杨辉三角教学设计

杨辉三角教学设计
杨辉三角教学设计

教学设计说明

1.3.2“杨辉三角”中的一些秘密

课题:1.3.2“杨辉三角”中的一些秘密

一、教学内容解析:

本课题来自人教A版选修2—3第一章后的“探究与发现”。杨辉三角蕴含了丰富的数字规律和数学思想方法,所以它是一个很有价值的探究性课题。

杨辉三角是一个特殊的数阵。探究杨辉三角中的数字规律,有利于巩固学习二项式系数的性质,并对进一步认识组合数、进行组合数的计算和变形有重要的作用。对杨辉三角的研究,可以让学生通过总结,得到研究一般数阵的方法。

同时通过欣赏分形、斐波那契数列等有趣的数学内容,学生由此发现数学之美,激发对数学的学习兴趣。另外,通过组织不同形式的探究,可以让学生学会观察、归纳等探究方法,体验数学当中发现和创造的历程,培养创新精神,也有利于学生理解数学知识,培养数学应用意识。

二、教学目标设置:

1、知识与技能:

1、从不同的角度,研究杨辉三角所蕴含的规律,并用组合数表示;

2、通过本节课的研究,归纳出杨辉三角的研究方法;

3、将杨辉三角的研究方法拓展为对一般数阵的研究方法。

2、过程与方法:

1、通过探究杨辉三角的数字规律,学会观察和分析问题,运用联系、类比的观点看待问题,从而解决问题,并能培养学生“从特殊到一般”进行归纳猜想的能力;

2、通过自主探究与合作交流,养成发现问题、探究知识、建构知识的学习习惯;

3、通过从不同角度探究问题,体会再发现再创造的过程,发展创造性思维。

3、情感态度与价值观:

1、以历史文化的实例引入,激发学生的学习兴趣,提升学生的民族自豪感;

2、通过归纳性思维的训练,养成踏实细致,严谨科学的学习习惯;

3、通过探索杨辉三角中的数字规律,形成独立思考、合作交流等良好的学习习惯,以及勇于批判、敢于创新的精神。

三、学生学情分析:

知识结构:学生已经学习过组合数的定义和性质以及二项式系数的性质,并对杨辉三角有一定的了解。

能力结构:作为正始中学高二创新班的学生已经具备了一定的综合分析问题的能力,适时的问题引导就能建立知识之间的相互联系,解决相关问题。但是,他们对于规律的归纳还有一定的困难,需要适当的引导。

四、教学策略分析:

因为发现杨辉三角中的部分数字规律有一定的难度,本节课采用的是学生自主探究为主,教师引导探究为辅的探究课类型。为了让学生感受数学的趣味性,本节课具体采用的是自主探究与合作交流相结合的探究方式。探究时采用个人独立思考后小组合作互动的方式,重点在于发现数阵中的规律,使学生通过思维碰撞,擦出智慧的火花,达到共同完成建构知识的目的;也使不同层次的学生都学有所获,让学生体会发现和创造的趣味感,发展学生的创造性思维。

多媒体辅助教学的应用,节省时间,增大信息量,增强直观形象性。提倡学习方式的多样化,本节课从情境引入→发现数字规律→利用组合数表述结论→证明结论,始终坚持让学生主动参与,亲身实践。在学生合作、师生互动中,学生真正成为知识的发现者和研究者。在这样的课堂中,不仅学生对本节课的知识结构有一个清晰的认识,而且对所用到的数学方法和涉及到的数学思想得以领会。

五、教学过程:

【教学目标】

1、从不同的角度,研究杨辉三角中所蕴含的规律,并用组合数表示;

2、通过杨辉三角的研究,总结归纳出杨辉三角的研究方法;

3、将杨辉三角的研究方法拓展为对一般数阵的研究方法。

【教学重点】通过不同的角度研究杨辉三角,得到杨辉三角的性质,并最终总结出一般数阵的研究方法。

【教学难点】将杨辉三角的规律用组合数来进行总结。

【教学过程】

1.1、引经据典,步入新课

(展示图片)今天这节课,我们从一幅图画开始,大家认识这两个图案吗?这是我们华夏传说中的河图、洛书。“河出图,洛出书,圣人则之”,伏羲根据河图演绎了八卦,大禹依据洛书划分了九州。由此可以说河图、洛书是我们华夏文化的起源。可你们知道吗,河图、洛书其实也是世界上最古老的数阵。

什么是数阵呢?将数字按照一定顺序组合成图形就是数阵。

今天这节课,我们就一起来研究一下数阵。当然,对于一个新的内容,我们需要一个研究的载体。所以,我们从一个特殊的三角数阵开始。

大家认识这个数阵吗?在古代,我们称它为“开方作法本源图”。而在现代,它还有另外一个名字——“杨辉三角”。

杨辉三角在整个数学史中扮演着重要的角色:北宋的贾宪用它手算高次方根;元朝的朱世杰用它研究高阶等差级数(垛积术);牛顿用它算微积分;华罗庚老先生思路更广,差分方程,无穷级数都谈到了。

那么,我们又能从杨辉三角中探寻到哪些秘密呢?让我们一起来看一下。

【设计意图】新课标中提倡体现数学的文化价值。在教学中通过历史知识引入课堂,既让学生了解一些数学史,激发学生的兴趣,同时培养学生的民族自豪感。通过数阵的概念引入本节课,能引发学生的思考,为后续探究其他数阵做好铺垫。学生不是只为研究杨辉三角而研究杨辉三角,而是能通过杨辉三角的研究,总结出一般数阵的研究方式。

1.2复习回顾,总结已知

杨辉三角在我们学习二项式系数的性质时已经有所接触。那么,我们已经学习过杨辉三角的哪些性质呢? ①:贾宪在他的《开方作法本源图 》中写道:“左衺乃积数,右衺乃隅算,中藏者皆廉”,用今天的话来讲,就是说杨辉三角中的每一个数都是二项式系数,而二项式系数都可以写成组合数。从而我们就可以把杨辉三角写成以下的形式,其中第n 行第r 个数可以写成1

1,--=r n r n C a ②:杨辉三角每一行之和为2的n-1次,

组合数表示:n n n n n r n n n n C C C C C C 2......1210=+++++-

③:杨辉三角中每一个数都是两肩上数之和,用组合数表示就是:r n r n r n C C C =+---111,

这个结论最早是由南宋时期的杨辉所发现的,所以称之为杨辉恒等式。

④:杨辉三角是左右对称的:r n n r n C C -= 【设计意图】通过教师提问,学生回答的方式,让学生回顾前面所学杨辉三角的内容,即起到承上的作用,也为接下来的研究做好铺垫。其中,杨辉恒等式能够让学生更容易发现和证明规律,而用组合数表示杨辉三角,能够让学生更容易总结出规律,是本节课研究的关键。

2.1小组合作,共探新知 在研究之前,我们首先需要来一起探讨一下,该如何去研究杨辉三角呢?

