函数不等式的几种证明方法分析
利用导数证明不等式的四种常用方法

利用导数证明不等式的四种常用方法杨玉新(绍兴文理学院 数学系, 浙江 绍兴 312000)摘 要: 通过举例阐述了用导数证明不等式的四种方法,由此说明了导数在不等式证明中的重要作用. 关键词: 导数; 单调性; 中值定理; 泰勒公式; Jensen 不等式在初等数学中证明不等式的常用方法有比较法、分析法、综合法、放缩法、反证法、数学归纳法和构造法.但是当不等式比较复杂时,用初等的方法证明会比较困难,有时还证不出来.如果用函数的观点去认识不等式,利用导数为工具,那么不等式的证明就会化难为易.本文通过举例阐述利用泰勒公式, 中值定理,函数的性质, Jensen 不等式等四种方法证明不等式,说明了导数在证明不等式中的重要作用.一、利用泰勒公式证明不等式若函数)(x f 在含有0x 的某区间有定义,并且有直到)1(-n 阶的各阶导数,又在点0x 处有n 阶的导数)(0)(x fn ,则有公式)()(!)()(!2)()(!1)()()()(00)(200000x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+=在上述公式中若0)(≤x R n (或0)(≥x R n ),则可得)(00)(200000)(!)()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≥或)(00)(200000)(!)()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≤例1 证明: ).11(,32)1ln(32<<-+-≤+x x x x x 证明 设)11)1ln()(<<-+=x x x f ( 则)(x f 在0=x 处有带有拉格朗日余项三阶泰勒公式)11()1(432)1ln(4432<<-+-+-=+ξξ x x x x x0)1(444≤+-ξx 32)1ln(32x x x x +-≤+∴ 由以上证明可知,用泰勒公式证明不等式,首先构造函数,选取适当的点0x 在0x 处展开,然后判断余项)(x R n 的正负,从而证明不等式.二、利用中值定理证明不等式微分)(Lagrange中值定理: 若)(x f 满足以下条件:(1) )(x f 在闭区间],[b a 内连续 (2) )(x f 在开区间),(b a 上可导则 ab a f b f f b a --='∍∈∃)()()(),(ξξ 例2 若)()(1,011y x py y x y x py p x y p p p p -<-<-><<--则 分析 因为,0x y <<则原不等式等价于11--<--<p p p p px yx y x py)1(>p .令p t x f =)(,则我们容易联想到Lagrange 中值定理yx y f x f y x f --=-)()())(('ξ.证明 设p t t f =)(,显然],[)(x y t f 在满足Lagrange 中值定理的条件则 ,)()()(),(y x y f x f f x y --='∍∈∃ξξ 即yx y x p ppp ---=1ξ111,),(---<<∴<<∴∈p p p px p py x y x y ξξξ )()(11y x py y x y x py p p p p -<-<-∴-- 例3 设)(x f 在],[b a 上连续可导,且,0)()(==b f a f 则dx x f a b x f babx a ⎰-≥≤≤)()(4)(max 2'证明 设)(max 'x f M bx a ≤≤=则由中值公式,当),(b a x ∈时,有))(())(()()(11a x f a x f a f x f -'=-'+=ξξ ))(())(()()(22b x f b x f b f x f -'=-'+=ξξ其中).,(),,(21b x x a ∈∈ξξ由此可得)()()()(x b M x f a x M x f -≤-≤及所以4)()()()()()(22222a b M dx x b M dx a x M dxx f dx x f dx x f b a abb a bab a a bb a -=-+-≤+=⎰⎰⎰⎰⎰++++ 即⎰-≥badx x f a b M )()(42所以 dx x f a b x f babx a ⎰-≥'≤≤)()(4)(max 2积分第二中值定理]1[ 若在区间f ],[b a 上f 为非负的单调递减函数,而g 是可积函数,则存在],[b a ∈ξ,使得⎰⎰=ξabag a f fg )(例4 设⎰+=12sin )(x xdt t x f ,则0>x 时xx f 1)(<特别地:当2003=x 时机为2003年浙江省高等数学竞赛试题(工科、经管类)证明 令u t =,则由积分第二中值定理xudu x udu ux f xx x 1sin 212sin )(2221≤=⎰⎰+ξ =又因为⎰⎰⎰+++-++-⎥⎥⎦⎤⎢⎢⎣⎡++-=222222)1(2322)1(2322)1(cos 41)1cos()1(21cos 21cos 21)1(cos 1212sin )(x x x x x xu udu x x x x u udu x x u u udu ux f = =于是,0>x 时xx x x x duu x x x f x x 1)111(21)1(212141)1(2121)(22)1(23=-+-+++++<⎰+- =由上可见利用中值定理证明不等式,通常是首先构造辅助函数和考虑区间,辅助函数和定义区间的选择要与题设和结论相联系,然后由中值定理写出不等式,从而进行证明.三、利用函数的单调性证明不等式定理1 如果函数)(),(x g x f 满足以下条件:(1) )(),(x g x f 在闭区间],[b a 内连续(2) )(),(x g x f 在开区间),(b a 可导,且有)()(x g x f '>'(或)()(x g x f '<') (3) )()(a g a f =则 在),(b a 内有)()(x g x f >(或)()(x g x f <令)()()(x g x f x F -=由于0)(0)()()()(≤⇔≤-⇔≤x F x g x f x g x f 所以证明)()(x g x f ≤⇔证明0)(≤x F 则相应地有推论1 若)(x f 在],[b a 上连续,在),(b a 内可导,c a f =)(且0)('>x f (或0)('<x f )则在),(b a 内有c x f >)((或c x f <)().例5 证明:当1>x 时,有).2ln(ln )1(ln 2+⋅>+x x x分析 只要把要证的不等式变形为)1ln()2ln(ln )1ln(++>+x x x x ,然后把x 相对固定看作常数,并选取辅助函数xx x f ln )1ln()(+=.则只要证明)(x f 在),0(+∞是单调减函数即可.证明 作辅助函数xx x f ln )1ln()(+=)1(>x 于是有xx x x x x x x x x x x x f 22ln )1()1ln()1(ln ln )1ln(1ln )(+++-=+-+=' 因为 ,11+<<x x 故)1ln(ln 0+<<x x 所以 )1ln()1(ln ++<x x x x因而在),(∞+1内恒有0)('<x f ,所以)(x f 在区间),1(+∞内严格递减.又因为x x +<<11,可知)1()(+>x f x f即)1ln()2ln(ln )1ln(++-+x x x x 所以 ).2ln(ln )1(ln 2+⋅>+x x x例6 证明不等式x x x x <+<-)1ln(22,其中0>x .分析 因为例6中不等式的不等号两边形式不一样,对它作差)2()1ln(2x x x --+,则发现作差以后不容易化简.如果对)1ln(x +求导得x+11,这样就能对它进行比较. 证明 先证 )1ln(22x x x +<-设 )2()1l n ()(2x x x x f --+= )0(>x则 00)01l n ()0(=-+=f xx x x x f +=+-+=1111)(2'0>x 即 0012>>+x x 01)(2>+='∴x x x f ,即在),0(+∞上)(x f 单调递增0)0()(=>∴f x f 2)1ln(2x x x ->+∴ 再证 x x <+)1ln(令 x x x g -+=)1l n ()( 则 0)0(=g 111)(-+='xx g 10<+∴>xx 11x x x g <+∴<'∴)1ln(0)( x x x x <+<-∴)1ln(22定理1将可导函数的不等式)()(x g x f <的证明转化为)()(x g x f '<'的证明,但当)(x f '与)(x g '的大小不容易判定时,则有推论2 设)(x f ,)(x g 在[b a ,]上n 阶可导, (1))()()()(a g a f k k = 1,2,1,0-=n k (2))()()()(x g x f n n > (或)()()()(x g x f n n <)则在(b a ,)内有)()(x g x f > (或)()(x g x f <)例7 证明:331x x tgx +>,)2,0(π∈x .