骤(3)。 当()()k k f f λμ≤转步骤(4)。 (3)置 11111110.382*()k k k k k k k k k k a b b a b a λλμμ+++++++=??=?? =??=+-?转步骤(5)

最优化论文

理学院 最优化理论与应用 课程设计 学号:XXXXXXX 专业:应用数学 学生姓名:XXXXXX 任课教师:XXXXXX教授 2015年10月

第一部分 在最优化理论与应用这门课中,我对求指派问题及指派问题的一个很好的解法匈牙利算法的应用比较感应趣。下面做出来讨论。 国内外的研究情况:“匈牙利算法”最早是由匈牙利数学家尼格(D.Koning )用来求矩阵中0元素个数的一种方法 ] 3[,由此他证明了“矩阵中独立0元素的最 多个数等于能覆盖所有0元素的最小直线数”。1955年由库恩(W.W.Kuhn )在求解著名的指派问题时引用了这一结论 ] 4[,并对具体算法做了改进,任然称为“匈 牙利算法”。解指派问题的匈牙利算法是从这样一个明显事实出发的:如果效率矩阵的所有元素 ≥ij a ,而其中存在一组位于不同行不同列的零元素,而只要令 对应于这些零元素位置的1 =ij x ,其余的 =ij x ,则z= ∑∑n i n j ij ij x a 就是问题的最 优解。 第二部分 结合我的基础知识对匈牙利算法的分析与展望 一.基础知识运用 企业员工指派问题的模型建立与求解 1.标准指派问题(当m=n 时,即为每个人都被指派一项任务) 假定某企业有甲乙丙丁戊五个员工,需要在一定的生产技术组织条件下,A ,B,C,D,E 五项任务,每个员工完成每项工作所需要耗费的工作时间如下: 求出:员工与任务之间应如何分配,才能保证完成工作任务的时间最短?最短时间为多少? 模型建立 设用C>0表示指派第i 个人去完成第j 项任务所用费时间,定义决策变量 , {j i ,1j i ,0项任务 个人去完成第当指派第项任务个人去完成第当不指派第=ij χ则指派问题的数学模型为:

最优化课程设计

《最优化》课程设计 题目:牛顿法与阻尼牛顿法算法分析 学院: 数学与计算科学学院 专业:数学与应用数学 姓名学号:廖丽红 1000730105 欧艳 1000730107 骆宗元 1000730122 沈琼赞 1000730127 指导教师:李向利 日期:2012年11月08日

摘要 本文基于阻尼牛顿法在解决无约束最优化问题中的重要性,对其原理与算法予以讨论。论文主要是参阅大量数学分析和最优化理论方法,还有最优化方法课程以及一些学术资料,结合自己在平时学习中掌握的知识,并在指导老师的建议下,拓展叙述牛顿法和其改进方法——阻尼牛顿法的优缺点,同时针对阻尼牛顿法的基本思路和原理进行研究,其搜索方向为负梯度方向,改善了牛顿法的缺点,保证了下降方向。 关键词:无约束牛顿法下降方向阻尼牛顿法最优解

Abstract This thesis is based on the importance of the damping Newton's method to solve unconstrained optimization problems, we give the discussion about its principles and algorithms. We search a large number of mathematical analysis and optimization theory methods, optimization methods courses, as well as some academic information ,and at the same time combined with knowledge we have learning in peacetime and thanks to the instructor's advice, we also give an expanding narrative for the Newton's method and the improved method -- damping Newton method's advantages and disadvantages, and make a study of the basic ideas and principles for damping Newton method at the same time , we find that a negative gradient direction is for the search direction of the damping Newton method, this method improves the shortcomings of the Newton method which can ensure the descent direction. Keywords: unconstrained , Newton's method , descent direction , damping Newton's method ,optimal solution