苏轼有一首诗对我很受启发。“横看成岭侧成峰,远近高低各不同”,这是苏轼的《题西林壁》。这首诗告诉我们需要从不同的角度看待一项事物。我们研究杨辉三角时,是不是也可以从这些“横看”, “侧看”,“远看(整体)”,“近看(局部)”等角度出发呢?下面,就让我们4人一组,从这四个角度出发,用数字格式的杨辉三角观察规律,用组合数格式的杨辉三角总结规律,并加以证明。

.................... 18285670562881172135352171161520156115101051146411331121111 012100121111211101665646362616065545352515054434241404332313032212021101............1n

n n r n n n n n n n-r n-r n-n-n-n C C ... .. C . C C C C ... C C ... C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C -----

【设计意图】导学案中已经为学生准备了两个杨辉三角,一个用数字表示,一个用组合数表示。我要求学生从数字表示的杨辉三角中寻找规律,从组合数表示的杨辉三角中总结规律,并加以证明。这体现了“观察——归纳——猜想——证明”的数学研究理念,并且通过小组合作的方式,既能降低探究的难度,也能培养学生的合作意识,提高学生的学习兴趣。

1210012111121110

1665646362616065545352515054434241404332313032212021101............1n n n r n n n n n n n-r n-r n-n-n-n C C ... .. C . C C C C ... C C ... C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C -----

2.2 小组展示,分享所得

杨辉三角的性质

角度一:横看

①:杨辉三角中每一行数的平方和都是杨辉三角中的数

n n n n n n C C C C 222120)...()()(=++

思路:既然杨辉三角每一行的和存在规律,那么每一行的平方和是不是也有规律呢? 证明:由二项展开式可得

n n n r r n n n n n r n r n n n n n n n n r r n n n n

n n x

C x C x C C C x C x C x C x C x C x C C x x x 22221202110102......)......()......()1()1()1(++++=++++?++++∴+=+?+--Θ

取其中的x n 项

等式左边[]

n n n n n x C C C ?++=22120)...()()( 等式右边n n n x C 2=

由于等式两边相等,所以x n 项的系数也相等,即:

n n n n n n C C C C 222120)...()()(=++

②:杨辉三角每一行数字错一位叠加就得到11的若干次

证明:由二项展开式n n n n n n r r n n n n n x C x C x C x C x C C x +++++=+--112210 (1)

赋值x=10得到

n n n n n n r r n n n n n n C C C C C C 1010...10...101011)101(112210?+?+?+?+?+==+--

因此,115

=1×100000+5×10000+10×1000+10×

100+5×10+1

在杨辉三角中,把第n 行中的数字错位排列相加,

其和就是11n-1

③:第1,2,4,8,16…这些行即2k (k 是自然数)行的各个数字均为奇数,第2k +1行除

两端的1之外都是偶数。

④:第p+1(p 为素数)行除去两端的数字1以外的所有数都能被p 整除,其逆命题也

成立,即对任意r ∈{1,2,…,n-1},都有n C n r n ?|是素数。

角度二:侧看

①:每一斜行前n 个数加起来都是下面一行的第n 个数,

)(1121r n C C C C C r n r n r r r r r r >=+++++-++Λ(用杨辉恒等式证明)

思路:从求和的角度来研究的,既然横的一行相加存在规律,那么斜的一行相加是不是也可以得到一些结论?

证明:

1111121212111121 +-+--+++-++++-++=+=???=+++=++++=++++r n

r n r n r n r r r r r n r r r r r r r n r r r r r r C C C C C C C C C C C C C C ΛΛΛ ②:思路一:将杨辉三角30°角斜行加起来

思路二:将杨辉三角摆成直角三角形,45°角斜行相加

得到数列1、1、2、3、5、8、13、21、34 、55 、89 、144 …(斐波那契数列)。

1、它是由一对兔子的繁衍问题而产生的。

2、它的每一项都是前两项之和。

3、这样一个完全是自然数的数列,通项公式却是用无理数来表达:

4、当n 趋向于无穷大时,后一项与前一项的比值越来越接近黄金分割0.618。

5、斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的有向日葵花瓣)、蜂巢、蜻蜓翅膀等。

③:杨辉三角中斜的第一行是一个常数数列,第二行是等差数列,第三行开始每一行都是高阶等差数列。

角度三:远看(整体)

①:将杨辉三角中的奇数用线段连接起来,就构成了一个歇尔宾斯基三角。

②:2n 阶杨辉三角中,共有3n 个奇数,共有2n-1(1+2n )- 3n 个偶数(k ∈N*)。

角度四:近看(局部)

①:梯形中5个数相加就是下面隔行的数:23211111++++++++=++++r n r n r n r n r n r n C C C C C C

思路:根据杨辉恒等式,杨辉三角每一个数都是上面两个数之和,那么是不是可以进一步将这两个数向上推导?

证明:根据杨辉恒等式:

21

11112111111221223 )()( +++++++++++++++++++++++=+++=+=r n r n r n r n r n r n r n r n r n r n r n r n C C C C C C C C C C C C

②:由1开始,正整数在杨辉三角形出现的次数为∞,1, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 4。最小而又大于1的数在杨辉三角形至少出现n 次的数为2, 3, 6, 10, 120, 120, 3003。 除了1之外,所有正整数都出现有限次。

只有2出现刚好一次。6,20,70等出现三次。出现两次和四次的数很多。

???????????? ??--???? ?

?+=n n n a 25121555

还未能找到出现刚好五次的数。120,210,1540等出现刚好六次。

【设计意图】每个小组发言,结合性质的特点,进行组合数的总结。在总结过程中,从特殊情形出发,推导出性质的一般表示,体现从特殊到一般的思想。通过学生归纳猜想,引导学生验证猜想结论是否正确?同时为了突破利用科学探究的思想指导学生研究未知数阵这一难点,引导学生从模型化的角度出发,多角度的分析问题、探究问题、解决问题,将学生思维推向高潮。这既加深学生对前后知识内在联系的理解,又从深度和广度上让学生感受数学知识的串联和呼应。

教师补充,再得新知

①将杨辉三角中的奇数用线段连接起来,就可以得到一个有趣的三角形----歇尔宾斯基三角。

②对歇尔宾斯基三角进行拓展——谢尔宾斯基塔(三棱锥)——谢尔宾斯基地毯(正方形)——谢尔宾斯基海绵(正方体)——分形数学。

③介绍分形之美。

④通过30°角斜行相加,得到斐波那契数列,展示斐波那契数列的优美视频。

【设计意图】对杨辉三角中部分学生没有发现的性质,教师做简单补充,既让学生了解到杨辉三角中更多的秘密,也让学生学会从不同的角度看待问题。同时,图片、视频形式的资料直观地展现数学之美,增加学生对数学的热爱之情。