分析 两边函数类型不同,右边多项式次数较高,不易比较,对它求一阶导数得.1)31(,sec )(232x x x x tgx +='+='仍然不易比较,则我们自然就能想到推论2.证明 设tgx x f =)( 331)(x x x g +=则 (1)0)0()0(==g f(2)1)0()0(),1()(),(sec )(22='='+='='g f x x g x x f (3)1)0()0(,2)(,cos sec 2)(2=''=''=''=''g f x x g xxx f(4)2)(),31)(1(2)(22='''++='''x g x tg x tg x f 显然有 )()(x g x f '''>'''由推论2得,231x x tgx+> (20π<<x ).利用函数的单调性证明不等式我们都是先构造函数.然后通过对函数求导,来判定函数的增减性,从而达到证明不等式的目的.四、利用Jensen(琴森)不等式证明不等式定义]1[ 如果),()(b a x f 在内存在二阶导数)("x f 则(1) 若对,.0)(),(>''∈∀x f b a x 有则函数)(x f 在),(b a 内为凸函数.(2) 若对,.0)(),(<''∈∀x f b a x 有则函数)(x f 在),(b a 内为凹函数.若函数),()(b a x f 在内是凸(或凹)函数时,对),(,,,21b a x x x n ∈∀ 及∑==ni i 11λ,有Jensen(琴森)不等式∑∑∑∑====⎪⎭⎫ ⎝⎛≥⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛n i ni i i n i i i i i n i i i x f x f x f x f 1111)()( 或 λλλλ 等号当且仅当n x x x === 21时成立.例8 证明下列不等式),2,1,0(111212121n i a na a a a a a a a a ni nn n n=>+++≤⋅≤+++ .分析 上式只要能证明),2,1,0(2121n i a na a a a a a i nnn =>+++≤⋅ ,如果此题用前面所述的几种方法来证明显然不合适,因为对它求导后不等式会更复杂.而这里的i a 可以看作是同一函数的多个不同函数值,设x x f ln )(=那么就可以用Jensen 不等式来证明它.然后只要令xx f 1ln)(=,同理可得n n na a a a a a n 2121111⋅≤+++.证明 令)0(ln )(>=x x x f 因为 01)(2<-=''xx f ,所以),0()(+∞在x f 是凹函数 则对),0(,,,21+∞∈∀na a a 有[])()()(1)(12121n n a f a f a f na a a n f +++≥⎥⎦⎤⎢⎣⎡+++ 即 []n n a a a na a a n ln ln ln 1)(1ln 2121+++≥⎥⎦⎤⎢⎣⎡+++ 又因为[]n n n a a a a a a n2121ln ln ln ln 1⋅=+++ 所以 na a a a a a nnn +++≤⋅ 2121令 xx f 1ln)(=, 则同理可得n n na a a a a a n 2121111⋅≤+++所以),2,1,0(111212121n i a n a a a a a a a a a ni nnn n=>+++≤⋅≤+++ 例9 设)(x f 二次可微,且对一切x ,有0)(≥''x f ,而)(t u 在],0[a 上连续,则⎰⎰≥a adt t u af dt t u f a 00])(1[)]([1 分析 上述不等式在形式上很像Jensen 不等式,且当t 取不同的值时,)]([t u f 就是同一函数的不同函数值,则可以用琴森不等式进行证明.证明 由)(x f 及)(t u 的连续性,保证了可积性.并且∑⎰-=∞→=100)]([1lim )]([1n K n a n Ka u f n dt t u f a ⎰∑-=∞→=a n K n n Ka u n dt t u a 010)(1lim )(1 因0)(≥''x f ,故)(x f 为凸函数,在Jensen 不等式)()()(112211n n n n x f q x f q x q x q x q f ++≤+++ )1,,,(2121=+++n n q q q q q q 均为正,且中,取) ( n i nq a n i u x i i ,3,2,11),1(==-= 即得∑∑-=-=≤1010)]([1])(1[n K n K nKa u f n n Ka u n f 由)(x f 的连续性,在上式取∞→n 即得所要证的结论.由以上证明可知应用Jensen 不等式证明不等式,首先是构造适当的函数并判断它的凹凸性,然后用Jensen 不等式证明之.本文所述四种用导数证明不等式的四种方法充分说明了导数在不等式证明中的独到之处.在证明不等式时,应用导数等知识往往能使复杂问题简单化,从而达到事半功倍的效果.需要指出的是利用导数证明不等式,除上述四种方法外还有不少方法.如用极值、最值等来证明不等式.由于受篇幅之限,这里不再详述.参考文献[1] 华东师范大学数学系,数学分析[M]第三版,北京:高等教育出版社,2001. [2] 裘单明等,研究生入学考试指导,数学分析[M],济南:山东科学技术出版社,1985.[3] 胡雁军,李育生,邓聚成,数学分析中的证题方法与难题选解[M],开封:河南大学出版社,1987.Four Usual Methods to Prove Tthe Inequality by UsingDerivativeYang Yuxin(Department of Mathematics Shaoxing College of Arts and Sciences, Shaoxing Zhejiang,312000) Abstract:Examplisies four methods to prove the Inequality by using Derivative to show the imporpance of using derivative to crove the inequalityKey words:Derivative; Monotonicity; Theorem of mean; Taylor formula; Jensen Inequality。
不等式的常见证明方法

不等式常见的三种证明方法渠县中学 刘业毅一用基本不等式证明设c b a ,,都是正数。
求证:.c b a cab b ac a bc ++≥++ 证明:.22c bac a bc b ac a bc =•≥+ .22b cab a bc c ab a bc =•≥+ .22a cab b ac c ab b ac =•≥+ ).(2)(2c b a cab b ac a bc ++≥++ .c b a cab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。
思维训练:设c b a ,,都是正数。
求证:.222c b a c b a a c b ++≥++ 二 放缩法证明不等式已知,对于任意的n 为正整数,求证: 1+221+321+ +n 21<47 分析:通过变形将数列{n 21}放缩为可求数列。
解: n 21=n n •1<)1(1-n n =11-n —n1(n ≥2) ∴1+221+321+ +n 21<1+221+231⨯+341⨯+ +)1(1-n n =1+41+(21—31+31—41+ +11-n —n1) =45+21—n1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。
思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>cc +1三 构造函数法证明 证明不等式3ln 3121112ln <+++++<nn n (n 为正整数) 分析:显然要构造一个含n 的不等式,然后用叠加法证明。