《最优化方法与应用》实验指导书

《最优化方法与应用》 实验指导书 信息与计算科学系编制

1 实验目的 基于单纯形法求解线性规划问题,编写算法步骤,绘制算法流程图,编写单纯形法程序,并针对实例完成计算求解。 2实验要求 程序设计语言:C++ 输入:线性规划模型(包括线性规划模型的价值系数、系数矩阵、右侧常数等) 输出:线性规划问题的最优解及目标函数值 备注:可将线性规划模型先转化成标准形式,也可以在程序中将线性规划模型从一般形式转化成标准形式。 3实验数据 123()-5-4-6=Min f x x x x 121231212320 324423230,,03-+≤??++≤??+≤??≥? x x x x x x st x x x x x

1 实验目的 基于线性搜索的对分法、Newton 切线法、黄金分割法、抛物线法等的原理及方法,编写算法步骤和算法流程图,编写程序求解一维最优化问题,并针对实例具体计算。 2实验要求 程序设计语言:C++ 输入:线性搜索模型(目标函数系数,搜索区间,误差限等) 输出:最优解及对应目标函数值 备注:可从对分法、Newton 切线法、黄金分割法、抛物线法中选择2种具体的算法进行算法编程。 3实验数据 2211 ()+-6(0.3)0.01(0.9)0.04 = -+-+Min f x x x 区间[0.3,1],ε=10-4

实验三 无约束最优化方法 1实验目的 了解最速下降法、牛顿法、共轭梯度法、DFP 法和BFGS 法等的基本原理及方法,掌握其迭代步骤和算法流程图,运用Matlab 软件求解无约束非线性多元函数的最小值问题。 2实验要求 程序设计语言:Matlab 针对实验数据,对比最速下降法、牛顿法、共轭梯度法、DFP 法和BFGS 法等算法,比较不同算法的计算速度和收敛特性。 3实验数据 Rosenbrock's function 222211()(100)+(1-)=-Min f x x x x 初始点x=[-1.9, 2],,ε=10-4

最优化理论与方法论文(DOC)(新)

优化理论与方法

全局及个性化web服务组合可信度的动态规划评估方法 摘要:随着Internet的快速发展,web服务作为一种软件构造形式其应用越来越广泛。单个web服务无法满足日益复杂的用户需求,web服务组合有效地解决了这个问题。然而,随着功能相似的web服务实例的不断出现,如何选择可信的web服务组合成为了人们关注的热点。服务选择依赖于web服务组合的评估结果,因此,本文主要从web服务组合着手,对其可信性进行研究,提供一种可信web服务组合评估方法。:针对web服务组合的全局及个性化问题,提出了基于全局的个性化web服务组合可信评估方法。从全局角度动态地调整评估模型;同时引入用户业务关注度来描述原子web服务对服务组合可信性的影响程度;结合前文的度量及评估方法,构建一个全局的个性化服务组合可信评估模型;并分析了模型的相关应用,给出了改进的动态规划模型。 关键字:web服务组合可信评价;全局个性化;动态规划; 0.引言 随着软件系统规模的日趋复杂,运行环境的不断开放,软件的可信性要求日益增加,可信软件成为了研究的热点。据《中国互联网发展状况统计报告》统计显示,截至2014年12月底,我国网民数量突破8亿,全年新增网民5580万。互联网普及率较上年底提升4个百分点,达到38。3%。因此,随着Internet 的广泛应用和网络技术的快速发展,面向服务的软件体系结构(SOA)作为一种新型的网络化软件应用模式已经被工业界和学术界广为接受。同时,网民对互联网电子商务类应用稳步发展,网络购物、网上支付、网上银行和在线旅游预订等应用的用户规模全面增长。因而,对web服务的可信性要求更高。单个web服务的功能有限,往往难以满足复杂的业务需求,只有通过对已有web服务进行组合,才能真正发挥其潜力。在现有的web服务基础上,通过服务组装或者Mashup方式生成新web服务作为一种新型的软件构造方式,已成为近年的研究热点之一。web服务组合并不是多个原子web服务的简单累加,各原子web服务之间有着较强的联系。因此对web服务组合的可信需求更高。目前大量的研究工作着重于如何实现原子web服务间的有效组合,对服务组合的可信评估研究较少。如今,随着web服务资源快速发展,出现了大量功能相同或相似的web服务,对web服务组合而言,选择可信的web服务变得越来越难。在大量的功能相似的原子web服务中,如何选出一组可信的web服务组合,成为了人们关注的热点问题。本文将从web服务组合着手,对其可信性进行研究,旨在提供一种可信web服务组合评估方法,为web服务组合的选择提供依据。web服务组合的可信度主要包括以下三个部分: 1)基于领域本体的web服务可信度量模型。 2)基于偏好推荐的原子web服务可信评估方法。 3)基于全局的个性化web服务组合可信评估方法。 研究思路: 本文主要研究基于全局的个性化web服务组合的可信评估方法,其研究思路可以大致如下:基于领域本体的web服务可信度和基于偏好推荐的原子web 服务可信评估方法。针对web服务组合的四种基本组合结构模式,主要研究如