3、探究小结,盘点新知

本节课的收获:

①杨辉三角的秘密,同时也是二项式系数的性质。

②通过对杨辉三角的研究,学生得到对于一般数阵的研究方法----横看,竖看,侧看,局

部看,整体看。

【设计意图】本环节通过教师的引导,让学生总结本节课的收获,并由老师作必要补充。将收获分为两层境界:首先是知识上的收获,即杨辉三角的秘密;其次是方法上的收获,通过对杨辉三角的研究,得到了对一般数阵的研究思路。从观察横行,斜行,竖行,折线,局部,整体等角度研究。

作业:1查找资料,并阅读华罗庚的《从杨辉三角

说起》,看看杨辉三角中还有哪些我们没发现的秘

密。

2用我们今天所学的探究方法,研究莱布尼

茨三角,你能从这个数阵中发现哪些秘密呢?

附:导学案

“杨辉三角”中的一些秘密

班级____姓名_____

阅读材料:杨辉三角的历史

《易·系辞上》:“河出图,洛出书,圣人则之。”相传,伏羲在黄河边思考天地的至理。突然,一匹龙马从黄河中奔腾而出。伏羲发现,龙马的身上有一幅图画。伏羲从图中领悟了八卦,这幅图就是传说中的河图。大禹在治理洪水时,有一只大乌龟从洛水中浮出,背上刻有纹理。大禹依据这些纹理划分了九州,这些纹理就是洛书。河图,洛书是我们华夏文化的起源。同时,他们也是世界上最古老的数阵。数阵的概念与数列很相似,我们将数字按一定的顺序排列成图形就构成了数阵。

杨辉三角就是一个特殊的数阵,其最早出现在北宋贾宪的“开方作法本源图”中。南宋时期的杨辉在他的著作《详解九章算术》中引用了这幅图,并注明了“出释锁算书,贾宪用此术”。元朝的朱世杰对杨辉三角作了进一步研究,从中推导出了高阶差分数列的求和。在欧洲直到1623年以后,法国数学家帕斯卡在13岁时发现了这个三角,所以“杨辉三角”在国外又被称为“帕斯卡三角”。世界著名数学家华罗庚在他的《从杨辉三角谈起》中将其称为“杨辉三角”,于是才有了“杨辉三角”的说法。近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle)。

杨辉三角在整个数学史中扮演着重要的角色,宋朝的贾宪用它手算高次方根,元朝的朱世杰用它研究高阶差分数列(垛积术),牛顿用它算微积分,华罗庚老先生思路更广,差分方程、无穷级数都谈到了。同学们,我们又能发现杨辉三角的哪些秘密呢?

一:回顾杨辉三角

第 1行 1

第 2行 1 1

第 3行 1 2 1

第 4行 1 3 3 1

第 5行 1 4 6 4 1

第 6行 1 5 10 10 5 1

第 7行 1 6 15 20 15 6 1

第8行_________________________________________

……………………………..

我们已经学习过杨辉三角的哪些性质?

______________________________________________________________

第 1行 1

第 2行 1 1

第 3行 1 2 1

第 4行 1 3 3 1

第 5行 1 4 6 4 1

第 6行 1 5 10 10 5 1

第 7行 1 6 15 20 15 6 1

第 8行 1 7 21 35 35 21 7 1

第 9行 1 8 28 56 70 56 28 8 1

第10行 1 9 36 84 126 126 84 36 9 1

第11行 1 10 45 120 210 252 210 120 45 10 1

第12行 1 11 55 165 330 462 462 330 165 55 11 1

第13行 1 12 66 220 495 792 924 792 495 220 66 12 1 第14行______________________________________________________________________

……………………………..

第n+1行_______________________________________________________________________

012100121111211101665646362616065545352515054434241404332313032212021101............1n

n n r n n n n n n n-r n-r n-n-n-n C C ... .. C . C C C C ... C C ... C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C -----

结论1:_______________________________________________________________________ 结论2:_______________________________________________________________________ 结论3:_______________________________________________________________________ 结论4:_______________________________________________________________________ 结论5:_______________________________________________________________________

_______________________________________________________________________________

第 1行 1

第 2行 1 1

第 3行 1 2 1

第 4行 1 3 3 1

第 5行 1 4 6 4 1

第 6行 1 5 10 10 5 1

第 7行 1 6 15 20 15 6 1

第 8行 1 7 21 35 35 21 7 1

第 9行 1 8 28 56 70 56 28 8 1

第10行 1 9 36 84 126 126 84 36 9 1

第11行 1 10 45 120 210 252 210 120 45 10 1

第12行 1 11 55 165 330 462 462 330 165 55 11 1

第13行 1 12 66 220 495 792 924 792 495 220 66 12 1

提示:将杨辉三角摆放成直角三角形,谈谈你们组的发现

_____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________

六:三探杨辉三角

2

6 4

6

56 28 8

126

210

462

12 792 12

提示:将杨辉三角中的奇数涂黑,又会有怎样的发现?

_____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________

杨辉三角的规律以及推导公式

杨辉三角的规律以及定理 李博洋 摘要杨辉三角中的一些规律 关键词杨辉三角幂二项式 引言 杨辉是我国南宋末年的一位杰出的数学家。在他所着的《详解九章算法》一书 中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现 在简称为“杨辉三角”,它是世界的一大重要研究成果。我们则来对“杨辉三角”的 规律进行探讨和研究。 内容 1二项式定理与杨辉三角 与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即。 杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。 由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为:121 则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数 为:1331但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。 展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为: 14641似乎发现了一些规律,就可以发现以下呈三角形的数列: 1(110) 11(111) 121(112) 1331(113)

14641(114) 15101051(115) 1615201561(116) 因此可得出二项式定理的公式为: (a+b)n=C(n,0)a^n*b^0+C(n,1)a^(n-1)*b^1+...+C(n,r)a^(n-r)*b^r...+C(n,n)a^0*b^n 因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把带进了。求二项式展开式系数的问题,实际上是一种组合数的计算问题。用系数来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。 2杨辉三角的幂的关系 首先我们把杨辉三角的每一行分别相加,如下: 1(1) 11(1+1=2) 121(1+2+1=4) 1331(1+3+3+1=8) 14641(1+4+6+4+1=16) 15101051(1+5+10+10+5+1=32) 1615201561(1+6+15+20+15+6+1=64) …… 相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂 3杨辉三角中斜行和水平行之间的关系 (1) 1(2)n=1 11(3)n=2 121(4)n=3 1331(5)n=4

