最优化方法课程设计-最优化大作业-用优化算法求解函数最值问题

最优化方法课程设计-最优化大作业-用优化算法求解函数最值问题
最优化方法课程设计-最优化大作业-用优化算法求解函数最值问题

最优化方法大作业

---------用优化算法求解函数最值问题

摘要

最优化(optimization) 是应用数学的重要研究领域.它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。最优化问题一般包括最小化问题和最大化问题,而最大化问题可以通过简单的转化使之成最最小化问题。最小化问题分为两类,即约束最小化和无约束最小化问题。在此报告中,前两个问题属于无约束最小化问题的求解,报告中分别使用了“牛顿法”和“共轭梯度法”。后两个问题属于有约束最小化问题的求解,报告中分别用“外点法”和“内点法”求解。虽然命名不一样,其实质都是构造“惩罚函数”或者“障碍函数”,通过拉格朗日乘子法将有约束问题转化为无约束问题进行求解。再此报告中,“外点法”和“内点法”分别用了直接求导和调用“牛顿法”来求解无约束优化问题。

在此实验中,用“共轭梯度法”对“牛顿法”所解函数进行求解时出现错误,报告中另取一函数用“共轭梯度法”求解得到正确的结果。此实验中所有的函数其理论值都是显见的,分析计算结果可知程序正确,所求结果误差处于可接受范围内。

报告中对所用到的四种方法在其使用以前都有理论说明,对“外点法”中惩罚函数和“内点法”中障碍函数的选择也有相应的说明,另外,对此次试验中的收获也在报告的三部分给出。

本报告中所用程序代码一律用MATLAB编写。

【关键字】函数最优化牛顿法共轭梯度法内点法外点法 MATLAB

一,问题描述

1,

分别用共轭梯度发法和牛顿法来求解一下优化问题

()()()()()4

41432243221102510min x x x x x x x x x f -+-+-++=

2, 分别用外点法和内点发求解一下优化问题

??

?≥-++0

1.min 212

231x x t s x x

二、问题求解

1.1 用牛顿法求解

()()()()()4

414

322

432

21102510min x x x x x x x x x f -+-+-++=

1.1.1问题分析:

取步长为1而沿着牛顿方向迭代的方法称为牛顿法,在牛顿法中,初始点的取值随意,在以后的每次迭代中,()[]

()k k k k x f x f x x ??-=-+1

21,直到终止条件成立时停止。

1.1.2 问题求解

注:本程序编程语言为MATLAB ,终止条件为()162

110-≤?x f ,初始取值

为[10 10 10 10]

M 文件(求解函数)如下:

function s=newton1(f,c,eps)

%c 是初值,eps 为允许误差值 if nargin==2 eps=1.0e-16; elseif nargin<1 error('') % return end

syms x1 x2 x3 x4 x=[x1 x2 x3 x4].'; grad = jacobian(f).';

hesse = jacobian(grad);

a=grad;

b=hesse;

i=1;

gradk=subs(a,[x1 x2 x3 x4],[c(1) c(2) c(3) c(4)]); hessek=subs(b,[x1 x2 x3 x4],[c(1) c(2) c(3) c(4)]);

pk=-1*(hessek\gradk);

x=tihuan(c);

while norm(gradk)>=eps

x=x+pk;

gradk=subs(a,[x1 x2 x3 x4],[x(1) x(2) x(3) x(4)]); hessek=subs(b,[x1 x2 x3 x4],[x(1) x(2) x(3) x(4)]); pk=-hessek\gradk;

i=i+1;

end

disp('the times of iteration is:')

disp(i)

disp('The grad is:')

disp(gradk)

disp('and the result is:')

x=x.';

disp(x)

return

“tihuan”子函数:

function x=tihuan(x)

x(1)=x(1);

x(2)=x(2);

x(3)=x(3);

x(4)=x(4);

end

调用方式如下:

syms x1 x2 x3 x4

f=(x1+10*x2)^2+5*(x3-x4)^2+(x2-2*x3)^4+10*(x1-x4)^4;

c=[10 10 10 10]';%初始值

newton1(f,c,eps);

1.1.3 计算结果如下:

由上述结果可知,当迭代次数达到47次时满足终止条件,此时x 为

1.0e-005 * [-0.1111 0.0111 0.0095 0.0095], 显然,此题的理论解为[0 0 0 0],分析上述结果,与理论解的误差处于可接受范围之内。求解完成。

1.2 用共轭梯度法求解函数

()()()()()4

414

322

432

21102510min x x x x x x x x x f -+-+-++=

用共轭梯度法求解上述函数的程序代码如下:

1.2.1问题分析: 取

()

00x f p -?=,当搜索到

1

+k x 时,共轭方向

()2,...,1,0,11-=+-?=++n k p x f p k k k k λ,此时,1+k p 与k p A 共轭,用k Ap 右乘上式

()k

T

k k k k k k Ap p Ap x f Ap p λ+-?=++11,由

1=+k T

k Ap p 得

()2,...,1,01-=?=+n k Ap p Ap x f k

T p k

T

k k λ,若不满足条件,进行下一次迭代。

1.1.2 问题求解

注:程序所用语言为MATLAB ,精度为1610-=eps

syms x1 x2 x3 x4 t0 t1

f=(x1+10*x2)^2+5*(x3-x4)^2+(x2-2*x3)^4+10*(x1-x4)^4;

c=[10;10;10;10];

grad1 = diff(f,x1);

grad2=diff(f,x2);

grad3 = diff(f,x3);

grad4=diff(f,x4);

grad=[grad1;grad2;grad3;grad4];

a=grad;

i=1;

n=40;

gradk=subs(a,[x1 x2 x3 x4],[c(1) c(2) c(3) c(4)]);

x=tihuan(c);

p0=0;

while norm(gradk)>=eps

p0=-gradk;

y=x;

x=x+t0*p0;

k=0;

gradk=subs(a,[x1 x2 x3 x4],[x(1) x(2) x(3) x(4)]);

w=solve(gradk(1)+gradk(2)+gradk(3)+gradk(4));

t0=real(w);

t0=eval(t0);