最优化方法课程设计-斐波那契法分析与实现-完整版(新)

所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。 最优化方法 题目:斐波那契法分析与实现 院系:信息与计算科学学院 专业:统计学 姓名学号:小熊熊 11071050137 指导教师:大胖胖 日期: 2014 年 01 月 10 日

摘要 科学的数学化是当代科学发展的一个主要趋势,最优化理论与算法是一个重要的数学分支,它所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案. 一维搜索是指寻求一元函数在某个区间上的最优点的方法.这类方法不仅有实用价值,而且大量多维最优化方法都依赖于一系列的一维最优化.本文就斐波那契法的一维搜索进行了详细的分析,并且成功的用 MATLAB 实现了斐波那契法求解单峰函数的极小值问题. 斐波那契法的一维搜索过程是建立在一个被称为斐波那契数列的基础上进行的,斐波那契法成功地实现了单峰函数极值范围的缩减.从理论上来说,斐波那契法的精度比黄金分割法要高.但由于斐波那契法要事先知道计算函数值的次数,故相比之下,黄金分割法更为简单一点,它不需要事先知道计算次数,并且当n 7 时,黄金分割法的收敛速率与斐波那契法越来越接近.因此,在实际应用中,常常采用黄金分割法. 斐波那契法也是一种区间收缩算法,和黄金分割法不同的是:黄金分割法每次收缩只改变搜索区间的一个端点,即它是单向收缩法. 而斐波那契法同时改变搜索区间的两个端点,是一种双向收缩法. 关键字:一维搜索斐波那契法单峰函数黄金分割法MATLAB

Abstract Mathematical sciences is a major trend in contemporary scientific development, optimization theory and algorithms is an important branch of mathematics, the problems it was discussed in numerous research programs in the best of what programs and how to find the optimal solution . One-dimensional search is the best method of seeking functions of one variable on the merits of a certain interval. Such methods not only have practical value, but also a large number of multi-dimensional optimization methods rely on a series of one-dimensional optimization article on Fibonacci the one-dimensional search method carried out a detailed analysis, and successful in MATLAB Fibonacci method for solving unimodal function minimization problem. Fibonacci method of one-dimensional search process is based on the Fibonacci sequence is called a Fibonacci conducted on, Fibonacci method successfully achieved a unimodal function extreme range reduction. Theory , Fibonacci method accuracy is higher than the golden section method, but the number of times due to the Fibonacci method to calculate function values to know in advance, so the contrast, the golden section method is more simply, it does not need to know in advance the number of calculations and at that time, the rate of convergence of golden section and the Fibonacci method getting closer, so in practical applications, often using the golden section method. Fibonacci method is also a range contraction algorithm, and the golden section method the difference is: golden section each contraction only one endpoint to change the search range that it is unidirectional shrinkage law Fibonacci search method while changing the two endpoints of the range, is a two-way contraction method. Key words: one-dimensional search Fibonacci method unimodal function Golden Section function MATLAB