我们构造一个函数,1)(',ln 1)(2xx x f x x x x f -=+-=可得这个函数在x=1时取得最小值0.及对x>0有不等式x x 11ln -≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则kk k ->+11ln ,即kk k k 1ln )1ln(11<-+<+,然后叠加不等式即可。
构造函数法证明泰勒展开不等式的八种方法

构造函数法证明泰勒展开不等式的八种方
法
泰勒展开定理是微积分中一个非常重要的定理,它可以将一个函数在某一点附近展开为无穷的多项式和。
在实际应用中,我们经常需要保留部分项,将函数近似表示,而泰勒展开就可以很好地满足我们的需求。
本文将介绍泰勒展开不等式的八种证明方法,其中均使用了构造函数的方法。
1. 利用 $(1+x)^n$ 的二项式展开式证明。
2. 利用 $e^x$ 的泰勒展开式证明。
3. 利用 $\ln (1+x)$ 的泰勒展开式证明。
4. 利用 $\int_0^x \cos t^2 dt$ 的收敛性证明。
5. 利用 $\int_0^x e^{-t^2} dt$ 的平方证明。
6. 利用 $\tan^{-1} x$ 和 $\tanh^{-1} x$ 的泰勒展开式证明。
7. 利用 $\sin x$ 和 $\cos x$ 的泰勒展开式证明。
8. 利用 $\int_0^1 x^p (1-x)^q dx$ 的收敛性证明。
这八种证明方法各有不同的特点和难度,涉及到的数学知识也
各有侧重。
但它们都使用了构造函数的方法,通过寻找适当的函数,将展开式转化为极限形式或积分形式,然后进一步证明不等式的成立。
总之,泰勒展开定理和泰勒展开不等式是数学中非常重要的工具,它们不仅有着重要的理论价值,在工程和自然科学中也有着广
泛的应用。
导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数是微积分中的一个重要概念。
它可以描述函数在各个点上的变化率,也可以用来求函数的最大值、最小值以及拐点等重要信息。
而构造函数则是数学中一种非常常见的证明不等式的方法。
本文将介绍一些常用的导数和构造函数证明不等式的技巧。
一、使用导数证明不等式1. 求导数确定函数的单调性对于一个函数$f(x)$,如果它在某个区间上的导数$f'(x)$大于0,说明它在该区间上单调递增;如果导数$f'(x)$小于0,则说明它在该区间上单调递减。
因此,如果要证明一个不等式在某个区间上成立,可以先求出函数在该区间上的导数,确定其单调性,然后再比较函数在两个端点处的取值即可。
例如,对于函数$f(x)=x^2-4x+3$,我们可以求出它的导数为$f'(x)=2x-4$。
由于$f'(x)>0$时$f(x)$单调递增,因此当$x<2$时,$f(x)<f(2)$,当$x>2$时,$f(x)>f(2)$,即$f(x)$在$x<2$和$x>2$的区间上都小于$f(2)$,因此我们可以得到不等式$f(x)<f(2)$,即$x^2-4x+3<1$。
2. 求导数判断函数的最值对于一个函数$f(x)$,如果它在某个点$x_0$处的导数$f'(x_0)=0$,且$f^{''}(x_0)>0$(即$f(x)$的二阶导数大于0)则$f(x)$在$x_0$处取得一个局部最小值;如果$f^{''}(x_0)<0$,则$f(x)$在$x_0$处取得一个局部最大值。
因此,如果要证明一个不等式最值的存在性,可以先求出函数的导数,再找出导数为0的点即可。
3. 构造特殊的函数如果一个不等式的两边都是多项式,可以考虑构造一个较为特殊的函数,来证明不等式的成立性。
例如,对于不等式$\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\leq\dfrac{3}{2\sqrt[3]{abc}}$,我们可以考虑构造一个函数$f(x)=\dfrac{1}{a+b+x}+\dfrac{1}{b+c+x}+\dfrac{1}{c+a+x}-\dfrac{3}{2\sqrt[3]{(a+x)(b+x)(c+x)}}$,并证明$f(x)\leq 0$。
证明不等式的基本方法

x2
例7(1)设
y2
1, 求x
y的最大值,
16 9
并求此时的x, y值。 三角换元
(2)设 x, y R,且 x2 y 2 1,
求证:| x2 2xy y 2 | 2 ;
(1)设 x r sin, y r cos,且 | r | 1
证明:∵ a, b 是正数,且 a b , ∴要证 aabb abba ,只要证 lg (aabb ) lg(abba ) ,
只要证 a lg a b lgb b lg a a lgb .
(a lg a b lg b) (b lg a a lg b) = (a b)(lg a lg b)
= (a2 b2 )(a b) = (a b)(a b)2
∵ a,b 是正数,且 a b ,∴ a b 0, (a b)2 >0
∴ (a3 b3 ) (a2b ab2 ) >0,∴ a3 b3 a2b ab2
注:比较法是证明不等式的基本方法,也是 最重要的方法,另外,有时还可作商比较.
当且仅当(a b)(b c)≥0 时,等号成立.
四.反证法:
假设命题结论的反面成立,经过正确的推理, 引出矛盾,因此说明假设错误,从而证明原命题 成立,这样的证明方法叫反证法.(正难则反)
例、已知 f (x) x2 px q,求证:
1
| f (1) |,| f (2) |,| f (3) |中至少有一个不小于2 。
求证:已知a, b, c R+,求证 :书P25页2(2)
不等式的证明(一)

若x为锐角,则
sin x<x<tanx
sin x<tanx sin x>tanx
线性规划简述
1.含义:简言之,图象法解二元不等式 2.步骤:一面二线三找点 来先去后为最值
解析几何的基础
形
数
点
坐标
线
方程
面
不等式
二元不等式与平面域
1.直线对坐标平面的划分 (二元一次不等式表示平面域)
直线 Ax By C 0 ,将坐标平面划分成两个半平面 Ax By C 0和 Ax By C 0 ,位于同一半平面内的点 其坐标必适合同一个不等式 (同侧同号,异侧异号)
b
不妨设a b 0,则 a 1, a b 0 b
故
a
ab
1,当且仅当a
b时, 等号成立
b
所以,原不等式成立
作业:
1.课本P: 75 B组 Ex1①② 2.(2010年湖北)设 a>0,b>0,称a2abb 为a,b的调和平均数
(2)三角混合不等式: 若 0<x< ,则 sinx<x<tanx
2
法1:如图,易得
y=x y = tanx
y = sinx
(2)三角混合不等式: 若 0<x< ,则 sinx<x<tanx
2
法2:如图单位圆O中,角x的终边为OT,易得
S⊿APO<S扇形APO<S⊿ATO
而 S⊿APO= AO • PM sin x
注1.若2个不等式需进行减(除)运算,一般是转换成加(乘)
注2.若变量间具有约束关系时,等号没有可加(乘)性
3.重要的(经典)不等式
⑩ □2+○2≥±2□○ 当且仅当○=□时等号成立
11 均值不等式: 若□,○∈R+,则
证明函数不等式的六种方法
证明 对 lnx 在 1 与 x 之间用微分中值定理, 有
ln x x- 1
=
lnx x-
ln1 1
=
( ln x )c | x = N =
1N。
其中, 1 < N< x 或 x < N< 1。
所以, 总有 0 <
e - 2 是唯一驻点, 且 f c 在这点由正变负, x = e -
2 是极大点也是最大点, 故 f ( x ) 在[ 0, e- 1] 上的
收稿日期: 2004-07-08
50
北京 印刷学院学 报
2004 年
最小值必在端点取得: f min( x ) = f ( 0) = f ( e - 1) = 0。
利用泰勒公式证明函数不等式, 主要有两步:
( 1) 找一个函数 f ( x ) , 选一个展开点 x 0, 然后 写出 f ( x ) 在 x 0 处的带有拉格朗日余项的泰勒公 式;
( 2) 对 N I ( a, b) 进行放缩。 例 7 设函数 f ( x ) 在[ 0, 1] 上具有二阶导数,
且满足条件
( 上接第 31 页) 参考文献:
[ 1] X u X iuhua, Xie Xukai. Eigenst ructure A ssignment by Out put Feedback in Dexcript or Syst ems[ J] . JM A Journal of M at hemat ical Cont rol & Inf ormation; 1995, 12: 127~ 132. [ 2] 徐秀花, 王艺霏. 广义线性系统的特征值配置[ J] . 北京印刷学院学报, 1999, 7( 3) : 36~ 40. [ 3] 甘特马赫尔#柯召. 矩阵论[ M ] . 北京: 高等教育出版社, 1955.