t0=t0(1);

x=y+t0*p0;

gradk=subs(a,[x1 x2 x3 x4],[x(1) x(2) x(3) x(4)]);

while norm(gradk)>=eps

if k+1~=n

gradk2=subs(a,[x1 x2 x3 x4],[x(1) x(2) x(3) x(4)]); gradk1=subs(a,[x1 x2 x3 x4],[y(1) y(2) y(3) y(4)]); lamda=norm(gradk2).^2/norm(gradk1).^2;

p0=-gradk2+lamda*p0;

k=k+1;

else

k=0;

p0=-subs(a,[x1 x2 x3 x4],[x(1) x(2) x(3) x(4)]); end

clear y; y=x;

x=x+t1*p0;

gradk=subs(f,[x1 x2 x3 x4],[x(1) x(2) x(3) x(4)]);

m=solve(gradk);

t1=real(m); t1=eval(t1(1));

x=x+t1*p0;x=eval(x);clear m;clear t1;syms t1

gradk=subs(a,[x1 x2 x3 x4],[x(1) x(2) x(3) x(4)]);

end

disp(x.') return; end

disp(x.')

此程序为一初步程序,假设初值为[10;10;10;10],则第一次运算得t0=0.0011,lamda=0.9291,迭代后的x=NaN 。现用共轭梯度法求解另一函数 ()2

22

125min x x x f +=

对上述程序稍加改动来求解本题的代码如下: 注:程序所用语言为MATLAB ,精度为1610-=eps

function s=gongegrad2(f,c,eps) %c 是初值,eps 为允许误差值 if nargin==2

%eps=1.0e-16; elseif nargin<1 error('') return end tic

syms x1 x2 t0 t1 grad1 = diff(f,x1); grad2=diff(f,x2); grad=[grad1;grad2]; a=grad; i=1;n=40;

gradk=subs(a,[x1 x2],[c(1) c(2)]); x=tihuan(c); p0=0;

while norm(gradk)>=eps p0=-gradk; y=x;

x=x+t0*p0; k=0;

gradk=subs(f,[x1 x2],[x(1) x(2)]); w=solve(gradk); t0=real(w); t0=eval(t0); t0=t0(1); x=y+t0*p0;

gradk=subs(a,[x1 x2],[x(1) x(2)]);

while norm(gradk)>=eps

if k+1~=n

gradk2=subs(a,[x1 x2],[x(1) x(2)]);

gradk1=subs(a,[x1 x2],[y(1) y(2)]);

lamda=norm(gradk2)^2/norm(gradk1)^2;

p0=-gradk2+lamda*p0;

k=k+1;

else

k=0;

p0=-subs(a,[x1 x2],[x(1) x(2)]);

end

clear y; y=x;

x=x+t1*p0;

gradk=subs(f,[x1 x2],[x(1) x(2)]);

m=solve(gradk);

t1=real(m); t1=eval(t1(1));

x=y+t1*p0;

clear m;clear t1;syms t1

gradk=subs(a,[x1 x2],[x(1) x(2)]);

end

disp(sprintf('the last point we want is [%f %f]',x(1),x(2))); disp(sprintf('the times used to recursion is %f',k));

disp(sprintf('the function value is %f',x(1)^2+25*x(2)^2));

toc

return;

end

disp(sprintf('the last point we want is [%f %f]',x(1),x(2))); disp(sprintf('the times used to recursion is %f',k));

disp(sprintf('the function value is %f',x(1)^2+25*x(2)^2)); toc

tihuan”子函数为:

function x=tihuan(x)

[v,g]=size(x);

for i=1:v

x(i)=x(i);

end

程序调用方式为:

clear all

clc

syms x1 x2 t0 t1

f=x1^2+25*x2^2;

c=[2;2];%初值

gongegrad2(f,c,eps)

程序结果如下:

由上述结果知,用共轭梯度法对上述函数求解需要迭代三次得到最优解0,此时x 为[0 0];符合理论分析的结果,求解完成。

2.1 用外点法法求解函数

???≥-++0

1.min 212

231x x t s x x

2.1.1 问题分析

外点法为序列无约束最优化方法,其基本思想为将条件函数吸收到目标函数中进行求解。其在数学上的直观理解是拉格朗日乘子法:

[]()()()[]?

??

???+=∑=m

i i x g M x f M X T 12,0min min ;min ,

[]M X T ;m in 为总代价,()x f 为价格,()()[]∑=m

i i x g M 1

2

,0min 为罚款。即在经济学上总代价为价格和罚款的和。

此时

()()[]()()()()

m i x g x g x g x g i i i

i ~1000,0min 2

2

=?≥???=,当,

称[]()()∑=++=m

i i x g M x f M X T 1

;为增广目标函数,通常取

()()

()()???≤≥=+

02

x g x g x g x g i i i i 当当

2.1.2 问题求解

两种方法求解程序如下:

,程序中 2.1.2.1注:程序所用语言为MATLAB,终止条件为()16

-x

g

?

10-

i

无约束优化部分通过求导实现。

M文件如下:

tic

clc

%c 是初值,eps为允许误差值

if nargin==1

eps=1.0e-16;

elseif nargin<1

error('')

return

end

syms m

[x1,x2]=solve('3*x1^2+2*m*(x1+x2-1)=0','2*x2+2*m*(x1+x2-1)=0');

t=1;k=1;

x1=limit(x1,m,t);

x2=limit(x2,m,t);

bound=max(eval(x1(1)+x2(1))-1,eval(x1(2)+x2(2))-1);

while -bound>eps

t=10*t;k=k+1;

[x1,x2]=solve('3*x1^2+2*m*(x1+x2-1)=0','2*x2+2*m*(x1+x2-1)=0');

x1=limit(x1,m,t);

x2=limit(x2,m,t);

bound=max(eval(x1(1)+x2(1))-1,eval(x1(2)+x2(2))-1);

end

x1=eval(x1);x2=eval(x2);

f1=x1(1)^3+x2(1)^2;

f2=x1(2)^3+x2(2)^2;

if f1

disp(sprintf('the final x is [%f %f]',x1(1),x2(1)));

disp(sprintf('the final function value is %f',f1));

else

disp(sprintf('the final x is [%f %f]',x1(2),x2(2)));

disp(sprintf('the final function value is %f',f2));

end

disp(sprintf('the times used to recursion is %f',k))

toc

调用方式如下

syms x1 x2 m

T=x1^3+x2^2+m*(x1+x2-1)^2;

waidian(T,eps);

function s=waidian(T,eps)