最优化方法课程设计实验报告_倒立摆

倒立摆控制系统控制器设计实验报告

成员:陈乾睿 2220150423 郑文 2220150493 学院:自动化 倒立摆控制系统控制器设计实验 一、实验目的和要求 1、目的 (1)通过本设计实验,加强对经典控制方法(LQR控制器、PID控制器)和智能控制方法(神经网络、模糊控制、遗传算法等)在实际控制系统中的应用研究。(2)提高学生有关控制系统控制器的程序设计、仿真和实际运行能力. (3)熟悉MATLAB语言以及在控制系统设计中的应用。 2、要求 (1)完成倒立摆控制系统的开环系统仿真、控制器的设计与仿真以及实际运行结果 (2)认真理解设计内容,独立完成实验报告,实验报告要求:设计题目,设计的具体内容及实验运行结果,实验结果分析、个人收获和不足,参考资料。程序

清单文件。 二、实验内容 倒立摆控制系统是一个典型的非线性系统,其执行机构具有很多非线性,包括:死区、电机和带轮的传动非线性等。 本设计实验的主要内容是设计一个稳定的控制系统,其核心是设计控制器,并在MATLAB/SIMULINK环境下进行仿真实验,并在倒立摆控制实验平台上实际验证。 算法要求:使用LQR以外的其它控制算法。 三、倒立摆系统介绍 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的应用开发前景。 倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:非线性,不确定性,耦合性,开环不稳定性,约束限制。 经过相关论文和文献的查询,我们决定采用模糊控制的方法进行倒立摆的控制。

学生科学实验效果最优化的基石实验报告设计

学生科学实验效果最优化的基石实验报告设计 自然科学是以实验为基础的学科。实验是人们研究和认识自然的重要方法。因此,在自然科学的教学中,实验也是重要的教学方法之一。通过实验,不仅可以提供学生对科学现象的感性认识,更可以让学生获得初步的实验技能和观察分析问题的能力。 小学科学实验教学的设计是运用系统论的思想和方法,以学习理论、教学理论为基础,计划和安排实验教学的各个环节、要素,以实现教学效果最优化为目的的活动。通过多年来的实验教学实践与思考,我们可以让学生像科学家那样,亲历科学探究的过程,这有利于充分发挥学生的主体作用,让学生积极主动参与到观察、实验等学习活动中去,亲自感知实验所产生的各种现象和变化,提高自行获取知识的能力,而其中比较重要的一个环节就是学生实验报告的设计与记录。在学生实验的过程中,一份好的实验报告设计,就像是一盏明灯,能给学生指引实验的目标、方向,能提供给学生形成结论的分析数据,进而培养学生科学实验的基本素养,使学生的科学实验效果达到最优化。 一、观察实验报告的填写,有利于学生在实验中观察,进一步培养学生实验的责任心和有序观察能力。 教科版四下《油菜花开了》解剖花的实验中,我设计了如下实验报告,在教学中取得了很好的效果。 《解剖花》实验人

花的名称 实验方法:用镊子把花的各部分,从外向里一层层撕下,整齐排列并贴在相应的名称左边,数一数,填在相应的空格上。 个萼片 个花瓣 个雄蕊 个雌蕊 在班级(1)上课时我没有设计实验报告,就按照书本上的要求,先介绍解剖花的方法、花的结构,然后让学生按照书本要求独立解剖油菜花。在实验过程中,学生非常认真,且相当活跃,但检查结果时,学生雌雄蕊不分,萼片、花瓣不分,桌上、地上掉落的都是花瓣,实验效果之不佳显而易见。 后来,我根据班级(1)出现的情况,设计了如上实验报告,实验的效果就相当出色。在这个实验报告中,我并没有限制学生解剖何种花,但学生可以根据实验要求很清楚地完成解剖的任务。充分体现了以教师为主导、学生为主体的课堂教学思想;而且在实验的过程中,桌上有了这份实验报告,便时刻提醒着学生做实验究竟是何目的,做实验时必须仔细观察什么,做实验的观察步骤是什么。在解剖花的过程中,动作快的同学还可在老师的同意下,多取一两张实验报告单,多解剖几种花,因此既避免了学生在一旁闲着无所事事而打闹的局面,又进一步提高了这些学生的科学素质。至于个别有困难的学生,教师可在巡视的过程中