证明不等式的几种常用方法
证明不等式的几种常用方法证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用.一、反证法如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理.反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的.用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效.例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确.反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④由不等式③得(a +b)cd <ab(c +d)≤(2b a )2·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d),综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-32ab ,显然矛盾.∴不等式①、②、③中至少有一个不正确.例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c>0.证明:反证法由abc >0知a ≠0,假设a <0,则bc <0,又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0,从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾.∴假设不成立,从而a >0,同理可证b >0,c >0.例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2.故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 p +q >0,∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.故假设p +q >2不成立,∴p +q ≤2.例4 已知)(x f = x 2+ax +b ,其中a 、b 是与x 无关的常数,求证:|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法一:假设|)1(f |<21,|)2(f |<21,|)3(f |<21, 由于)1(f = 1+a +b ,)2(f = 4+2a +b ,)3(f = 9+3a +b ,∴)1(f +)3(f -)2(f =2,但是,2 = |)1(f +)3(f -)2(f |≤|)1(f |+|)3(f |+2|)2(f |<21+21+2×21= 2, 即2<2,矛盾,∴假设不成立,∴|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法二:假设|)1(f |<21,|)2(f |<21,|)3(f |<21,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<.21|)3(|,21|)2(|,21|)1(|f f f ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<++<-<++<-<++<-③b a ②b a ①b a .219321,214221,21121 ①+③得:-1<4a +2b +10<1,即-21<2a +b +5<21, ∴-23<2a +b +4<-21,④ 显然②与④矛盾,因此,假设是不成立的, 故|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 例4 设a ,b ,c 均为小于1的正数,求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于41. 证明:反证法假设(1-a)b ,(1-b)c ,(1-c)a 同时大于41,即(1-a)b >41,(1-b)c >41,(1-c)a >41, 则由41<(1-a)b ≤(21b a +-)2⇒21b a +->21, 同理:21c b +->21,21a c +->21, 三个同向不等式两边分别相加,得23>23,矛盾,所以假设不成立, ∴原结论成立.例6 若0<a <2,0<b <2,0<c <2,求证:(2-a)b ,(2-b)c ,(2-c)a不能同时大于1.证明:反证法假设⎪⎩⎪⎨⎧>->->-.1)2(,1)2(,1)2(a c c b b a 那么2)2(b a +-≥b a )2(->1,① 同理2)2(c b +->1,② 2)2(a c +->1,③ ①+②+③,得3>3矛盾,即假设不成立,故(2-a)b ,(2-b)c ,(2-c)a 不能同时大于1.二、三角换元法对于条件不等式的证明问题,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑用三角代换,将复杂的代数问题转化为三角问题.若变量字母x 的取值围与sin θ或cos θ的变化围相同,故可采用三角换元,把所要证的不等式转换为求三角函数的值域而获证.一般地,题设中有形如x 2+y 2≤r 2,22a x +22b y = 1或22a x -22b y = 1的条件可以分别引入三角代换⎩⎨⎧==θθsin cos r y r x (| r |≤1),⎩⎨⎧==θθsin cos b y a x 或⎩⎨⎧==θθtan sec b y a x ,其中θ的取值围取决于x ,y 的取值围,凡不能用重要不等式证明的问题时,一般可以优先考虑换元(代数换元或三角换元),然后利用函数的单调性最终把问题解决.在三角换元中,由于已知条件的限制作用,根据问题需要,可能对引入的角度有一定的限制,应特别引起注意,否则可能会出现错误的结果.例2 已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2), ∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3, ∴ 21≤x 2-xy +y 2≤3. 例2 已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan21)|≤r 5≤10.例3 已知-1≤x ≤1,n ≥2且n ∈N ,求证:(1-x)n +(1+x)n ≤2n . 证明:∵-1≤x ≤1,设x = cos θ2 (0≤θ≤2π), 则1-x =1-cos θ2= 1-(1-2sin 2θ) = 2sin 2θ,1+x =1+cos θ2= 2cos 2θ,∴(1-x)n +(1+x)n = 2n sin n 2θ+2n cos n 2θ≤2n ( sin 2θ+cos 2θ) =2n ,故不等式(1-x)n +(1+x)n ≤2n 成立.例4 求证:-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π), ∵-4π≤θ-4π≤43π, ∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 三、增量代换法 在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.例7 已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225. ∴(a +2)2+(b +2)2≥225. 例8 已知a 1+a 2+…+a n = 1,求证:21a +22a +…+2n a ≥n1. 证明:设a 1= t 1+n 1,a 2= t 2+n 1,…,a n = t n +n1,其中t 1+t 2+…+t n = 0,则21a +22a +…+2n a = (t 1+n 1)2+(t 2+n 1)2+…+(t n +n 1)2= n ·21n+2×n 1( t 1+t 2+…+t n )+…+21t +22t +…+2n t =n 1+21t +22t +…+2n t ≥n 1. 四、放缩法放缩法是在顺推法逻辑推理过程中,有时利用不等式的传递性,作适当的放大或缩小,证明不原不等式更强的不等式来代替原不等式的证明.这种证题方法的实质是非等价转化,而它的证题方法没有一定的准则和程序,需按题意适当..放缩,否则是达不到目的.利用放缩法证明不等式,要根据不等式两端的特征及已知条件,采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母、把和式中的某些项换以较大或较小的数,从而达到证明不等式的目的.此类证法要慎审地采取措施,进行恰当地放缩,任何不适宜的放缩(放的过大或过小)都会导致推证的失败.例5 设n 为自然数,求证:91+251+…+2)12(1+n <41. 证明:∵2)12(1+k =14412++k k <k k 4412+=41(k1-11+k ), ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. 例5 已知a n =21⨯+32⨯+…+)1(+n n ,其中n 为自然数, 求证:21n(n +1)<a n <21(n +1)2. 证明:∵)1(+k k <21++k k =212+k 对任意自然数k 都成立, ∴a n =21⨯+32⨯+…+)1(+n n <23+25+27+…+212+n =21[3+5+7+…+(2n +1)] =21(n +2n)<21(n +2n +1) =21(n +1)2. 又)1(+k k >2k = k ,∴a n =21⨯+32⨯+…+)1(+n n >1+2+3+…+n =21n(n +1), ∴21n(n +1)<a n <21(n +1)2. 评析:根据要证不等式的结构特征,应用均值不等式“放大”a n 为一个等差数列的和,求和后再添加一个数1,直到“放大”到要证的右边;而左边是通过“缩小”a n 的方法去根号而转化为等差数列的和.放大或缩小的技巧很多,如添项、减项、分子、分母加或减一个数,或利用函数的单调性、有界性等等,但要注意放缩要适度.11.设a 、b 为不相等的两正数,且a 3-b 3= a 2-b 2,求证:1<a + b <34. 证明:由题意得a 2+ab +b 2= a + b ,于是(a +b)2= a 2+2ab +b 2>a 2+ab +b 2= a + b ,故a + b >1,又(a +b)2>4ab ,而(a +b)2= a 2+2ab +b 2= a +b +ab <a +b +4)(2b a +, 即43(a +b)2<a +b ,解得a + b <34. ∴1<a + b <34. 例12 已知a 、b 、c 、d 都是正数,求证:1<c b a b +++d c b c +++a d c d +++ba d a ++<2. 证明:∵d cb a b +++<c b a b ++<ba b +, d c b a c +++<d c b c ++<dc c +,d c b a d +++<a d c d ++<dc d +, d c b a a +++<b a d a ++<ba a +, 将上述四个同向不等式两边分别相加,得:1<c b a b +++d c b c +++a d c d +++ba d a ++<2.。