实验结果如下

由上述结果可知当迭代17次时能够达到终止条件,此时,

???==451416

.0548584

.021x x

函数得到最优解0.368870.求解完成。

2.1.2.2,程序中无约束优化部分通过调用“牛顿法”完成

代码如下;

tic

clear all;close all;clc syms x1 x2

m=1;x0=[2;2];eps=1.0e-6; T=x1^3+x2^2+m*(x1+x2-1)^2; c=10;k=1; while 1

s=newton1(T,x0,eps);%调用newton 法 x1=s(1);x2=s(2);

if m*(x1+x2-1)^2>eps

m=c*m;k=k+1;syms x1 x2

T=x1^3+x2^2+m*(x1+x2-1)^2; else

disp(sprintf('the final result is [%f %f]',x1,x2)); disp(sprintf('the function value is %f',x1^3+x2^2)); disp(sprintf('the times used to recursion is %f',k)); break; end end toc

实验结果如下:

由上述结果可知当迭代7次时能够达到终止条件,此时,

???==451416

.0548584

.021x x

函数得到最优解0.368869.求解完成。 2.2 用内点法法求解函数

???≥-++0

1.min 212231x x t s x x

2.2.1 问题分析

同外点法,内点法也为序列无约束最优化方法,其基本思想为将条件函数吸收到目标函数中进行求解。 ()()()()()()()x f x B x x B x x wB x f w x I →∞++=不为边界时,为为边界时;

;

称()x B 为障碍函数、围墙函数或者惩罚函数。通常取 ()()()()

()

∑∞

=∞

=∞

==1

2

1

1

i 11

,ln -i i i i i x g x g x g x B 或者

若在上一次迭代中x 处于可解区域外部,则“围墙”不够高,在下一次迭代时加高“围墙函数”。 2.2.2 问题求解 求解程序如下:

注:程序所用语言为MATLAB ,本程序出于对运行时间和算法简单的考

虑,选用()()

==1

1i i x g x B

终止条件为()610?x g i ,此时可以认为当x 接近求解边界时()x B (围墙)为无穷大,以确保函数的自变量迭代发生在可解区域内部 2.2.2.1,程序中无约束优化部分通过求导实现。 tic

clear all; close all;clc; eps=10^6; syms w x1 x2

I=x1^3+x2^2+w*(1/(x1+x2-1)); x10=2;x20=2;

[x1,x2]=solve('3*x1^2-w/(x1+x2-1)^2=0','2*x2-w/(x1+x2-1)^2=0'); c=10;k=1;

x1=limit(x1,w,c); x2=limit(x2,w,c);

x1=eval(x1);x2=eval(x2);

x1=real(x1(1));x2=real(x2(1)); bound=(1/(x1+x2-1)); while bound<=eps c=c/10;k=k+1;

[x1,x2]=solve('3*x1^2-w/(x1+x2-1)^2=0','2*x2-w/(x1+x2-1)^2=0'); x1=limit(x1,w,c); x2=limit(x2,w,c);

x1=eval(x1);x2=eval(x2);

x1=real(x1(1));x2=real(x2(1)); bound=(1/(x1+x2-1)); end

disp(sprintf('the final x is [%f %f]',x1,x2));

disp(sprintf('the final function value is %f',x1(1)^3+x2(1)^2)); disp(sprintf('the times used to recursion is %f',k)) toc

实验结果如下:

由上述结果可知当迭代15次时能够达到终止条件,此时,

???==451416

.0548584

.021x x

函数得到最优解0.368870.求解完成,结果与“外点法”相同。 2.2.2.2,程序中无约束优化部分通过调用“牛顿法”完成(eps x x c k k ≤-=-收敛准则为,)

代码如下;

tic

clear all;close all;clc syms x1 x2

w=10;x0=[2;2];eps=1.0e-6;

I=x1^3+x2^2+w*(1/(x1+x2-1)^2); c=0.3;k=1; while 1

s=newton1(I,x0,eps);%调用newton 法 x1=s(1);x2=s(2);

if sqrt((x1-x0(1))^2+(x2-x0(2))^2)>eps w=c*w;k=k+1;x0(1)=x1;x0(2)=x2; syms x1 x2

I=x1^3+x2^2+w*(1/(x1+x2-1)^2); else

disp(sprintf('the final result is [%f %f]',x1,x2)); disp(sprintf('the function value is %f',x1^3+x2^2)); disp(sprintf('the times used to recursion is %f',k)); break; end end toc

实验结果如下:

由上述结果可知当迭代36次时能够达到终止条件,此时,

???==451418

.0548585

.021x x

函数得到最优解0.368872.求解完成,结果与“外点法”十分近似。

三、此次实验的收获

此次试验是用优化算法求解一些函数最值。通过此次实验,我的收获主要有以下几点;

1,

函数求最值在以前的学习中基本都是从函数本身出发,研究函数的本身性质,进而得出理论最值,对于一些性质不明确的函数涉猎不多。在这门课程中,我们更多的是从一个初始点出发,通过一些函数解集的迭代过程来求解函数的最值。虽然有的算法也牵扯到函数的性质(函数是否可导,是否有Hesse 矩阵等),但相对于以前的求解方式,对函数本身的要求已经薄弱很多,这就意味着可以对更多的函数运用算法求解最值,扩大了可求解函数的范围。

2,

这门课程的学习多是理论为主,老师在课堂上讲了很多实效有用的算法,对算法的优缺点也多有说明,但没在实战中运用的话理解不会很深。这次实验给了我一个运用所学理论知识的完美机会,在此次实验中能够通过自己的努力将课堂上讲的理论算法