最优化课程设计--共轭梯度法算法分析与实现

最优化课程设计--共轭梯度法算法分析与实现(设计程序) 题目共轭梯度法算法分析与实现 班级 / 学号 14140101/2011041401011 学生姓名黄中武指导教师王吉波王微微 课程设计任务书 课程名称最优化方法课程设计院(系) 理学院专业信息与计算科学 课程设计题目共轭梯度法算法分析与实现课程设计时间: 2014 年 6月 16日至 2014 年 6月 27日 课程设计的要求及内容: [要求] 1. 学习态度要认真,要积极参与课程设计,锻炼独立思考能力; 2. 严格遵守上机时间安排; 3. 按照MATLAB编程训练的任务要求来编写程序; 4. 根据任务书来完成课程设计论文; 5. 报告书写格式要求按照沈阳航空航天大学“课程设计报告撰写规范”; 6. 报告上交时间:课程设计结束时上交报告; 7. 严禁抄袭行为,一旦发现,课程设计成绩为不及格。 一、运用共轭梯度法求解无约束最优化问题 要求:1)了解求解无约束最优化问题的共轭梯度法; 2)绘出程序流程图; 3)编写求解无约束最优化问题的共轭梯度法MATLAB程序; 4)利用编写文件求解某无约束最优化问题;

5)给出程序注释。 指导教师年月日 负责教师年月日 学生签字年月日 沈阳航空航天大学 课程设计成绩评定单 课程名称最优化理论与算法课程设计院(系) 理学院专业信息与计算科学课程设计题目共轭梯度法算法分析与实现学号 2011041401011 姓名黄中武指导教师评语: 课程设计成绩 指导教师签字 年月日 最优化方法课程设计沈阳航空航天大学课程设计用纸目录 目录 一、正 文 (1) 二、总结 ............................................................... 8 参考文 献 ............................................................... 9 附录 .. (10) 第 I 页 最优化方法课程设计沈阳航空航天大学课程设计用纸正文 一、正文 一无约束最优化问题的共轭梯度法

最优化方法(黄金分割与进退法)实验报告

一维搜索方法的MATLAB 实现 姓名: 班级:信息与计算科学 学号: 实验时间: 2014/6/21 一、实验目的: 通过上机利用Matlab 数学软件进行一维搜索,并学会对具体问题进行分析。并且熟悉Matlab 软件的实用方法,并且做到学习与使用并存,增加学习的实际动手性,不再让学习局限于书本和纸上,而是利用计算机学习来增加我们的学习兴趣。 二、实验背景: 黄金分割法 它是一种基于区间收缩的极小点搜索算法,当用进退法确定搜索区间后,我们只知道极小点包含于搜索区间内,但是具体哪个点,无法得知。 1、算法原理 黄金分割法的思想很直接,既然极小点包含于搜索区间内,那么可以不断 的缩小搜索区间,就可以使搜索区间的端点逼近到极小点。 2、算法步骤 用黄金分割法求无约束问题min (),f x x R ∈的基本步骤如下: (1)选定初始区间11[,]a b 及精度0ε>,计算试探点: 11110.382*()a b a λ=+- 11110.618*()a b a μ=+-。 (2)若k k b a ε-<,则停止计算。否则当()()k k f f λμ>时转步骤(3)。 当 ()()k k f f λμ≤转步骤(4)。 (3) 11111110.382*()k k k k k k k k k k a b b a b a λλμμ+++++++=??=?? =??=+-?转步骤(5)

(4) 转步骤(5) (5)令1k k =+,转步骤(2)。 算法的MATLAB 实现 function xmin=golden(f,a,b,e) k=0; x1=a+0.382*(b-a); x2=a+0.618*(b-a); while b-a>e f1=subs(f,x1); f2=subs(f,x2); if f1>f2 a=x1; x1=x2; f1=f2; x2=a+0.618*(b-a); else b=x2; x2=x1; f2=f1; x1=a+0.382*(b-a); end k=k+1; end xmin=(a+b)/2; fmin=subs(f,xmin)