专题五-利用导数证明不等式--教案
专题五 利用导数证明不等式一、用函数的单调性证明不等式:我们知道函数在某个区间上的导数值大于(或小于)0时,则该函数在该区间上单调递增(或递减).因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的.即把证明不等式转化为证明函数的单调性.一般方法:构造辅助函数→判定单调性→得所证不等式.基本依据:若()f x 在(,)a b 内单增⇒()()()f a f x f b <<;若()f x 在(,)a b 内单减⇒()()()f b f x f a <<.具体有如下几种形式:1.由欲证形式直接构造构造“形似”函数,然后用导数证明该函数的增减性;再利用函数在它的同一单调递增(减)区间,自变量越大,函数值越大(小),来证明不等式成立.【例1】当0x >时,求证;2ln(1)02x x x --+<. 证明:设2()ln(1) (0)2x f x x x x =--+≥,则2()1x f x x '=-+. ∵0x >,∴()0f x '<,故()f x 在[0,)+∞上递减,∴0x >时,()(0)0f x f <=,即2ln(1)02x x x --+<成立. 【针对练习1】求证:当(1,)x ∈+∞时,3221ln 032x x x -->. 证明:设3221()ln 32F x x x x =--,[1,)x ∈+∞,则221(1)(21)()2x x x F x x x x x-++'=--=. 当1>x 时,()0F x '>,从而)(x F 在(1,)+∞上为增函数, ∴1()(1)06F x F >=>,∴3221ln 032x x x -->. 2.由欲证形式做恒等变形作差或作商,变成初等函数四则运算的形式,若变量没有x ,将其中一个常数改为x ),则另一端即为所求作的辅助函数()F x ,然后利用导数证明该函数的单调性,达到证明不等 式的目的.【例2】求证:当),0(+∞∈x 时,2ln(1)2(1)x x x x +<-+. 证明:令2()ln(1)2(1)x f x x x x =--++,补充定义(0)0f =,则 2222244212()104(1)14(1)x x x x f x x x x +-'=--=>+++, ∴()f x 在[0,)+∞上单调递增,∴在(0,)+∞上()(0)0f x f >=, ∴2ln(1)2(1)x x x x +<-+. 点评:一般的,用导数证明不等式时要注意所构造的函数在区间端点处是否连续,即是否要补充函数在端点处的定义;另外要注意用到一个结论:设函数()f x 在区间[,)a +∞上连续,在区间(,)a +∞内可 导,且()0f x '>,又()0f a ≥,则x a >时,()0f x >.【针对练习2】求证:当(0,)x π∈时,sin x x <.证明:令()sin f x x x =-,补充定义(0)0f =,则()cos 10f x x '=-<,∴()f x 在(0,)π上单调递减,∴在(0,)π上()(0)0f x f <=,∴sin x x <.【例3】当)1,0(∈x 时,证明:22(1)ln (1)x x x ++<.证明:令22()(1)ln (1)f x x x x =++-,则(0)0f =,而2()ln (1)2ln(1)2f x x x x '=+++-,(0)0f '=,当(0,1)x ∈时,ln(1)22()22[ln(1)]0111x f x x x x x x+''=+-=+-<+++, ∴()f x '在(0,1)x ∈上递减,即()(0)0f x f ''<=,从而()f x 在(0,1)递减, ∴()(0)0f x f <=,22(1)ln (1)x x x ++<.【针对练习3】求证:当),0(+∞∈x 时,2112x e x x ->+. 证明:设21()1 (0)2x f x e x x x =---≥,则()1x f x e x '=--,()1x f x e ''=-. 当0x ≥时,()0f x ''≥,∴()f x '在[0,)+∞上单调递增,()(0)0f x f ''≥=,∴()f x 在[0,)+∞上单调递增,()(0)0f x f ≥=,∴2112x e x x ->+. 【例4】求证:当0x π<<时,sin 2x x π>. 证明:若令()sin 2x x f x π=-,证明过程比较麻烦,我们可令sin 2()x f x x=, 则221cos sin cos 2222()(tan )022x x x x x x f x x x ⋅-'==-<, ∵0x π<<,∴022x π<<,则tan 22x x <,∴()0f x '<,即()f x 在(0,)π上单减, 故1()()f x f ππ>=,即sin 2x x π>. 【例5】求证:当b a e >>时,b a a b >.(常数不等式一般化为函数不等式证明) 分析:ln ln ln ln b a a b a b b a a b a b >⇔>⇔>,可令ln () ()x f x x e x=>,证()f x 单减; 或者ln ln b a a b b a a b >⇔>,证ln ln ()x a a x x a >>,可令()ln ln ()f x x a a x x a =->,证()0f x >.证法一:令ln () ()x f x x e x =>,则21ln ()0x f x x -'=<,∴()f x 在(,)e +∞单减, 又b a e >>,∴ln ln a b a b>,即b a a b >. 证法二:令()ln ln ()f x x a a x x a e =->>,则()ln 0a f x a x'=->, ∵ln 1a >,1a x<,∴()f x 在(,)a +∞单增, ∴()()0f x f a >=,ln ln ()x a a x x a >>,特别地令x b =,得ln ln b a a b >,即b a a b >.【针对练习4】证明:当1x >时,2ln (1)ln ln(2)x x x +>+.证明:设ln(1)() (1)ln x f x x x+=>,则22ln ln(1)ln (1)ln(1)1()ln (1)ln x x x x x x x x f x x x x x +--+++'==+. 由于11x x <<+,∴0ln ln(1)x x <<+,故ln (1)ln(1)x x x x -++,∴在(1,)+∞内()0f x '<,∴()f x 在(1,)+∞单减,即ln(1)ln(2)ln ln(1)x x x x ++>+, 从而2ln (1)ln ln(2)x x x +>+.3.通过换元后作差构造函数证明不等式. 【例6】(07山东)证明:对任意的正整数n ,不等式23111ln(1)n n n +>-都成立. 分析:本题是山东卷的第(2)问,从所证结构出发,只需令x n=1,则问题转化为:当0>x 时,恒有 23ln(1)x x x +>-成立,现构造函数32()ln(1)h x x x x =-++,求导即可达到证明.证明:令32()ln(1)h x x x x =-++,则32213(1)()3211x x h x x x x x +-'=-+=++在),0(+∞∈x 上恒正, ∴函数()h x 在(0,)+∞上单调递增,∴(0,)x ∈+∞时,恒有()(0)0h x h >=,即32ln(1)0x x x -++>,∴23ln(1)x x x +>-.对任意正整数n ,取1(0,)x n =∈+∞,则有23111ln(1)n n n+>-. 【针对练习5】若(0,)x ∈+∞,求证:111ln 1x x x x+<<+. 证明:令11t x +=,∵0x >,∴1t >,11x t =-. 则原不等式11ln 1t t t ⇔-<<-,令()1ln f t t t =--([1,))t ∈+∞,∴1()1f t t'>-. ∵[1,)t ∈+∞,∴()0f t '≥,∴()f t 在[1,)+∞上为增函数.()(1)0f t f >=,∴1ln t t ->. 令1()ln 1g t t t =-+([1,))t ∈+∞,∴22111()t g t t t t-'=-=, ∵[1,)t ∈+∞,∴()0g t '≥,∴()g t 在[1,)+∞上为增函数.()(1)0g t g >=,∴1ln 1t t >-,∴111ln 1x x x x+<<+. 点评:(1)代换作用:此题设代换11t x=+,0x <<+∞实际上就是把原来取不到的0x =值代换为可取 到的1t =,把原来要研究函数在x →+∞处的值,等价为研究函数在1t =处的值;(2)若令1t x =,则11ln(1)x x +<,即为本题的特例,想一想11ln 1x x x +<+如何证? 4.利用导数求出函数的最值(或值域)后,再证明不等式.【例7】求证:当n N *∈,3n ≥时,221nn >+.证明:要证原式,即需证:2210n n -->,对3n ≥时成立.设()22 1 (3)x f x x x =--≥,则()2ln2 2 (3)x f x x '=-≥,∵3x ≥,∴3()2ln 22f x '≥->,∴()f x 在[3,)+∞上是增函数,∴()f x 的最小值为3(3)26110f =--=>,()0 (3)f x x >≥. ∴,n N *∈,3n ≥时,221n n >+.【针对练习6】当0x >,01a <<时,证明:1a x ax a -≤-.证明:设() 1 (0)a f x x ax a x =-+->,则11()(1)a a f x ax a a x--'=-=-.