杨辉三角队列实现

网上看了许多杨辉三角队列实现的代码,结果运行时都或多或少有点小问题,为此我提供一份自己运行正确的。 程序无误,细心做一下 注意,这是做成三个文件运行的 第一个文件命名 stdafx.h #include #include #define Max 50 struct queue { int *base; int front; int rear; }; typedef struct queue *SqQueue; SqQueue InitQueue();//队列的初始化 int EnQueue(SqQueue Q,int e);//数据进队(从队尾传值) int DeQueue(SqQueue Q);//数据出队(返回队头) void YHPrint(SqQueue Q,int n);//打印杨辉三角 void jiemian();//界面函数,方便调用(个人习惯) 第二个文件命名为 stdafx.c #include "stdafx.h"

int GetQueueFirstData(SqQueue Q) { return Q->base[Q->front]; } int isEmptyQueue(SqQueue Q) { if(Q->front=Q->rear) return 1; else return 0; } SqQueue InitQueue() { SqQueue Q; Q=(SqQueue)malloc(sizeof(struct queue)); if (Q==NULL) return NULL; Q->base=(int *)malloc(Max*sizeof(int)); if(Q->base==NULL) return NULL; Q->front=Q->rear=0; return Q; } int EnQueue(SqQueue Q,int e) { if((Q->rear+1)%Max==Q->front) return 0; Q->base[Q->rear]=e; Q->rear=(Q->rear+1)%Max; return 1; } int DeQueue(SqQueue Q) { int e; if(Q->front==Q->rear) return 0; e=Q->base[Q->front]; Q->front=(Q->front+1)%Max; return e; }

显示杨辉三角实验报告

显示杨辉三角实验报告 姓名:许严班级:计122 学号:1213023050 1.问题描述 杨辉三角如图2.4.3所示,其特点是两个腰上数值是1,其他位置上的每一个整数都是它的上一行相邻两个整数之和。问题是:对于指定的最大行数rmax,要求从第一行到第rmax逐行显示杨辉三角形的所有元素。 2.基本要求 ⑴设计输出形式,尽量反映杨辉三角的特点。 ⑵设计计算杨辉三角形各行数值的方法。 ⑶输入:rmax从键盘输入。 ⑷输出:屏幕输出杨辉三角形. 3.实现提示 ⑴存储设计 计算杨辉三角形第i行时,如果在第i-1行两侧各添加一个0,则第i行的第j个元素等于第i-1行的第j-1个元素与第j个元素的和。计算如图2.4.4所示。第i行计算完,第i-1行的数据就没有用了,依据第i行数据可计算第i+1行的数据。 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 … 图2.4.3 杨辉三角形 从上述计算中不难看出,第i行的元素从左往右依次可被求得,求解过程中也是从左往右依次使用地i-1行的数据,显然,具有先入先出的特点。所以,可借助一个队列存放计算过程中所需的数据,如图2.4.5所示。 但随着航数的增加,队列会很长。所以,可以设置一循环队列,队长不少于rmax+2,边计算边出队。 (2)算法设计 计算各行元素的算法步骤如下。 Step1:队列初始化,0、1入队。队头ftont指向0处,队尾指向1后。 Step2:i从1到rmax,循环执行下列操作,求第i行数据。 2.1 0入队。 2.2 从队首起直到队尾,每出队两元素,求和后入队。 输出时注意0不输出。

杨辉三角形的生活运用和规律

杨辉三角形规律 每行数字两边对称每行数字左右对称,由1开始逐渐变大,然后变小,回到1。 第n行的数字个数为n个。 第n行数字和为2^(n-1)。(2的(n-1)次方) 每个数字等于上一行的左右两个数字之和。可用此性质写出整个帕斯卡三角形。 将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第2n个斐波那契数。将第2n行第2个数,跟第2n+1行第4个数、第2n+2行第6个数……这些数之和是第2n-1个斐波那契数。 第n行的第1个数为1,第二个数为1×(n-1),第三个数为1×(n-1)×(n-2)/2,第四个数为1×(n-1)×(n-2)/2×(n-3)/3…依此类推。 两个未知数和的n次方运算后的各项系数依次为杨辉三角的第(n+1)行

杨辉三角在弹球游戏中的应用 如图1的弹球游戏,小球向容器内跌落,碰到第一层挡物后向两侧跌落碰到第二层阻挡物,再向两侧跌落第三层阻挡物,如此一直下跌最终小球落入底层。根据具体地区获的相应的奖品(。 图1 我们来分析一下为什么小球落到不同区域奖品会有如此大的差别?A 区的奖品价值高于D 区,说明小球落入A 区的可能性要比落入D 区的可能性小,转化为数学问题就是小球落入A 区和D 区的概率。小球要落入D 区的情况有两种,有概率知识得: D 1 D 2 就是说,小球落入D 区的概率是等于它肩上两区域概率之和的 2 1,据此小球落入各区的概率为可以按以上方法类推,如下: 2121 1 8381 3213232323232 1 64646641564206415646641 A B C D E F G 图2

《杨辉三角》导学案1

《杨辉三角》导学案1 课前预习学案 一、预习目标 借助“杨辉三角”数表,掌握二项式系数的对称性,增减性与最大值。 二、预习内容 1、二项式定理:________________________________________________; 二项式系数:______________________________________________; 2、( 1+x) n=________________________________________________; 练一练:把( a+b) n(n=1,2,3,4,5,6)展开式的二项式系数填入课本P37的表格。 想一想:杨辉三角揭示了二项展开式的二项式系数的变化情况,那么杨辉三角有何特点?或者说二项式系数有何性质呢? 画一画:当n=6时,作出函数f(r)的图象,并结合图象分析二项式系数的性质。 课内探究学案 一、学习目标 ①了解“杨辉三角”的特征,让学生偿试并发现二项式系数规律; ②通过探究,掌握二项式系数的性质,并能用它计算和证明一些简单的问题;二、学习重难点: 学习重点:二项式系数的性质及其应用; 学习难点:杨辉三角的基本性质的探索和发现。 三、学习过程 (一)、杨辉三角的来历及规律

问题1:根据( a+b) n (n=1,2,3,4,5,6)展开式的二项式系数表,你能发现 什么规律? 问题2:杨辉三角揭示了二项展开式的二项式系数的变化情况,那么杨辉三角有何特点?或者说二项式系数有何性质呢? 对于( a+b) n 展开式的二项式系数0n C ,1n C ,2n C ,…,n n C ,从函数角度看,r n C 可看成是以r 为自变量的函数f(r),其定义域是{0,1,2,…,n},令f(r)= r n C ,定义域为{0,1,2,…,n} 问题3:当n=6时,作出函数f (r )的图象,并结合图象分析二项式系数的性质。 (二)二项式系数的重要性质 1、对称性:二项展开式中,与首末两端“等距离”的两项的二项式系数相等。即m n C =m n n C - 分析: 2、增减性与最大值:二项式系数先增大后减小,中间取最大。 提示:(1)讨论k n C 与1-k n C 的大小关系。 (2)讨论k k n )1(+-与1的大小关系。 3、各项二项式系数的和:( a+b) n 的展开式中的各个二项式系数的和为2n 分析:赋值法的应用。 四、典型例题(性质4) 试证:在(a+b )n 的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和。 分析:奇数项的二项式系数的和为0n C +2n C +4n C +…, 偶数项的二项式系数的和为1n C +3n C +5 n C +…, 由于(a+b)n =0n C a n +1n C a n-1b+…+k n C a n-k b k +…+n n C b n 中的a,b 可以取任意实数,因