最优化论文

题目:非线性最小二乘法问题的一种解法--高斯-牛顿法 学生姓名:聂倩云 学号:113113001039 学院:理学院 专业名称:应用数学

非线性最小二乘法问题的一种解法--高斯-牛顿法 目录 前言 (1) 1. 拟牛顿法及相关讨论 (1) 2.牛顿法 (1) 3.拟牛顿法 (2) 3.1DFP公式 (2) 3.2BFGS公式 (4) 3.3限域拟牛顿法 (6) 4.针对二次非凸性函数的若干变形 (6) 参考文献: (7)

非线性最小二乘法问题一种解法--高斯-牛顿法 学生:聂倩云 学号:113113001039 摘 要:非线性最小二乘法问题在工程技术、测绘等各个领域有着非常广泛的应用,我们考虑无约束非线性最小二乘问题的一种常见的解法:高斯-牛顿法。求解无约束优化问题的基本方法是牛顿法,本文从这点出发,介绍此方法步骤,探讨此方法的收敛性,讨论它的收敛速度,并给出高斯-牛顿法的一种修正:阻尼高斯牛顿法。 关键词:非线性最小二乘;高斯-牛顿法;收敛性;收敛速度 前言 非线性最小二乘问题结构特殊,不仅可以用一般的最优化问题求解的方法,还可以对一般的无约束优化问题求解方法进行改造,得到一些特殊的求解方法。而这些方法基本思想就是形成对目标函数的海森矩阵不同的近似。 1.非线性最小二乘法问题概述 非线性最小二乘法模型为 ()()[]()()()22 12 12121m in x r x r x r x r x f T m i i ===∑= 其一阶、二阶导数分别为 ()()()x r x A x g = ()()()()()()()x S x M x r x r x A x A x G m i i i T +=?+=∑=12 其中()()()()()T m x r x r x r x r ,,,21 =称为在点x 处的残向量,()x r i 为非线性函 数,且 ()()()[]x r x r x A m ??=,,1 ,其中()()() T x A x A x M =称为高斯-牛顿 矩阵,为()x G 中的线性项,()x S 为()x G 中的非线性项。 2.高斯-牛顿法 高斯-牛顿法主要思想是省略非线性项()x S 从而形成对海森矩阵的近似。

最优化方法课程设计

湖南****大学 课程设计 资料袋 理学院学院(系、部)2013-2014 学年第一学期课程名称最优化方法指导教师黄力职称讲师 学生姓名**** 专业班级数学与应用数学101班学号********** 学生姓名**** 专业班级数学与应用数学101班学号********* 学生姓名**** 专业班级数学与应用数学101班学号********* 题目最优化方法 成绩起止日期2013 年12 月16 日~2013 年12 月23 日 目录清单 序号材料名称资料数量备注 1 课程设计任务书 1 2 课程设计说明书 1 3 附件:课程设计主要模块实现代码 1 张4 5 6

湖南******大学 课程设计任务书 2013—2014 学年第1学期 理学院学院(系、部)数学与应用数学专业101 班课程名称:最优化方法 设计题目:求解各类最优化问题 完成期限:自2013 年12 月16 日至2013 年12月23 日共 1 周 任务及内容设计的任务:1、掌握Lingo和Matlab软件的相关知识; 2、熟练掌握相关Lingo和Matlab语句的编辑和运用; 3、运用所学最优化方法知识完成对各类最优化问题的求解。 内容包括:求解各类最优化问题,包括:铁板问题、配棉问题、连续投资问题、销售问题、整数规划模型。 进度安排 起止日期工作内容 2013.12.16~2013.12.17 查找资料并分析 2013.12.18~2013.12.20 列出不等式算法,实现相关算法并运算相关程序2013.12.21~2013.12.22 整理所解决的问题的相关资料 2013.12.23 完成课程设计报告 主要参考资料[1]蒋邵忠.线性规划与网络优化.杭州:浙江大学出版社,1992. [2]赵凤治,周继英.约束最优化计算方法.北京:科学出版社,1991. [3]施光燕,钱伟懿,庞丽萍.最优化方法.北京:高等教育出版社,2007.8 [4]林锉云,董加礼.多目标优化的方法和理论.长春:吉林教育出版社,1992. [5]张延华,许阳明.MATLAB使用指南.北京:科学技术文献出版社,1998. [6]施阳,李俊等.MATLAB语言工具箱——TOOLBOX实用指南.西安:西北工业大学出版社,1998. 指导教师(签字):年月日系(教研室)主任(签字):年月日