逐步运用到实战中,无疑对理论的理解是大有裨益的。

3,这次实验中另外一个比较重要的收获是学习了MATLAB的运用。以前没有学习过MATLAB,但在这次试验中,能够自己学

习MATLAB并且很拙劣的完成实验内容,这种收获对以后的科目

学习也是很重要的。

北航最优化方法大作业参考

北航最优化方法大作业参考

1 流量工程问题 1.1 问题重述 定义一个有向网络G=(N,E),其中N是节点集,E是弧集。令A是网络G的点弧关联矩阵,即N×E阶矩阵,且第l列与弧里(I,j)对应,仅第i行元素为1,第j行元素为-1,其余元素为0。再令b m=(b m1,…,b mN)T,f m=(f m1,…,f mE)T,则可将等式约束表示成: Af m=b m 本算例为一经典TE算例。算例网络有7个节点和13条弧,每条弧的容量是5个单位。此外有四个需求量均为4个单位的源一目的对,具体的源节点、目的节点信息如图所示。这里为了简单,省区了未用到的弧。此外,弧上的数字表示弧的编号。此时,c=((5,5…,5)1 )T, ×13 根据上述四个约束条件,分别求得四个情况下的最优决策变量x=((x12,x13,…,x75)1× )。 13 图 1 网络拓扑和流量需求

1.2 7节点算例求解 1.2.1 算例1(b1=[4;-4;0;0;0;0;0]T) 转化为线性规划问题: Minimize c T x1 Subject to Ax1=b1 x1>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x1=20 1.2.2 算例2(b2=[4;0;-4;0;0;0;0]T) Minimize c T x2 Subject to Ax2=b2 X2>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x2=20 1.2.3 算例3(b3=[0;-4;4;0;0;0;0]T) Minimize c T x3 Subject to Ax3=b3 X3>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T 对应的最优值c T x3=40

《最优化方法》复习题(含答案)

《最优化方法》复习题(含答案)

附录5 《最优化方法》复习题 1、设n n A R ?∈是对称矩阵,,n b R c R ∈∈,求1()2 T T f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵. 解 2(),()f x Ax b f x A ?=+?=. 2、设()()t f x td ?=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ?''. 解 2()(),()()T T t f x td d t d f x td d ??'''=?+=?+. 3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令 ()()()()() T T T T dd f x f x H I d f x f x f x ??=--???, 其中I 为单位矩阵,证明方向()p H f x =-?也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ?<,从而 ()()()T T f x p f x H f x ?=-?? ()()()()()()()() T T T T T dd f x f x f x I f x d f x f x f x ??=-?--???? ()()()0T T f x f x f x d =-??+?<, 所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ?是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ?≥?∈L L 的一切凸组合都属于S . 证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令1 1k i i i x x λ+==∑, 其中,0,1,2,,1i i x S i k λ∈≥=+L ,且1 1 1k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈, 结论成立),记11 1k i i i k y x λλ=+=-∑ ,有111(1)k k k x y x λλ+++=-+,

最优化论文

厂址选择问题最优化论文 目录 摘要 (3) 1 问题重述 (4) 2 模型假设 (4) 3 模型的分析与建立 (4) 3.1模型分析与建立 (4) 4 模型的求解及结果分析 (6) 4.1问题的求解 (6) 4.2求解结果的分析 (7) 5模型优缺点分析 (7) 参考文献 (8) 附录 (8)

厂址选择问题 摘要 优化理论是一门实践性很强的学科,广泛应用于生产管理、军事指挥和科学试验等各种领域,Matlab优化工具箱提供了对各种优化问题的一个完整的解决方案。在应用于生产管理中时,为了使总的消费费用最小,常常需要解决一些厂址的选择问题。 对于该问题的厂址建设及规模分配,根据题意给出的一系列数据,可以建立数学模型,运用线性规划问题给出目标函数及约束条件,然后根据模型中的约束条件知,其中有等式约束和不等式约束,所以选用常用约束最优化方法中的外点罚函数来求解,因为外点罚函数是通过一系列惩罚因子{M k ,k=0,1,2, }, 求F(X,M k )的极小点来逼近原约束问题的最优点,当M k 趋于无穷大时,F(X,M k ) 的极小值点就是原问题的最优点X*。其中目标函数为F(X,M K )=f(X)+M K a(X),其 中 )) ( ( )] ( [ )] ( [ 1 2 1 2x g u x g x h i l i i m j j∑ ∑ = = + 给定终止限ε。根据外点罚的步骤及流 程图,编写出源程序,然后根据任意选取的初始点,并且罚因子及递增系数应取适当较大的值,从D外迭代点逼近D内最优解。 最后,根据外点罚函数的流程图,运用Matlab软件编写程序,求出最优解,即最优方案,使费用最小,并且也在规定的规模中。 关键字:Matlab 外点罚函数罚因子

最优化方法大作业答案

1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x 列成表格:

1 2 1 610011460105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 1 2 1 2102310401162010021212 11-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 2 12 32 30 210231040116201002121211- ------ 再从底行中选元素-3,和第二列正元素2,迭代一次得 4 2 3 3 410120280114042001112--- 再迭代一次得 10 2 30 2 10 6 221023 1010213000421021013-- 选取最优解:

最优化论文

理学院 最优化理论与应用 课程设计 学号:XXXXXXX 专业:应用数学 学生姓名:XXXXXX 任课教师:XXXXXX教授 2015年10月

第一部分 在最优化理论与应用这门课中,我对求指派问题及指派问题的一个很好的解法匈牙利算法的应用比较感应趣。下面做出来讨论。 国内外的研究情况:“匈牙利算法”最早是由匈牙利数学家尼格(D.Koning )用来求矩阵中0元素个数的一种方法 ] 3[,由此他证明了“矩阵中独立0元素的最 多个数等于能覆盖所有0元素的最小直线数”。1955年由库恩(W.W.Kuhn )在求解著名的指派问题时引用了这一结论 ] 4[,并对具体算法做了改进,任然称为“匈 牙利算法”。解指派问题的匈牙利算法是从这样一个明显事实出发的:如果效率矩阵的所有元素 ≥ij a ,而其中存在一组位于不同行不同列的零元素,而只要令 对应于这些零元素位置的1 =ij x ,其余的 =ij x ,则z= ∑∑n i n j ij ij x a 就是问题的最 优解。 第二部分 结合我的基础知识对匈牙利算法的分析与展望 一.基础知识运用 企业员工指派问题的模型建立与求解 1.标准指派问题(当m=n 时,即为每个人都被指派一项任务) 假定某企业有甲乙丙丁戊五个员工,需要在一定的生产技术组织条件下,A ,B,C,D,E 五项任务,每个员工完成每项工作所需要耗费的工作时间如下: 求出:员工与任务之间应如何分配,才能保证完成工作任务的时间最短?最短时间为多少? 模型建立 设用C>0表示指派第i 个人去完成第j 项任务所用费时间,定义决策变量 , {j i ,1j i ,0项任务 个人去完成第当指派第项任务个人去完成第当不指派第=ij χ则指派问题的数学模型为:

最优化方法大作业

发动机空燃比控制器 引言:我主要从事自动化相关研究。这里介绍我曾经接触过的发动机空燃比控制器设计中的优化问题。 发动机空燃比控制器设计中的最优化问题 AFR =a f m m && (1) 空燃比由方程(1)定义,在发动机运行过程中如果控制AFR 稳定在14.7可以获 得最好的动力性能和排放性能。如果假设进入气缸的空气流量a m &可以由相关单元检测得到,则可以通过控制进入气缸的燃油流量f m &来实现空燃比的精确控制。由于实际发动机的燃油喷嘴并不是直接对气缸喷燃油,而是通过进气歧管喷燃油,这么做会在进 气歧管壁上液化形成油膜,因此不仅是喷嘴喷出的未液化部分燃油会进入气缸,油膜 蒸发部分燃油也会进入气缸,如方程(2)。这样如何更好的喷射燃油成为了一个问题。 1110101122211ττττ?? ?? -?? ??????????=+????????-????????????-???? ? ??? ?? ????????? ?f f f v X x x u x x X x y =x && (2) 其中12、,==ff fv x m x m &&=f y m &,=fi u m &这里面,表示油膜蒸发量ff m &、fv m &表示为液化部分燃油、fi m &表示喷嘴喷射的燃油,在τf 、τv 、X 都已知的情况下,由现代控制理论知识,根据系统的增广状态空间模型方程(3) 0000001 1 011011114.70ττττ????-?? ??????????=-+-??????????????? ??????????????? ?? ??=?????? f f v v a X X u +q q m y q x x x &&& (3) 其中()0 14.7?t a q = y -m &。由极点配置方法,只要设计控制器方程(4),就可以 使得y 无差的跟踪阶跃输入,那么y 也能较好的跟踪AFR *a m /&。 12-- u =K q K x (4) 这里面的12、K K 确定,可由主导极点概念降维成两个参数12C ,C ,虽然都是最终稳态无差,但是目标是使得瞬态过程中y 和阶跃输入y r 的差异尽可能的小。所以原问

最优化方法试题

《最优化方法》试题 一、 填空题 1.设()f x 是凸集n S R ?上的一阶可微函数,则()f x 是S 上的凸函数的一阶充要条件是( ),当n=2时,该充要条件的几何意义是( ); 2.设()f x 是凸集n R 上的二阶可微函数,则()f x 是n R 上的严格凸函数( )(填‘当’或‘当且仅当’)对任意n x R ∈,2()f x ?是 ( )矩阵; 3.已知规划问题22211212121212min 23..255,0z x x x x x x s t x x x x x x ?=+---?--≥-??--≥-≥?,则在点55(,)66T x =处的可行方向集为( ),下降方向集为( )。 二、选择题 1.给定问题222121212min (2)..00f x x s t x x x x ?=-+??-+≤??-≤?? ,则下列各点属于K-T 点的是( ) A) (0,0)T B) (1,1)T C) 1(,22 T D) 11(,)22T 2.下列函数中属于严格凸函数的是( ) A) 211212()2105f x x x x x x =+-+ B) 23122()(0)f x x x x =-< C) 2 222112313()226f x x x x x x x x =+++- D) 123()346f x x x x =+- 三、求下列问题

()22121212121211min 51022 ..2330420 ,0 f x x x x x s t x x x x x x =+---≤+≤≥ 取初始点()0,5T 。 四、考虑约束优化问题 ()221212min 4..3413f x x x s t x x =++≥ 用两种惩罚函数法求解。 五.用牛顿法求解二次函数 222123123123()()()()f x x x x x x x x x x =-++-++++- 的极小值。初始点011,1,22T x ??= ???。 六、证明题 1.对无约束凸规划问题1min ()2 T T f x x Qx c x =+,设从点n x R ∈出发,沿方向n d R ∈ 作最优一维搜索,得到步长t 和新的点y x td =+ ,试证当1T d Q d = 时, 22[() ()]t f x f y =-。 2.设12*** *3(,,)0T x x x x =>是非线性规划问题()112344423min 23..10f x x x x s t x x x =++++=的最优解,试证*x 也 是非线性规划问题 144423* 123min ..23x x x s t x x x f ++++=的最优解,其中****12323f x x x =++。