队列实验

队列实验 学号:姓名: 一、实验目的: 1.掌握队列的顺序存储结构 2.掌握队列先进先出运算原则在解决实际问题中的应用 二、实验内容: 利用循环顺序队列打印杨辉三角形。杨辉三角形的特点是两个腰上的数字都为1,其它位置上的数字是其上一行中与之相邻的两个整数之和。所以在打印过程中,第i行上的元素要由第i-1行中的元素来生成。在循环队列中依次存放第i-1行上的元素,然后逐个出队并打印,同时生成第i行中间的(n-2)个元素并入队列。打印的杨辉三角形如下所示: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 三、队列顺序存储结构的基本操作: 杨辉三角形输出的行数可以在程序中由输入控制。 队列的基本操作代码参考如下: #include #define TRUE 1 #define FALSE 0 #define MAXSIZE 50 /*队列的最大长度*/ typedef struct { int element[MAXSIZE]; /* 队列的元素空间*/ int front; /*头指针指示器*/ int rear; /*尾指针指示器*/ }SeqQueue;

/*初始化操作*/ void InitQueue(SeqQueue *Q) { /* 将*Q初始化为一个空的循环队列*/ Q->front=Q->rear=0; } /*入队操作*/ int EnterQueue(SeqQueue *Q, int x) { /*将元素x入队*/ if((Q->rear+1)%MAXSIZE==Q->front) /*队列已经满了*/ return(FALSE); Q->rear=(Q->rear+1)%MAXSIZE; /* 重新设置队尾指针*/ Q->element[Q->rear]=x; return(TRUE); /*操作成功*/ } /*出队操作*/ int DeleteQueue(SeqQueue *Q, int *x) { /*删除队列的队头元素,用x返回其值*/ if(Q->front==Q->rear) /*队列为空*/ return(FALSE); Q->front=(Q->front+1)%MAXSIZE; /*重新设置队头指针*/ *x=Q->element[Q->front]; return(TRUE); /*操作成功*/ } /*提取队列的队头元素,用x返回其值*/ int GetHead(SeqQueue *Q, int *x) { if(Q->front==Q->rear) /*队列为空*/ return(FALSE); *x=Q->element[Q->front]; return(TRUE); /*操作成功*/ } 四、打印杨辉三角的函数: void PrintTriangle (int N ) { int i,,n,x,temp; SeqQueue Q;

高中数学 1.3.2“杨辉三角”与二项式系数的性质教案 新人教版选修2-3

§1.3.2“杨辉三角”与二项式系数的性质 教学目标: 知识与技能:掌握二项式系数的四个性质。 过程与方法:培养观察发现,抽象概括及分析解决问题的能力。 情感、态度与价值观:要启发学生认真分析书本图1-5-1提供的信息,从特殊到一般,归纳猜想,合情推理得到二项式系数的性质再给出严格的证明。 教学重点:如何灵活运用展开式、通项公式、二项式系数的性质解题 教学难点:如何灵活运用展开式、通项公式、二项式系数的性质解题 授课类型:新授课 课时安排:2课时 教学过程: 一、复习引入: 1.二项式定理及其特例: (1)01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈, (2)1 (1)1n r r n n n x C x C x x +=++ ++ +. 2.二项展开式的通项公式:1r n r r r n T C a b -+= 3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性 二、讲解新课: 二项式系数表(杨辉三角) ()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式系数表,表中每行 两端都是1,除1以外的每一个数都等于它肩上两个数的和 2.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自 变量的函数()f r 定义域是{0,1,2, ,}n ,例当6n =时,其图象是7个孤立的点(如图) (1)对称性.与首末两端“等距离”的两个二项式系数相等(∵m n m n n C C -=). 直线2 n r = 是图象的对称轴. (2)增减性与最大值.∵1(1)(2)(1)1!k k n n n n n n k n k C C k k ----+-+= =?, ∴k n C 相对于1 k n C -的增减情况由1n k k -+决定,1112 n k n k k -++>?<, 当12 n k +<时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;

数据结构实验——队列(附程序)

?、实验目的 1. 了解队列的特性。 2. 掌握队列的顺序表示和实现。 3. 掌握队列的链式表示和实现。 1、实验内容 实验3. 3队列的顺序表示和实现 编写一个程序实现顺序队列的各种基本运算(采用循环队列), 主程序,完成如下功能: ⑴ 初始化队列。 ⑵ 建立顺序队列。 ⑶ 入队。 ⑷ 岀队。 (5) 判断队列是否为空。 ⑹ 取队头元素。 (7) 遍历队列。 实验3.4队列的链式表示和实现 编写一个程序实现链队列的各种基本运算,并在此基础上设计 能: (1) 初始化并建立链队列 ⑵ 入链队列。 ⑶ 岀链队列。 ⑷ 遍历链队列。 #i nclude #in clude #defi ne MAXQSIZE 100 typedef struct { int *base; int front; int rear; }SqQueue;实验三队列 并在此基础上设计一个 个主程序,完成如下功

int Ini tQueue(SqQueue &Q) { Q.base=(i nt*)malloc(MAXQSIZE*sizeof(i nt)); if(!Q.base)exit(O); Q.fro nt=Q.rear=0; return 0; }//初始化顺序队列 int QueueLe ngth(SqQueue Q) { int i; i=(Q.rear-Q.fro nt+MAXQSIZE)%MAXQSIZE; printf(“队列长度%5d\n",i); if(i)printf(" 队列非空“); else printf(" 队列为空"); return 0; }//判断队列是否为空 int En Queue(SqQueue &Q,i nt e) { if((Q.rea 叶1)%MAXQSIZE==Q.fro nt)return 0; Q.base[Q.rear]=e; Q.rear=(Q.rea r+1)%MAXQSIZE; return 0; }//将元素e入队 int DeQueue(SqQueue & Q,i nt e) { if(Q.fro nt==Q.rear)return 0; e=Q.base[Q.fro nt]; prin tf("%5d\n",e); Q.fron t=(Q.fr on t+1)%MAXQSIZE; return 0; }// 删除元素e并返回其值