最优化方法课程实验报告

项目一 一维搜索算法(一) [实验目的] 编写加步探索法、对分法、Newton 法的程序。 [实验准备] 1.掌握一维收搜索中搜索区间的加步探索法的思想及迭代步骤; 2.掌握对分法的思想及迭代步骤; 3.掌握Newton 法的思想及迭代步骤。 [实验容及步骤] 编程解决以下问题: 1.用加步探索法确定一维最优化问题 1 2)(min 30 +-=≥t t t t ? 的搜索区间,要求选取2,1,000===αh t . 加步探索法算法的计算步骤: (1)选取初始点 ]) 0[)(0[max 00t t t ,或,∈?∞+∈,计算 )(00t ??=.给出初始步长0 >h , 加步系数1α>,令0=k 。 (2) 比较目标函数值.令k k k h t t +=+1,计算 )(11++=k k t ??,若k k ??<+1,转(3),否则转(4)。 (3) 加大探索步长.令 k k h h α=+1,同时,令,k t t =,1+=k k t t 1k k =+,转(2)。 (4) 反向探索.若0=k ,转换探索方向,令,k k h h -=1+=k t t ,转(2)。否则,停止迭代,令 11min{}max{}k k a t t b t t ++==,,,。 加步探索法算法的计算框图

程序清单 加步探索法算法程序见附录1 实验结果 运行结果为: 2.用对分法求解 )2()(min +=t t t ?, 已知初始单谷区间]5,3[],[-=b a ,要求按精度3.0=ε,001.0=ε分别计算. 对分法迭代的计算步骤: (1)确定初始搜索区间],[b a ,要求'()0'()0a b ??<>,。 (2) 计算],[b a 的中点)(2 1 b a c +=. (3) 若0)(<'c ?,则c a = ,转(4);若0)(='c ?,则c t =* ,转(5);若0)(>'c ?,则c b = ,转(4). (4) 若ε<-||b a ,则)(2 1* b a t +=,转(5);否则转(2). (5) 打印* t ,结束 对分法的计算框图

最优化方法课程实验报告

. . 项目一 一维搜索算法(一) [实验目的] 编写加步探索法、对分法、Newton 法的程序。 [实验准备] 1.掌握一维收搜索中搜索区间的加步探索法的思想及迭代步骤; 2.掌握对分法的思想及迭代步骤; 3.掌握Newton 法的思想及迭代步骤。 [实验容及步骤] 编程解决以下问题: 1.用加步探索法确定一维最优化问题 1 2)(min 30 +-=≥t t t t ? 的搜索区间,要求选取2,1,000===αh t . 加步探索法算法的计算步骤: (1)选取初始点])0[)(0[max 00t t t ,或,∈?∞+∈,计算)(00 t ??=.给出初始步长0 >h , 加步系数1α>,令0=k 。 (2) 比较目标函数值.令k k k h t t +=+1,计算 )(11++=k k t ??,若k k ??<+1,转(3),否则转(4)。 (3) 加大探索步长.令k k h h α=+1,同时,令,k t t =,1+=k k t t 1k k =+,转(2)。 (4) 反向探索.若0=k ,转换探索方向,令,k k h h -=1+=k t t ,转(2)。否则,停止迭代, 令 11min{}max{}k k a t t b t t ++==,,,。 加步探索法算法的计算框图

. . 程序清单 加步探索法算法程序见附录1 实验结果 运行结果为: 2.用对分法求解 )2()(min +=t t t ?, 已知初始单谷区间]5,3[],[-=b a ,要求按精度3.0=ε,001.0=ε分别计算. 对分法迭代的计算步骤: (1)确定初始搜索区间],[b a ,要求'()0'()0a b ??<>,。 (2) 计算],[b a 的中点)(2 1 b a c += . (3) 若0)(<'c ?,则c a = ,转(4);若0)(='c ?,则c t =* ,转(5);若0)(>'c ?,则c b = ,转(4). (4) 若ε<-||b a ,则)(2 1* b a t +=,转(5);否则转(2).