最优化原理大作业

基于粒子群算法的神经网络在电液伺服系统中的应用 摘要:由于人工神经网络在解决具有非线性、不确定性等系统的控制问题上具有极大的潜力,因而在控制领域正引起人们的极大关注,并且已在一些响应较慢的过程控制中获得成功应用。由于电液伺服系统属 于非线性系统,因此本文利用神经网络控制电液伺服系统,并利用粒子群优化算法训练该神经网络的 权值。通过对神经网络的优化实现对电液伺服系统的控制。 关键词:神经网络电液伺服系统粒子群算法优化 近年来,由于神经网络具有大规模并行性、冗余性、容错性、本质的非线性及自组织自学习自适应能力,所以已成功地应用于众多领域。但在具有复杂非线性特性的机电设备的实时控制方面,虽然也有一些神经网络技术的应用研究,但距实用仍有一段距离。电液伺服系统就属于这类设备[1]。 神经网路在用于实时控制时,主要是利用了网络所具有的其输人——输出间的非线性映射能力。它实际上是通过学习来逼近控制对象的动、静态特性。也就是构造实际系统的神经网络模型[2]。本文利用神经网络控制一电液伺服系统,并利用粒子群优化算法训练该神经网络的权值,将结果与BP神经网络控制该系统的结果进行比较。从而得在电液伺服系统中引入神经网络是可行的。 1、粒子群算法 粒子群优化算法(Particle Swarm optimization, PSO)是一种进化计算技术, 由Eberhart博士和kennedy博士发明, 源于对鸟群捕食的行为研究, 粒子群优化算法的基本思想是通过群体中个体之间的协作和信息共享来寻找最优解[3]。算法最初受到飞鸟和鱼类集群活动的规律性启发,利用群体智能建立了一个简化模型,用组织社会行为代替了进化算法的自然选择机制,通过种群间个体协作来实现对问题最优解的搜索[4]。 在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置 v[]=v[]+c1*rand()*(pbest[]-present[]) + c2*rand()*(gbest[]-present[]) present[]=persent[]+v[] 式中ω为惯性权重,ω取大值可使算法具有较强的全局搜索能力,ω取小值则算法倾向于局部搜索。一般的做法是将ω初始取0.9并使其随迭代次数的增加而线性递减至0.4,这样就可以先侧重于全局搜索,使搜索空间快速收敛于某一区域,然后采用局部精细搜索以获得高精度的解;c1、c2为两个学习因子,一般取为2;randl和rand2为两个均匀分布在(0,l)之间的随机数;i=1,2,?,m;k=1,2,?,d。另外,粒子在每一维的速度Vi都被一个最大速度Vmax所限制。如果当前粒子的加速度导致它在某一维的速度 超过该维上的最大速度Vmax,则该维的速度被限制为最大速度[5]。 粒子群算法流程如下: (一)初始化粒子群。设群体规模为m,在允许的范围内随机设置粒子的初始位置和速 度。 (二)评价每个粒子的适应值。 (三)调整每一个粒子的位置和速度。 (四)如果达到最大迭代次数genmax或误差达到最初设定数值终止迭代,否则返回(2)。 2、神经网络 神经网络一般由输入层、隐含层、输出层组成。对于输入信号,先向前传播到隐节点,经过节点作用函数后,再把隐节点的输出信息传播到输出节点,最后输出结果。节点的作用函数通常选取S 型函数f(x)=1/(1+e-x)。神经网络算法的学习过程分为正

最优化方法课程设计-斐波那契法分析与实现-完整版(新)

所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。 最优化方法 题目:斐波那契法分析与实现 院系:信息与计算科学学院 专业:统计学 姓名学号:小熊熊 11071050137 指导教师:大胖胖 日期: 2014 年 01 月 10 日

摘要 科学的数学化是当代科学发展的一个主要趋势,最优化理论与算法是一个重要的数学分支,它所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案. 一维搜索是指寻求一元函数在某个区间上的最优点的方法.这类方法不仅有实用价值,而且大量多维最优化方法都依赖于一系列的一维最优化.本文就斐波那契法的一维搜索进行了详细的分析,并且成功的用 MATLAB 实现了斐波那契法求解单峰函数的极小值问题. 斐波那契法的一维搜索过程是建立在一个被称为斐波那契数列的基础上进行的,斐波那契法成功地实现了单峰函数极值范围的缩减.从理论上来说,斐波那契法的精度比黄金分割法要高.但由于斐波那契法要事先知道计算函数值的次数,故相比之下,黄金分割法更为简单一点,它不需要事先知道计算次数,并且当n 7 时,黄金分割法的收敛速率与斐波那契法越来越接近.因此,在实际应用中,常常采用黄金分割法. 斐波那契法也是一种区间收缩算法,和黄金分割法不同的是:黄金分割法每次收缩只改变搜索区间的一个端点,即它是单向收缩法. 而斐波那契法同时改变搜索区间的两个端点,是一种双向收缩法. 关键字:一维搜索斐波那契法单峰函数黄金分割法MATLAB

Abstract Mathematical sciences is a major trend in contemporary scientific development, optimization theory and algorithms is an important branch of mathematics, the problems it was discussed in numerous research programs in the best of what programs and how to find the optimal solution . One-dimensional search is the best method of seeking functions of one variable on the merits of a certain interval. Such methods not only have practical value, but also a large number of multi-dimensional optimization methods rely on a series of one-dimensional optimization article on Fibonacci the one-dimensional search method carried out a detailed analysis, and successful in MATLAB Fibonacci method for solving unimodal function minimization problem. Fibonacci method of one-dimensional search process is based on the Fibonacci sequence is called a Fibonacci conducted on, Fibonacci method successfully achieved a unimodal function extreme range reduction. Theory , Fibonacci method accuracy is higher than the golden section method, but the number of times due to the Fibonacci method to calculate function values to know in advance, so the contrast, the golden section method is more simply, it does not need to know in advance the number of calculations and at that time, the rate of convergence of golden section and the Fibonacci method getting closer, so in practical applications, often using the golden section method. Fibonacci method is also a range contraction algorithm, and the golden section method the difference is: golden section each contraction only one endpoint to change the search range that it is unidirectional shrinkage law Fibonacci search method while changing the two endpoints of the range, is a two-way contraction method. Key words: one-dimensional search Fibonacci method unimodal function Golden Section function MATLAB