数据结构第三章栈和队列3习题

第三章栈和队列试题 一、单项选择题 1.栈的插入和删除操作在()进行。 A. 栈顶 B. 栈底 C. 任意位置 D. 指定位置 2.当利用大小为n的数组顺序存储一个栈时,假定用top==n表示栈空,则向这个栈插入一个元素时, 首先应执行()语句修改top指针。 A. top++; B. top--; C. top = 0; D. top; 3.若让元素1,2,3依次进栈,则出栈次序不可能出现()种情况。 A. 3, 2, 1 B. 2, 1, 3 C. 3, 1, 2 D. 1, 3, 2 4.在一个顺序存储的循环队列中,队头指针指向队头元素的()位置。 A. 前一个 B. 后一个 C. 当前 D. 后面 5.当利用大小为n的数组顺序存储一个队列时,该队列的最大长度为()。 A. n-2 B. n-1 C. n D. n+1 6.从一个顺序存储的循环队列中删除一个元素时,需要()。 A. 队头指针加一 B. 队头指针减一 C. 取出队头指针所指的元素 D. 取出队尾指针所指的元素 7.假定一个顺序存储的循环队列的队头和队尾指针分别为front和rear,则判断队空的条件为()。 A. front+1 == rear B. rear+1 == front C. front == 0 D. front == rear 8.假定一个链式队列的队头和队尾指针分别为front和rear,则判断队空的条件为()。 A. front == rear B. front != NULL C. rear != NULL D. front == NULL 9.设链式栈中结点的结构为(data, link),且top是指向栈顶的指针。若想在链式栈的栈顶插入一 个由指针s所指的结点,则应执行操作()。 A. top->link = s; B.s->link = top->link; top->link = s; C. s->link = top; top = s; D. s->link = top; top = top->link; 10.设链式栈中结点的结构为(data, link),且top是指向栈顶的指针。若想摘除链式栈的栈顶结点, 并将被摘除结点的值保存到x中,则应执行操作()。 A. x = top->data; top = top->link; B. top = top->link; x = top->data; C. x = top; top = top->link; D. x = top->data; 11.设循环队列的结构是 #define MaxSize 100 typedef int ElemType;

杨辉三角(教案)

杨辉三角(1) 目的要求 1.了解有关杨辉三角的简史,掌握杨辉三角的基本性质。 2.通过研究杨辉三角横行的数字规律,培养学生由特殊到一般的归纳猜想能力。 3.通过小组讨论,培养学生发现问题。探究知识、建构知识的研究型学习习惯及合作化学习的团队精神。 内容分析 本课的主要内容是总结杨辉三角的三个基本性质及研究发现杨辉三角横行的若干规律。 杨辉三角的三个基本性质主要是二项展开式的二项式系数即组合数的性质,它是研究杨辉三角其他规律的基础。杨辉三角横行的数字规律主要包括横行各数之间的大小关系。组合关系以及不同横行数字之间的联系。 研究性课题,主要是针对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究。目的在于培养学生的创新精神和创造能力。它要求教师给学生提供研究的问题及背景,让学生自主探究知识的发生发展过。从问题的提出、探索的过程及猜想的建立均主要由学生自主完成,教师不可代替,但作为组织者,可提供必要指导。 教师首先简介杨辉三角的相关历史,激发学生的民族自豪感和创造欲望,然后引导学生总结有关杨辉三角的基本知识(研究的基础)及介绍发现数字规律的主要方法(研究的策略),并类比数列的通项及求和,让学生对n阶杨辉三角进行初步的研究尝试活动,让学生充分展开思维进入研究状态。 以下主要分小组合作研究杨辉三角的横行数字规律,重点发现规律,不必在课堂上证明。 教学过程 (一)回顾旧知 1.用电脑展示贾宪三角图、朱泄杰的古法七乘方图、帕斯卡三角图(附后),同时播放用古代民族乐器演奏的音乐。

教师介绍杨辉三角的简史:北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算,南宋数学家杨辉在《详解九章算法》(1961年)记载并保存了“贾宪三角”,故称杨辉三角。元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”。在欧洲直到1623年以后,法国数学家帕斯卡在13岁时发现了“帕斯卡三角”。 2.用电脑展示15阶杨辉三角或事先印好15阶杨辉三角分发给学生。对照杨辉三角,回顾高二下学期学过的杨辉三角的构造及基本性质,并由学生叙述。 1°与二项式定理的关系:杨辉三角的第n行就是二项式 n b a) (+展开 式的系数列 } {R N C。 2°对称性:杨辉三角中的数字左、右对称,对称轴是杨辉三角形底边 上的“高”,即 r n n r n c C- =。 3°结构特征:杨辉三角除斜边上1以外的各数,都等于它“肩上”的 两数之和,即 r n r n n r n C c C 1 1- - - + =。 (二)分组研究杨辉三角横行规律(将全班学生按前后排四或五人一组分成若干研究小组) 1.介绍数学发现的方法:杨辉三角中蕴涵了许多优美的规律。古今中外,许多数学家如贾宪、杨辉、朱世杰、帕斯卡、华罗庚等都曾深入研究过,并将研究结果应用于其他工作。他们研究的方法可以归纳为:

队列实现杨辉三角

Main:

queue.h: typedef int ElemType; typedef struct Inode{ ElemType data; struct Inode *next; }Inode; typedef struct linkque{ Inode *front; Inode *rear; }linkque; int QueInit(linkque &); int QueIn(linkque &,ElemType); int QueOut(linkque &,ElemType &); app.cpp: #include #include #include #include "queue.h" void main(){ linkque q1,q2; int i,n; ElemType e,e1,e2,e3; printf("请输入需要的杨辉三角长度:\n"); scanf("%d",&n); QueInit(q1); QueInit(q2); for(i=1;i<=n;i++){ e3=0; while(q1.front!=q1.rear){ QueOut(q1,e1); e2=e3+e1; printf("%d\t",e2); QueIn(q2,e2); e3=e1; } if(q1.front==q1.rear){ e2=1; QueIn(q2,e2);

printf("%d",e2); printf("\n"); } while(q2.front!=q2.rear){ QueOut(q2,e); QueIn(q1,e); } } } queue.cpp: #include #include #include #include "queue.h" int QueInit(linkque &q){ q.front=(Inode *)malloc (sizeof(Inode)); q.rear=q.front; if(!q.front){ printf("溢出"); return (0); } q.front->next=NULL; return (1); } int QueIn(linkque &q,ElemType e){ Inode *p; p=(Inode *)malloc (sizeof(Inode)); if(!p) return (0); p->data=e; p->next=NULL; q.rear->next=p; q.rear=p; return (1); } int QueOut(linkque &q,ElemType &e){ Inode *p;

杨辉三角与二项式系数的性质(教案)