令()0f x '=,得1x =.当(0,1)x ∈时,()0f x '>,当(1,)x ∈+∞时,()0f x '<,即)(x g 在(0,1)上为增函数,在(1,)+∞上为减函数.故函数()f x 在(0,)+∞上的最大值为max ()(1)0f x f ==,即()(1)0f x f ≤=,∴10a x ax a -+-≤,即1a x ax a -≤-.【例8】(07安徽)已知定义在正实数集上的函数21()22f x x ax =+,2()3ln g x a x b =+,其中0a >, 且2253ln 2b a a a =-,求证:()()f x g x ≥. 证明:设221()()()23ln 2F x g x f x x ax a x b =-=+--,则23()(3)()2a x a x a F x x a x x-+'=+-=, ∵0x >,0a >,∴当x a =时,()0F x '=,故()F x 在(0,)a 上为减函数,在(,)a +∞上为增函数,于是函数()F x 在(0,)+∞上的最小值是()()()0F a f a g a =-=,故当0x >时,有()()0f x g x -≥,即()()f x g x ≥.【针对练习7】已知函数()ln(1)f x x x =+-,求证:当1x >-时,恒有11ln(1)1x x x -≤+≤+. 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数1()ln(1)11g x x x =++-+,从其 导数入手即可证明. 证明:1()111x f x x x '=-=-++. ∴当10x -<<时,()0f x '>,即()f x 在(1,0)-上为增函数;当0>x 时,()0f x '<,即()f x 在(0,)+∞上为减函数.于是函数()f x 在(1,)-+∞上的最大值为max ()(0)0f x f ==,因此,当1x >-时,()(0)0f x f ≤=,即ln(1)0x x +-≤,∴ln(1)x x +≤. 令1()ln(1)11g x x x =++-+,则2211()1(1)(1)x g x x x x '=-=+++. 当(1,0)x ∈-时,()0g x '<,当(0,)x ∈+∞时,()0g x '>,即)(x g 在(1,0)-上为减函数,在(0,)+∞上为增函数.故函数)(x g 在(1,)-+∞上的最小值为min ()(0)0g x g ==,∴当1x >-时,()(0)0g x g ≥=,即1ln(1)101x x ++-≥+,∴111)1ln(+-≥+x x . 综上可知,当1x >-时,有11ln(1)1x x x -≤+≤+. 【例9】已知31()3f x x x =-,1x ,2[1,1]x ∈-时,求证:12|()()|f x f x -43≤. 证明:∵2()1f x x '=-,[1,1]x ∈-时,()0f x '≤,∴()f x 在[1,1]-上递减,故()f x 在[1,1]-上的最大值为2(1)3f -=,最小值为2(1)3f =-, 即()f x 在[1,1]-上的值域为22[,]33-. ∴1x ,2[1,1]x ∈-时,1|()|f x 23≤,2|()|f x 23≤, 即有12|()()|f x f x -≤12|()||()|f x f x +224333≤+=. 【针对练习8】证明:若1p >,对于[0,1]中的任意x 都有11(1)12p p p x x -≤+-≤.证明:()(1) (01)p p f x x x x =+-≤≤,则1111()(1)[(1)]p p p p f x px p x p x x ----'=--=--,令()0f x '=,则11(1)p p x x --=-,即1x x =-,解得12x =. 当1(,1]2x ∈时,()0f x '>,当1[0,)2x ∈时,()0f x '<,∴()f x 在1[0,)2递减;()f x 在1(,1]2递增.∴()f x 的最小值为111111()()()2()22222p p p p f -=+==, 又(1)1f =,(0)1f =,∴()f x 的最大值为1,即[0,1]x ∈时,11()12p f x -≤≤, 故11(1)12p p p x x -≤+-≤. 二、用中值定理证明不等式: 1.利用拉格朗日中值定理:若()f x 满足以下条件:(1))(x f 在闭区间],[b a 内连续;(2))(x f 在开区间),(b a 上可导,则在(,)a b 内至少存在一点ξ,使得()()()f b f a f b aξ-'=-. 一般方法:构造辅助函数→据拉格朗日中值定理得等式→由ξ的范围确定()f ξ'范围得所证不等式.【例1】证明不等式:ln b a b b a b a a--<<(0)a b <<. 分析:把不等式可以改写成11()ln ln ()b a b a b a b a-<-<-,可见中项是函数ln x 在区间[,]a b 两端值之 差,而()b a -是该区间的长度,于是可对ln x 在[,]a b 上使用拉格朗日中值定理.证明:设()ln f x x =,则1()f x x'=.在区间[,]a b 上满足拉格朗日中值定理的条件, 故在(,)a b 上存在ξ,使得()()1()f b f a f b a ξξ-'==-,即ln ln 1b a b a ξ-=-. 又因111b aξ<<,于是有1ln ln 1b a b b a a -<<-,即ln b a b b a b a a --<<. 【针对练习1】设0a b <<,证明:22ln ln 2b a a b a a b ->-+. 证明:设()ln f x x =,则1()f x x'=.在区间[,]a b 上满足拉格朗日中值定理的条件, 故在(,)a b 上存在ξ,使得()()1()f b f a f b a ξξ-'==-,即ln ln 1b a b a ξ-=-. ∵222a b ab +≥,∴2212a b a b ≥+,又因11b ξ<,于是有22ln ln 2b a a b a a b ->-+. 【针对练习2】设2e a b e <<<,证明:2224ln ln ()b a b a e->-. 证明:令2()ln f x x =,则2ln ()x f x x'=.在区间[,]a b 上满足拉格朗日中值定理的条件, 故在(,)a b 上存在ξ,使得()()2ln ()f b f a f b a ξξξ-'==-,即22ln ln ln 2b a b a ξξ-=⋅-,2(,)(,)a b e e ξ∈⊂. 再令ln ()x g x x=2()e x e <<,1ln ()0x g x x -'=<, ∴()g x 单调递减,222()()g g e e ξ>=,从而2ln 42eξξ⋅>, ∴原不等式2224ln ln ()b a b a e->-成立. 说明:也可令2224()ln ln ()f x x a x a e=---,2()e a x e <<<,证()0f x >. 【例2】若0y x <<,1p >,则11()()p p p p py x y x y py x y ---<-<-.分析:∵0y x <<,则原不等式等价于11p pp p x y py px x y---<<-)1(>p . 令()p f t t =,则我们容易联想到Lagrange 中值定理()()()()f x f y f x y x yξ-'-=-. 证明:设()p f t t =,则1()p f t pt -'=.在(,)y x 上满足Lagrange 中值定理的条件, 故(,)y x ξ∃∈,使得()()()f x f y f x y ξ-'=-,即1p pp x y p x yξ--=-. ∵(,)y x ξ∈,y x ξ<<,∴111p p p py p px ξ---<<,∴11()()p p p p py x y x y py x y ---<-<-.【针对练习3】(13湖北理)设n N *∈,r 为正有理数.证明:1111(1)(1)11r r r r r n n n n n r r ++++--+-<<++. 证明:1()r f x x +=,x N *∈,r 为正有理数,则()(1)r f x r x '=+.在区间[,1]n n +上满足拉格朗日中值定理的条件,故在(,1)n n +上存在ξ,使得(1)()()(1)1r f n f n f r n nξξ+-'==++-, 即11(1)(1)r r r n n r ξ+++-=+,∴11(1)1r r r n n r ξ+++-=+. 又∵(,1)n n ξ∈+,r 为正有理数,∴r r n ξ>,∴11(1)1r r r n n n r +++-<+. 同理可证11(1)1r r r n n n r ++--<+,∴1111(1)(1)11r r r r r n n n n n r r ++++--+-<<++. 【例3】证明:当0x >时,ln(1)1x x x x <+<+. 分析:注意到ln10=,可构造函数的改变量ln(1)ln1x +-,则相应自变量的改变量为(1)1x x +-=,所 证不等式等价于1ln(1)ln111x x x+-<<+,可考虑用拉格朗日中值定理,导数入手即可证明. 证明:令()ln f x x =,则1()f x x'=.在区间[1,1]x +上满足拉格朗日中值定理的条件. 故在(1,1)x +上存在ξ,使得(1)(1)1()11f x f f x ξξ+-'==+-, 即ln(1)ln11x x ξ+-=,∴ln(1)1x x ξ+=.由于1111x ξ<<+,∴1ln(1)11x x x +<<+,即ln(1)1x x x x <+<+. 【针对练习4】若01x <<,证明:2(1)1x x e x -<+. 证明:将不等式变形为2(1)(1)0x x e x --+<,令2()(1)(1)x f x x e x =--+,则2()(12)1x f x x e '=--.在区间[0,] (01)x x <<上满足拉格朗日中值定理的条件.故在(0,)x 上存在ξ,使得()(0)() (0)0f x f f x x ξξ-'=<<-,即()(0)()f x f f x ξ'-=, ∴22(1)(1)[(12)1]x x e x e x ξξ--+=--.由于2()(12)1f e ξξξ'=--的范围不易判断,于是求2()40f e ξξξ''=-<.∴()f ξ'在(0,1)上单调递减,()(0)0f f ξ''<=,即()(0)()0f x f f x ξ'-=<, ∴2(1)(1)0x x e x --+<.