北航惯性导航大作业

惯性导航基础课程大作业报告(一)光纤陀螺误差建模与分析 班级:111514 姓名: 学号 2014年5月26日

一.系统误差原理图 二.系统误差的分析 (一)漂移引起的系统误差 1. εx ,εy ,εz 对东向速度误差δVx 的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVx1=e*g*sin(L)/(Ws^2-Wie^2)*(sin(Wie*t)-Wie*sin(Ws*t)/Ws); mcVx2=e*((Ws^2-(Wie^2)*((cos(L))^2))/(Ws^2-Wie^2)*cos(Ws*t)-(Ws^2)*((sin(L))^2)*cos(Wi e*t)/(Ws^2-Wie^2)-(cos(L))^2); mcVx3=(sin(L))*(cos(L))*R*e*((Ws^2)*cos(Wie*t)/(Ws^2-Wie^2)-(Wie^2)*cos(Ws*t)/(Ws^2-Wi e^2)-1); plot(t,[mcVx1',mcVx2',mcVx3']); title('Ex,Ey,Ez 对Vx 的影响'); xlabel('时间t'); ylabel('Vx(t)'); 0,δλδL ,v v δδ

legend('Ex-mcVx1','Ey-mcVx2','Ez-mcVx3'); grid; axis square; 分析:εx,εy,εz对东向速度误差δVx均有地球自转周期的影响,εx,εy还会有舒勒周期分量的影响,其中,εy对δVx的影响较大。 2.εx,εy,εz对东向速度误差δVy的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVy1=e*g*(cos(Wie*t)-cos(Ws*t))/(Ws^2-Wie^2); mcVy2=g*sin(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); mcVy3=g*cos(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); plot(t,[mcVy1',mcVy2',mcVy3']); title('Ex,Ey,Ez对Vy的影响'); xlabel('时间t'); ylabel('Vy(t)'); legend('Ex-mcVy1','Ey-mcVy2','Ez-mcVy3'); grid; axis square;

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{} .:)(m in :)(m ax n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的 严格局部最优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍

属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法 A 为下降算法,则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ . 13 算法迭代时的终止准则(写出三种):_____________________________________。 14 凸规划的全体极小点组成的集合是凸集。 √ 15 函数R R D f n →?:在点k x 沿着迭代方向}0{\n k R d ∈进行精确一维线搜索的步长k α,则其搜索公式

最优化理论与方法论文(DOC)(新)

优化理论与方法

全局及个性化web服务组合可信度的动态规划评估方法 摘要:随着Internet的快速发展,web服务作为一种软件构造形式其应用越来越广泛。单个web服务无法满足日益复杂的用户需求,web服务组合有效地解决了这个问题。然而,随着功能相似的web服务实例的不断出现,如何选择可信的web服务组合成为了人们关注的热点。服务选择依赖于web服务组合的评估结果,因此,本文主要从web服务组合着手,对其可信性进行研究,提供一种可信web服务组合评估方法。:针对web服务组合的全局及个性化问题,提出了基于全局的个性化web服务组合可信评估方法。从全局角度动态地调整评估模型;同时引入用户业务关注度来描述原子web服务对服务组合可信性的影响程度;结合前文的度量及评估方法,构建一个全局的个性化服务组合可信评估模型;并分析了模型的相关应用,给出了改进的动态规划模型。 关键字:web服务组合可信评价;全局个性化;动态规划; 0.引言 随着软件系统规模的日趋复杂,运行环境的不断开放,软件的可信性要求日益增加,可信软件成为了研究的热点。据《中国互联网发展状况统计报告》统计显示,截至2014年12月底,我国网民数量突破8亿,全年新增网民5580万。互联网普及率较上年底提升4个百分点,达到38。3%。因此,随着Internet 的广泛应用和网络技术的快速发展,面向服务的软件体系结构(SOA)作为一种新型的网络化软件应用模式已经被工业界和学术界广为接受。同时,网民对互联网电子商务类应用稳步发展,网络购物、网上支付、网上银行和在线旅游预订等应用的用户规模全面增长。因而,对web服务的可信性要求更高。单个web服务的功能有限,往往难以满足复杂的业务需求,只有通过对已有web服务进行组合,才能真正发挥其潜力。在现有的web服务基础上,通过服务组装或者Mashup方式生成新web服务作为一种新型的软件构造方式,已成为近年的研究热点之一。web服务组合并不是多个原子web服务的简单累加,各原子web服务之间有着较强的联系。因此对web服务组合的可信需求更高。目前大量的研究工作着重于如何实现原子web服务间的有效组合,对服务组合的可信评估研究较少。如今,随着web服务资源快速发展,出现了大量功能相同或相似的web服务,对web服务组合而言,选择可信的web服务变得越来越难。在大量的功能相似的原子web服务中,如何选出一组可信的web服务组合,成为了人们关注的热点问题。本文将从web服务组合着手,对其可信性进行研究,旨在提供一种可信web服务组合评估方法,为web服务组合的选择提供依据。web服务组合的可信度主要包括以下三个部分: 1)基于领域本体的web服务可信度量模型。 2)基于偏好推荐的原子web服务可信评估方法。 3)基于全局的个性化web服务组合可信评估方法。 研究思路: 本文主要研究基于全局的个性化web服务组合的可信评估方法,其研究思路可以大致如下:基于领域本体的web服务可信度和基于偏好推荐的原子web 服务可信评估方法。针对web服务组合的四种基本组合结构模式,主要研究如

(完整版)机械优化设计试卷期末考试及答案

第一、填空题 1.组成优化设计的数学模型的三要素是 设计变量 、目标函数 和 约束条件 。 2.可靠性定量要求的制定,即对定量描述产品可靠性的 参数的选择 及其 指标的确定 。 3.多数产品的故障率随时间的变化规律,都要经过浴盆曲线的 早期故障阶段 、 偶然故障阶段 和 耗损故障阶段 。 4.各种产品的可靠度函数曲线随时间的增加都呈 下降趋势 。 5.建立优化设计数学模型的基本原则是在准确反映 工程实际问题 的基础上力求简洁 。 6.系统的可靠性模型主要包括 串联模型 、 并联模型 、 混联模型 、 储备模型 、 复杂系统模型 等可靠性模型。 7. 函数f(x 1,x 2)=2x 12 +3x 22-4x 1x 2+7在X 0=[2 3]T 点处的梯度为 ,Hession 矩阵为 。 (2.)函数()22121212,45f x x x x x x =+-+在024X ??=????点处的梯度为120-?? ????,海赛矩阵为2442-???? -?? 8.传统机械设计是 确定设计 ;机械可靠性设计则为 概率设计 。 9.串联系统的可靠度将因其组成单元数的增加而 降低 ,且其值要比可靠 度 最低 的那个单元的可靠度还低。 10.与电子产品相比,机械产品的失效主要是 耗损型失效 。 11. 机械可靠性设计 揭示了概率设计的本质。 12. 二元函数在某点处取得极值的充分条件是()00f X ?=必要条件是该点处的海赛矩阵正定。 13.对数正态分布常用于零件的 寿命疲劳强度 等情况。 14.加工尺寸、各种误差、材料的强度、磨损寿命都近似服从 正态分布 。 15.数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 模型求解 两方面的内容。 17.无约束优化问题的关键是 确定搜索方向 。 18.多目标优化问题只有当求得的解是 非劣解 时才有意义,而绝对最优解存在的可能性很小。 19.可靠性设计中的设计变量应具有统计特征,因而认为设计手册中给出的数据