1. 3.2“杨辉三角”与二项式系数的性质 教学目标: 知识与技能:掌握二项式系数的四个性质。 过程与方法:培养观察发现,抽象概括及分析解决问题的能力。 情感、态度与价值观:要启发学生认真分析书本图1-5-1提供的信息,从特殊到一般,归纳猜想,合情推理得到二项式系数的性质再给出严格的证明。 教学重点:如何灵活运用展开式、通项公式、二项式系数的性质解题教学难点:如何灵活运用展开式、通项公式、二项式系数的性质解题授课类型:新授课 教 具:多媒体、实物投影仪 第一课时 一、复习引入: 1.二项式定理及其特例: (1)01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈, (2)1 (1)1n r r n n n x C x C x x +=++ ++ +. 2.二项展开式的通项公式:1r n r r r n T C a b -+= 3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性 二、讲解新课: 1二项式系数表(杨辉三角) ()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式系数 表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和 2.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成 以r 为自变量的函数()f r 定义域是{0,1,2, ,}n ,例当6n =时,其图象是7个孤立的点(如图) (1)对称性.与首末两端“等距离”的两个二项式系数相等 (∵m n m n n C C -=). 直线2 n r = 是图象的对称轴. (2)增减性与最大值.∵1(1)(2)(1)1!k k n n n n n n k n k C C k k ----+-+= =? ,

杨辉三角解析(队列实现)

for(i=1;i<=N;++i) { for(j=0;j<30-3*i;++j)//打印每行前面的空格 printf(" "); do { DeQueue(); GetHead(); if(e!=0) printf("%6d",e); EnQueue(); }while(e!=0); UpQueue(); puts("");//每行后回车换行 } 以n=4举例 结果为: 1 1 1 2 1 1 3 3 1 1 4 6 4 1 解析: queue_size=n+2;//队列的最大容量queue_size=6(数组空间大小) for(i=0;i

继续执行do……while语句因为e不为0 DeQueue(); 删除队首元素,并将queue[2]赋值s front=3 GetHead(); 取队首元素,e= queue[front]=queue[3]=1 if(e!=0) printf("%6d",e); e!=0 打印e 即1 EnQueue(); 在队尾添加元素s+e 此时queue[rear]=queue[0]=2 rear=1 继续执行do……while语句因为e不为0 DeQueue(); 删除队首元素,并将queue[3]赋值s front=4 GetHead(); 取队首元素,e= queue[front]=queue[4]=0 if(e!=0) printf("%6d",e); e==0 不执行printf()语句 EnQueue(); 在队尾添加元素s+e 此时queue[rear]=queue[1]=1 rear=2 此时e==0跳出do……while语句 即打印第一行完毕输出: 1 1 UpQueue(); 在队尾添加元素0 即queue[rear]=queue[2]=0 rear=3 队列为: 2 1 0 1 0 1 puts("");//每行后回车换行rear front

杨辉三角的规律以及推导公式

精心整理 杨辉三角的规律以及定理 二项式定理与杨辉三角1与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。 2的展开式来探讨。杨辉三角我们首先从一个二次多项式(a+b)222此代数式的系数为:121 由上式得出:(a+b)+2ab+b=由此可发现,此代数式的系+3+b+3ab(a+b 的展开式是什么呢?答案为(a+b的展开式。为133但似乎没有什么规律,所以让我们再来看b2+4a展开式为由此又可发现,代数式的系数为+4+b+6464似乎发现了一些规律,就可以发现以下呈三角形的数列:1 ) 1(1)11(112) 121(113) 1331(114) 14641(115) 15101051(116) 1615201561(11)1,4,6,4,1,(,1,2,1)(1,3,3,1)1,杨辉三角形的系数分别为:(1,1),(:所以(),1,7,21,35,35,21,7,1) (1,5,10,10,5,1),(1,6,15,20,15,6,17642547765233 (a+b)=ab+7ab+21a+bb+35a+7abb+35a。b+21a n的次数依次上b-n,n-n 等于a的次数依次下降、n-1、2...n由上式可以看出,(a+b) (2) 方。系数是杨辉三角里的系数。、、升,01 杨辉三角的幂的关系2 精心整理.

精心整理 首先我们把杨辉三角的每一行分别相加,如下: 1(1) 11(1+1=2) 121(1+2+1=4) 1331(1+3+3+1=8) 14641(1+4+6+4+1=16) 15101051(1+5+10+10+5+1=32) 1615201561(1+6+15+20+15+6+1=64) … 相加得到的数136…刚好,6,…次幂,即杨辉三角行个数之和等n-次 杨辉三角中斜行和水平行之间的关 (1) 1(2)n=1 11(3)n=2 121(4)n=3 1331(5)n=4 14641(6)n=5 15101051n=6 1615201561 把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6

杨辉三角与二项式定理教学设计

1.3.2“杨辉三角”与二项式定理 昌邑一中吴福顺 一、复习引入: 1.二项式定理及其特例: (1), (2) . 2 .二项展开式的通项公式: 3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对的限制;求有理项时要注意到指数及项数的整数性二、讲解新课: (首先介绍杨辉本人,让学生了解杨辉) 1 二项式系数表(杨辉三角) 展开式的二项式系数,当依次取…时,二项式系数表,表中每行两端都是,除以外的每一个数都等于它肩上两个数的和2.二项式系数的性质: 展开式的二项式系数是,,,…,.可以看成以为自变量的函数 定义域是,例当时,其图象是个孤立的点(如图) (1)对称性.与首末两端“等距离”的两个二项式系数相等(∵). 直线是图象的对称轴. (2)增减性与最大值.∵, ∴相对于的增减情况由决定,, 当时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值; 当是偶数时,中间一项取得最大值;当是奇数时,中间两项,取得最大值. (3)各二项式系数和: ∵, 令,则

(讲解完成后,学生搜索有关二项式系数性质的网页,更加全面的了解二项式系数) 三、讲解范例: 例1.在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和证明:在展开式中,令,则, 即, ∴, 即在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和. (搜索赋值法,了解什么是赋值法) 说明:由性质(3)及例1知 . 例2.已知,求: (1);(2);(3) . 解:(1)当时,,展开式右边为 ∴, 当时,,∴, (2)令,① 令,② ①②得:,∴ . (3)由展开式知:均为负,均为正, ∴由(2)中①+②得:, ∴, ∴ 例3.求 (1+x)+(1+x)2+…+(1+x)10展开式中x3的系数 解: =,