小结:拉格朗日中值定理本身是以等式的形式存在的,利用它证明不等式时,根据ξ在(,)a b 内的取值可以估计()f ξ'的取值范围,从而得到要证的不等式.在具体操作时,若要证的不等式不含函数改变 量()()f b f a -和自变量b a -,通过对不等式变形,凑出()()f b f a -和b a -,关键是准确选择函 数()f x ,以及区间[,]a b .同时在确定()f ξ'时,可利用导数有关知识,如求二阶导数.2.利用积分中值定理:若)(x f 在闭区间],[b a 内连续,则在(,)a b 内至少存在一点ξ,使得()()()ba f x dx fb a ξ'=-⎰.一般方法:构造辅助函数→据积分中值定理得等式→由ξ的范围确定()f ξ'范围得所证不等式.【例4】(13湖北理)设n N *∈,r 为正有理数.证明:1111(1)(1)11r r r r r n n n n n r r ++++--+-<<++. 证明:()r f x x =,x N *∈,r 为正有理数,则在区间[,1]n n +上满足积分中值定理的条件, 故在(,1)n n +上存在ξ,使得111111(1)()[(1)]|11r r n rr n n n n n f n n x dx x r r ξ++++++-+-===++⎰, 即11(1)1r r rn n r ξ+++-=+. 又∵(,1)n n ξ∈+,r 为正有理数,∴r r n ξ>,∴11(1)1r r rn n n r +++-<+. 同理可证11(1)1r r r n n n r ++--<+,∴1111(1)(1)11r r r r r n n n n n r r ++++--+-<<++. 【针对练习5】积分中值定理证明不等式:ln b a b b a b a a--<<(0)a b <<. 分析:1ln ln ln b a b b a dx a x =-=⎰,可见可用积分中值定理构造函数1()f x x=,[,]x a b ∈来处理. 证明:设1()f x x=,则在区间[,]a b 上满足积分中值定理的条件, 故在(,)a b 上存在ξ,使得1()()ln |ln ln b b a a b a f dx x b a x ξ-===-⎰,即ln ln 1b a b a ξ-=-. 又因111b aξ<<,于是有1ln ln 1b a b b a a -<<-,即ln b a b b a b a a --<<. 三、用凹凸性证明不等式:我们知道,在(,)a b 内,若()0f x ''>,则函数()y f x =的图形下凸,即位于区间12[,]x x 中点122x x +处弦的纵坐标不小于曲线的纵坐标,即有:1212()()()22x x f x f x f ++≤,其中1x ,2(,)x a b ∈内任意两点.等号仅在12x x =时成立.在(,)a b 内,若()0f x ''<,则函数()y f x =的图形上凸,即位于区间12[,]x x 中点122x x +处弦 的纵坐标不小于曲线的纵坐标,即有:1212()()()22x x f x f x f ++≥,其中1x ,2(,)x a b ∈内任意两 点.等号仅在12x x =时成立.一般方法:构造辅助函数→判定凹凸性→得所证不等式. 【例1】设0x >,0y >,证明不等式ln ln ()ln2x y x x y y x y ++≥+,且等号仅在x y =时成立. 分析:将不等式两边同时除以2,变形为为ln ln ()ln 222x x y y x y x y +++≥,便可看出,左边是函数 ()ln f t t t =在两点x ,y 处的值的平均值,而右边是它在中点2x y +处的函数值,这时只需 ()0f t ''≥即可得证.证明:设()ln f t t t =,即()1ln f t t '=+,1()0f t t''=>,故函数()y f x =在(0,)+∞是下凸的. 由下凸函数性质x ,(0,)y ∈+∞,1[()()]()22x y f x f y f ++≥,得 ln ln ()ln 222x x y y x y x y +++≥,即ln ln ()ln 2x y x x y y x y ++≥+,等号仅在x y =时成立. 【针对练习1】证明:1()() (0, 0, , 1)22n n n x y x y x y x y n ++>>>≠>. 证明:令() (0, 1)n f t t t n =>>,则1()n f t nt -'=,2()(1)0n f t n n t -''=->,∴函数()n f t t =在(0,)+∞是凹的,据凹凸性的定义可知,对任意的x ,(0,)y ∈+∞,x y ≠有()()()22x y f x f y f ++<,即1()()22n n n x y x y ++>.。
考研高数重难点:不等式证明的方法
考研高数重难点:不等式证明的方法利用微分中值定理:微分中值定理在高数的证明题中是非常大的,在等式和不等式的证明中都会用到。
当不等式或其适当变形中有函数值之差时,一般可考虑用拉格朗日中值定理证明。
柯西中值定理是拉格朗日中值定理的一个推广,当不等式或其适当变形中有两个函数在两点的函数值之差的比值时,可考虑用柯西中值定理证明。
利用定积分中值定理:该定理是在处理含有定积分的不等式证明中经常要用到的理论,一般只要求被积函数具有连续性即可。
基本思路是通过定积分中值定理消去不等式中的除此之外,最常用的方法是左右两边相减构造辅助函数,若函数的最小值为0或为常数,则该函数就是大于零的,从而不等式得以证明。
考研数学复习建议一、打牢基础及考研用书进行全面的分析与深入的了解。
这个阶段,要求同学们全身心进行基础阶段的复习。
这个阶段同学们一定要关习题。
只有打牢基础,才能决胜千里。
最后,要求同学们做好规划,合理安排复习,做好经常性的总结与归纳。
二、踏实前行巩固。
不盲目地搞题海战术,要有计划、有针对性地做题,才能将知识领悟得透彻。
强化阶段,同学们一定要利用好复习资料,做题的过程中,重点积累技巧与方法,吃透数学的知识点与题型。
三、总结归纳经过前期基础知识的积累和做题的巩固,同学们对知识点、练习题、真题都有了深刻的认识。
这时,要做好归纳与总结,构建整体的知识结构体系,将之前所学的知识点牢牢记忆在脑海中。
充分利用知识的迁移,达到举一反三的效果。
遇到一些重点和难点题型,首先不畏惧,其次回顾之前学习的相关知识,并有效利用它们,来解决遇到的问题,最后将以往所学深深记忆在脑海中,达到“化”的境界。
考研数学复习历年考的最多的知识点1、两个重要极限,未定式的极限、等价无穷小代换这些小的知识点在历年的考察中都比较高。
而透过我们分析,假如考极限的话,主要考的是洛必达法则加等价无穷小代换,特别针对数三的同学,这儿可能出大题。
2、处理连续性,可导性和可微性的关系要求掌握各种函数的求导方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业论文 学 院 统计与应用数学学院 班 级 数学一班 学 号 姓 名 论文题目 函数不等式的几种证明方法分析 指导教师 (姓名及职称)
I
函数不等式几种证明方法分析 Analysis of methods in proving function inequalities
内容摘要:不等式在数学中有非常重要的地位,对于不等式的考察可以体现学生的基础知识水平和严密的逻辑思维。在高中我们就学过比较法和构造函数法来解决不等式问题,在高等学府学习过数学分析,微积分等等以后,了解到还有许多方法来证明不等式,比如说设置辅助函数,考察新函数单调性;考察函数的极值或者是最大最小值;有微分中值定理;函数的凹凸性;泰勒公式;积分性质;积分中值定理;变限积分;柯西中值定理;导数的性质;导数的定义,不等式的放缩等等方法。本文将逐一介绍这些解题方法,每种方法都会通过一些例题,来验证一些解题的思想和步骤,给出简洁的证明过程,使得大家在碰到数学不等式证明方面更为得心应手,也显示出数学分析思想在不等式领域中的地位。 关键词:不等式;泰勒级数;函数单调性;中值定理;定积分 II
Abstract::Inequality holds the extremely important status in mathematics, it can inspect students’ basic knowledge level and strict logical thinking. In high school we learned comparative method and construct assistant function to solve the inequality problem, after learning mathematical analysis or calculus at university, ,we know there are many other methods to prove inequality, for example setting auxiliary function, considering the monotonicity of the new function; using the function’s extreme value and maximum or minimum values; differential mean value theorems; the concavity or convexity of functions; Taylor formula; integral; integral mean value theorem; variable limit integral derivative; definition of inequality and so on. This paper will introduce the above methods, through some examples to verify the ideas and steps of each methed furthermore we give a concise proof to prove thses inequalities, let everybody can prove mathematical inequalities more handy, and shows the important of mathematical analysis in the inequality field.