最优化方法大作业答案

武工院你们懂的 1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x

列成表格: 00001216 100114 60105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 0000 1 2 121023 10 40116201002 1 21 211-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 002 1232 30210231 040116201002121211-- ----- 再从底行中选元素-3,和第二列正元素2,迭代一次得 4002 3 03410120280114042001112--- 再迭代一次得

10 23021 062 21023 1010 213 000421 2 10 13- - 选取最优解: 01=x 42=x 23=x 3. 试用DFP 变尺度法求解下列无约束优化问题。 min f (X )=4(x 1-5)2+(x 2-6)2 取初始点X=(8,9)T ,梯度精度ε=0.01。 解:取I H =0,初始点()T X 9,8= 2221)6()5(4)(-+-=x x x f ??????--=?122408)(21x x x f ???? ??=?624)() 0(x f T x f d )6,24()()0()0(--=-?= )0(0)0()1(d x x α+= T )69,248(00αα--= ])669()5248(4min[)(min 2020)0(0)0(--+--?=+αααd x f )6()63(2)24()2458(8) (00)0(0)0(=-?-+-?--=+ααααd d x df 13077.013017 0≈= α ???? ??=???? ??--?+???? ??=21538.886153.462413077.098)1(x

北航数值分析大作业第二题精解

目标:使用带双步位移的QR 分解法求矩阵10*10[]ij A a =的全部特征值,并对其中的每一个实特征值求相应的特征向量。已知:sin(0.50.2)() 1.5cos( 1.2)(){i j i j ij i j i j a +≠+== (i,j=1,2, (10) 算法: 以上是程序运作的逻辑,其中具体的函数的算法,大部分都是数值分析课本上的逻辑,在这里特别写出矩阵A 的实特征值对应的一个特征向量的求法: ()[]()() []()[]()111111I 00000 i n n n B A I gause i n Q A I u Bu u λλ-?-?-=-?-?? ?-=????→=??????→= ?? ? 选主元的消元 检查知无重特征值 由于=0i A I λ- ,因此在经过选主元的高斯消元以后,i A I λ- 即B 的最后一行必然为零,左上方变 为n-1阶单位矩阵[]()()11I n n -?-,右上方变为n-1阶向量[]()11n Q ?-,然后令n u 1=-,则 ()1,2,,1j j u Q j n ==???-。

这样即求出所有A所有实特征值对应的一个特征向量。 #include #include #include #define N 10 #define E 1.0e-12 #define MAX 10000 //以下是符号函数 double sgn(double a) { double z; if(a>E) z=1; else z=-1; return z; } //以下是矩阵的拟三角分解 void nishangsanjiaodiv(double A[N][N]) { int i,j,k; int m=0; double d,c,h,t; double u[N],p[N],q[N],w[N]; for(i=0;i

最优化论文

题目:非线性最小二乘法问题的一种解法--高斯-牛顿法 学生姓名:聂倩云 学号:113113001039 学院:理学院 专业名称:应用数学

非线性最小二乘法问题的一种解法--高斯-牛顿法 目录 前言 (1) 1. 拟牛顿法及相关讨论 (1) 2.牛顿法 (1) 3.拟牛顿法 (2) 3.1DFP公式 (2) 3.2BFGS公式 (4) 3.3限域拟牛顿法 (6) 4.针对二次非凸性函数的若干变形 (6) 参考文献: (7)

非线性最小二乘法问题一种解法--高斯-牛顿法 学生:聂倩云 学号:113113001039 摘 要:非线性最小二乘法问题在工程技术、测绘等各个领域有着非常广泛的应用,我们考虑无约束非线性最小二乘问题的一种常见的解法:高斯-牛顿法。求解无约束优化问题的基本方法是牛顿法,本文从这点出发,介绍此方法步骤,探讨此方法的收敛性,讨论它的收敛速度,并给出高斯-牛顿法的一种修正:阻尼高斯牛顿法。 关键词:非线性最小二乘;高斯-牛顿法;收敛性;收敛速度 前言 非线性最小二乘问题结构特殊,不仅可以用一般的最优化问题求解的方法,还可以对一般的无约束优化问题求解方法进行改造,得到一些特殊的求解方法。而这些方法基本思想就是形成对目标函数的海森矩阵不同的近似。 1.非线性最小二乘法问题概述 非线性最小二乘法模型为 ()()[]()()()22 12 12121m in x r x r x r x r x f T m i i ===∑= 其一阶、二阶导数分别为 ()()()x r x A x g = ()()()()()()()x S x M x r x r x A x A x G m i i i T +=?+=∑=12 其中()()()()()T m x r x r x r x r ,,,21 =称为在点x 处的残向量,()x r i 为非线性函 数,且 ()()()[]x r x r x A m ??=,,1 ,其中()()() T x A x A x M =称为高斯-牛顿 矩阵,为()x G 中的线性项,()x S 为()x G 中的非线性项。 2.高斯-牛顿法 高斯-牛顿法主要思想是省略非线性项()x S 从而形成对海森矩阵的近似。

修订过的最优化方法复习题

《最优化方法》复习题 第一章 引论 一、 判断与填空题 1 )].([arg )(arg m in m ax x f x f n n R x R x -=∈∈ √ 2 {}{}.:)(min :)(max n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题 )(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的严格局部最 优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为单调下降算 法,则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ .

相关文档
最新文档