实验二 栈与队列操作实验题目

实验二栈与队列操作 实验目的: (1)理解栈与队列的结构特征和运算特征,以便在实际问题背景下灵活运用。 (2)了解复杂问题的递归算法设计。 本次实验中,下列实验项目选做一。 1、顺序栈的基本操作 [问题描述] 设计算法,实现顺序栈的各种基本操作 [基本要求] (1)初始化栈s。 (2)从键盘输入10个字符以$结束,建立顺序栈。 (3)从键盘输入1个元素,执行入栈操作。 (4)将栈顶元素出栈。 (5)判断栈是否为空。 (6)输出从栈顶到栈底元素。 要求程序通过一个主菜单进行控制,在主菜单界面通过选择菜单项的序号来调用各功能函数。 2、链栈的基本操作 [问题描述] 设计算法,实现链栈的各种基本操作 [基本要求] (1)初始化栈s。 (2)从键盘输入10个字符以$结束,建立带头结点的链栈。 (3)从键盘输入1个元素,执行入栈操作。 (4)完成出栈操作。 (5)判断栈是否为空。 (6)输出从栈顶到栈底元素。 (7)输出链栈的长度。 要求程序通过一个主菜单进行控制,在主菜单界面通过选择菜单项的序号来调用各功能函数。 3、循环队列的基本操作 [问题描述] 设计算法,实现循环顺序队列的建立、入队、出队等操作。 [基本要求] (1)从键盘输入10个字符以$结束,建立循环队列,并显示结果。 (2)从键盘输入1个元素,执行入队操作,并显示结果。 (3)将队头元素出队,并显示结果。 (4)要求程序通过一个主菜单进行控制,在主菜单界面通过选择菜单项的序号来调用各功能函数。

4、只用尾指针表示的循环链表队列的综合操作 [问题描述] 假设以带头结点的的循环链表表示队列,并且只设一个指针指向队尾元素的结点(注意不设头指针),试编写队列初始化、入队、出队函数。 [基本要求及提示] (1)首先定义链表结点类型。 (2)编写带头结点的循环链表的初始化函数,只用尾指针表示。 (3)编写入队函数、出队函数。 (4)在主函数中编写菜单(1.初始化;2.入队;3.出队;4.退出),调用上述功能函数。 5、用标志域表示队空队满状态的循环队列的综合操作 [问题描述] 要求循环队列不损失一个空间全部都得到利用,设置一个标志域tag,以0和1来区分当队头与队尾指针相同时队列状态的空和满,试编写与此结构相对应的入队和出队操作。 [基本要求及提示] (1)教材中为区分当队头与队尾指针相同时队列状态的空和满,以牺牲一个空间的代价来实现的,空:Q->front==Q->rear,满:(Q->rear+1)%MAXSIZE==Q->front。 (2)本题不损失一个空间全部都得到利用,为此如下定义循环队列类型: Typedef struct { QueueElementType element[MAXSIZE]; int front; int rear; int tag; }SeqQueue; 此时,循环队列空和满的条件分别为: Q->front==Q->rear&&tag==0 和 Q->front==Q->rear&&tag==1 (3)编写入队函数、出队函数。 (4)在主函数中编写菜单(1.入队;2.出队;3.退出),调用上述功能函数。 6、利用辅助数组进行栈的逆置 [问题描述] 利用辅助栈将栈中的元素逆置。 [基本要求及提示] 在主函数中编写菜单(1.入栈;2.出栈;3.逆置;4.退出)调试运行程序。 7、利用辅助栈进行队列的逆置 [问题描述] 利用辅助栈进行队列元素逆置。 [基本要求及提示] 在主函数中编写菜单(1.入队;2.出队;3.逆置;4.退出)调试运行程序。 8、Hanoi塔问题

杨辉三角的各种算法实现

/* Name: 杨辉三角算法集锦 Copyright: 始发于goal00001111的专栏;允许自由转载,但必须注明作者和出处Author: goal00001111 Date: 27-11-08 19:04 Description: 分别使用了二维数组,一维数组,队列,二项式公式,组合公式推论和递归方法等9种算法 算法思路详见代码注释——注释很详细,呵呵 */ #include #include using namespace std; const int MAXROW = 40; void PrintBlank(int n); int Com(int n, int m); int Try(int row, int cel); void Fun_1(int row); void Fun_2(int row); void Fun_3(int row); void Fun_4(int row); void Fun_5(int row); void Fun_6(int row); void Fun_7(int row); void Fun_8(int row); void Fun_9(int row); int main() { int row; cin >> row; Fun_1(row); cout << endl; Fun_2(row); cout << endl; Fun_3(row); cout << endl; Fun_4(row); cout << endl; Fun_5(row);

cout << endl; Fun_6(row); cout << endl; Fun_7(row); cout << endl; Fun_8(row); cout << endl; Fun_9(row); system("pause"); return 0; } //输出n个空格 void PrintBlank(int n) { for (int i=0; i

杨辉三角在二项式中的应用

杨辉三角在二项是中的应用 一、课题:二项式系数的性质(1) 二、教学目标:1.理解和掌握二项式系数的性质,并会简单的应用; 2.初步了解用赋值法是解决二项式系数问题; 3.能用函数的观点分析处理二项式系数的性质,提高分析问题和解决问题的能力。 三、教学重点、难点:二项式系数的性质及其对性质的理解和应用。 四、教学过程: (一)复习: 1.二项式定理,二项展开式的通项及二项式系数. (二)新课讲解: 1.二项式系数表(杨辉三角) ()n a b +展开式的二项式系数,当n 依次取1,2,3…时,如下表所示: 1()a b +……………………1 1 2()a b +…………………1 2 1 3()a b +………………1 3 3 1 4()a b +……………1 4 6 4 1 5()a b +…………1 5 10 10 5 1 6()a b +………1 6 15 20 15 6 1 ……………………………… 上表叫二项式系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和(为什么?) 这个表早在我国南宋数学家杨辉1261年所著的《详解九章算法》就已经出现,这个表叫杨辉三角。利用这一性质,可根据相应于n 的各项二项式系数写出相应于1n +的各项二项式系数。 2.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量的函数()f r 定义域是{0,1,2,,}n ,例当6n =时, 其图象是7个孤立的点(如图) (1)对称性.与首末两端“等距离” 的两个二项式系数相等(∵m n m n n C C -=). 直线2 n r =是图象的对称轴. (2)增减性与最大值.∵1(1)(2)(1)1!k k n n n n n n k n k C C k k ----+-+= =?, ∴k n C 相对于1k n C -的增减情况由1n k k -+决定,1112 n k n k k -++>?<, 当12n k +<时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值; 当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n n C -,12n n C +取得最大值. (3)各二项式系数和: ∵1(1)1n r r n n n x C x C x x +=++ +++,令1x =, 则0122n r n n n n n n C C C C C =++++++. 3.例题分析: 例1 在()n a b +的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和。 证明:在展开式01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈中, 令1,1a b ==-,则0123(11)(1)n n n n n n n n C C C C C -=-+-+ +-, 即02130()()n n n n C C C C =++ -++, ∴0213n n n n C C C C ++=++,

相关文档
最新文档