Keywords: Inequality;Taylor’s series;Monotone function;Mean value theorem ;Definite III
目 录 一 引言............................................................. 1 二 解题思想和方法................................................... 1 1导数法 ......................................................... 1 2中值定理法 ..................................................... 7 3其他证明方法 .................................................. 10 三 总结............................................................ 13 参考文献........................................... 错误!未定义书签。 1
一 引言 不等式是数学非常重要的组成部分,使我们了解量之间的大小关系,在数学中起着很重要的用处。对于一个数学系学生来说,或者是对于一个学生来说,多做不等式方面的题目,能丰富数学知识,又能锻炼逻辑思维,因为证明不等式,方法多变,解题手段灵活,有很强的技巧性。不等式更在一些实际问题中充当工具性的方法,有时对于一个实际问题而言,证明其中的不等式只是很小的一部分,但是却不能忽略它的存在。高等数学中的不等式基本可以分为函数不等式和数值不等式,两者都可以通过构造新函数来证明不等式,两者证明的方法是很相似的。证明不等式没有特定的套路去套用,方法随着题目的不同而也在变化,有时只是变换很小的一部分,方法就能彻底的改变。在具体做题目的过程中,要注意观察,善于联想,根据不等式的结构,内在的一些联系来选择最合适的方法,熟悉证明方法的推理思维,熟悉步骤技巧,能看透问题的本质,这样就能选出正确的方法去证明。 在高中的时候,我们就会一些不等式的证明,但对于有些不等式,需要借助到高等数学或者是微积分才能解决,从构造新函数,研究新函数的性质,比如单调性,极值最值;到套用一些公式,比如Lagrange中值定理,Cauchy中值定理等等;还有研究函数的导数的一些性质,以及积分不等式的解法等等,都是一些非常有技巧性且需要很强逻辑思维能力的题目,下面将一一介绍这些方法。 二 解题思想和方法 1导数法 导数的内容我们在高中就学过,大学之后就给了一个更精准的定义。在大学里,我们加强了用导数来求单调性的能力,并且引入了新的概念即函数凹凸性,函数的极值。这些东西在合适的条件下都能表达一定的大小关系,所以用导数来求解不等式,是一个很基础的方法。 1.1导数定义法 这一方法要求我们首先找出0x,使得)(0xf为不等式的一边,这时候利用定义和条件去证明。这种方法较为简单,也不是很常用,但不容易想起。 2
例1[5] 现有一个函数12()sinsin2sinnfxaxaxanx…,naaa,,21都是实数,n为R+,对于Rx
,都有xxfsin)(,求证1221naana…
证:因为12()cos2cos2cosnfxaxaxnanx… 所以12(0)2nfaana…,再由导数定义可以得到0()(0)(0)0limxfxffx
00()()limlimxxfxfxxx
又因为xxfsin)(,所以1sin)0(lim0xxfx,所以
1221naana…,原不等式得证。
这一题其实只要能想起导数的定义,再将原式的在0处的导函数值,就能 简单的凑出导数的定义的大框架,问题就迎刃而解了。
1.2可导函数单调性法 这种方法一般将多项式移向不等式的一端,然后将此作为一个新的函数,研究它的单调性,结合函数的定义域等条件来研究函数的一些特征,从而完成证明。这是最能让人联想起来的一种方法,很基础也很实用。 关于导数单调性的定理都反映了导函数和原函数的导数的关系,里面会出现很明显的大小关系,如果能将不等式与单调性结合在一起,证明将会变得很简单。所以我们也经常用函数的导数来判断原函数在区间上的一些性质。 (1)利用题目来构造新函数,并且确定好区间b,a; 构造函数较为简单技巧:利用两边的差;利用不等式两边的形式;若有指数等等,建议用比值来确定大小关系等等。通过例题来简单的表述做差法和作商法。 例1[2]已知,abc求证:222222abbccaabbcca 证:原式变为222222222222abbccaabbccaabcabcbccaab 2222(b)bc(bc)(cb)(bc)[abca(cb)]aca=()()()0bcabac
例题解释:本题用了很简单的比较作差法,通过恒等变形,再由此联想到二次三项式的展开,问题就迎刃而解了。
例2[5]有,,0abc,求证:3()abcabcabcabc 3
证:由于对称性,可以设0abc,abcabc和3()abcabc都是正数。此时作商:222..3333333333bc()abcbcacbaabcabcabcabcabcabcabcaabcabc=333()()()abbccaababcc,因
为0abc,所以1,1,1ababcc,所以得出333()()()1abbccaababcc,所以有3()abcabcabcabc。 这两个例子主要是教大家怎么构造新函数,无外乎作差或者是作比值,例2中不等式为指数式,很容易联想到指数的比值性质。 (2)在构造出函数的基础上,通过研究其函数的单调导函数的特征来研究新
性,从而去证明不等式。 例3当0x时,证明)0(11)1ln(22xxxxx。 证:首先构造函数,1)1ln(1)(22xxxxxf有题意知)(xf在0x
这个范围内是连续的;),0(,0)1ln()(2xxxxf。所以)(xf在),0[
是单增的,所以知)0(,0)0()(xfxf所以有01)1ln(122xxxx, 所以)0(1)1ln(122xxxxx,原题得证。 例4[4]证明:bbaababa111。 证:构造新函数)0(,1)(xxxxf,)(xf在),0[上是连续的。求导可知,0)1(1)(2xxf有定理二知,)(xf在),0[上是单调递增的,又因为baba0,可知)()(bafbaf。