基于单纯形法的最优化方法的毕业设计论文

基于单纯形法的最优化方法的毕业设计论 文 Revised on November 25, 2020

摘要: 最优化方法普遍的应用于工业、农业、商业、交通运输、国防、通信、建设、等各个方面与我们的生活息息相关;最优化方法主要用来解决最优计划、最优决策、最优设计、最优分配等最优化问题。本文主要研究的内容是通过单纯形方法对最优化问题的解决进行归纳总结,分析最优化问题所涉及的原理和方法,使用软件对最优化问题进行实践仿真测试,并将最优化问题推广应用到生活当中去。 关键词: 最优化单纯形方法仿真 Abstract Optimization method is widely used in industry, agriculture, commerce, transportation, defense, communications, construction, and other aspects of our lives; the optimization method is used to solve the optimal planning, optimal decision-making, optimal design, optimal allocation optimization problem. The main research content of this paper is summarized by the simplex method to solve the optimization problem, the principle and method of optimization analysis of the problems involved in the use of software simulation test of practical optimization problems, and promote the use of the optimization problem to life. Keywords : optimization Simplex method Simulation

最优化方法与自动控制选修课论文

最优化方法课程大作业论文最优化方法与控制工程 学生姓名:熊柳 学生学号:201422000182 专业名称:控制工程

这学期按照培养方案,我学习了最优化方法这门课程。顾名思义,从课程名字就可知道这是一门关于对一项工程或是任务设计具体方案使其尽可能达到最高效率的课程。上课后,老师逐渐讲解一些最优化方法的基本思想和算法,开始对最优化方法有了更深的认识。最优化方法其实也是数学的一个分支学科,但最优化方法不同于其他分支,更偏向于具体的工程应用,实用性很强。 通过课堂学习以及查资料,我了解到最优化方法的一些相关知识,最优化方法,也叫做运筹学方法,是近几十年形成的,它主要运用数学的方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。 最优化方法中具体的思想和算法大多数是以本科中学过的高数和线性代数中的知识为基础的,然后再接以现代的计算机编程技术来进行操作,例如C语言和Matlab,这样可以大大提高解决问题的效率和精准性,尤其对于石油院校的研究领域中的一些问题都是规模很大的工程问题,仅仅依靠人力基本无法计算,必须通过计算机来进行解决。老师开始给我们讲解一些最基础的最优化方法知识,例如:凸集和凸函数、范数等;然后介绍了最优化方法的研究对象、特点,以及最优化方法模型的建立和模型的分析、求解、应用,例如:线性规划问题、求极值、无约束最优化问题、等式约束最优化问题、不等式约束最优化问题等。用最优化方法解决实际问题,一般可经过下列步骤: ①提出最优化问题,收集有关数据和资料; ②建立最优化问题的数学模型(最优化模型一般包括变量、约束条件和目标函数三要素),确定变量,列出目标函数和约束条件; ③分析模型,选择合适的最优化方法; ④求解,一般通过编制程序,用计算机求最优解; ⑤最优解的检验和实施。 在学习了最优化方法导论之后,发现它在我所学的专业领域有极为重要的应用。它在我所学习的专业控制工程中发展成为了一门专门的学科——最优控制。 最优控制(optimal control )是现代控制理论的核心,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。使一个系统的性能指标实现最优化可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。 最优控制问题,就是在给定条件下,对给定系统确定一种控制规律,使该系统能在规定的性能指标下具有最优值。也就是说最优控制就是要寻找容许的控制规律是动态系统从初始状态转移到某种要求的终端状态,且保证所规定的性能指

相关文档
最新文档