运筹学第八章 存储模型 第2节 确定性存储模型
确定性库存模型

允许缺货的经济批量模型
§2.3 供应速度有限的不缺货库存问题 §2.4 供应速度有限允许缺货的库存问题
精品课程《运筹学》
第二节 确定性库存模型
本节假定在单位时间内(或称计划期)的需求 量、货物供应速率、订货费、缺货费为常数。 在每个区间开始订购或生产货物量,形成循环 存储策略。
§2.1 瞬时供货,不允许缺货的经济批量模型
①需求是连续均匀的,设需求速率为 D ;
②当存储量降至零时,可立即补充,不会造成缺货 (即认为供应速率为无穷); ③每次订货费为 a ,单位货物的存储费为 ,都为常 数; ④每次订货量都相同,均为 Q 。 精品课程《运筹学》
b
第二节 确定性库存模型
存储状态的变化图:
Q1T1b ' / 2T
,
1 min f 1 T bD 2 1 2 RD(Q Q1 )(T T1 ) / Q aD / Q PD
(7.2.5)
精品课程《运筹学》
第二节 确定性库存模型
Q DT , Q1 DT1 , Q, Q1 , T , T1 0
将其视为 Q1
精品课程《运筹学》
第二节 确定性库存模型
解:此为连续加工不允许缺货的模型,以一个月
为计划期。 D =100, 已知 V =500, P =10, a =5, b =0.5 * Q 25100500 = =50( 件 ) 0.5( 500 100 ) *= 25500 =0.5(月) T 0.5100( 500 100 ) * = =0.1(月) 25100 T
S* 0
*
f
2abD PD
精心整理的运筹学重点8.存储论

P−K P−K 对 Q 求导数,得到 ∫ ϕ (r )dr = ,记 F ( Q) = ∫ϕ ( r ) dr = P −W P −W 0 0
又因为
Q
Q
d 2C (Q ) = −( P − W )ϕ (Q) < 0 ,因此上式求得的 Q 为 C(Q)的极大值点,即为总利 dQ2
润期望值最大的最佳经济订货批量。 若用
报童应准备的报纸最佳数量 Q 应按下列不等式确定 Q-1 Q k P( r ) < ≤ P( r ) (9 − 25) k + h r=0 r=0 K——实际损失,h——机会损失 例 1:某店拟出售甲商品,每单位甲商品成本 50 元,售价 70 元。如不能售出必须减价 为 40 元,减价后一定可以售出。已知售货量 r 的概率服从泊松分布。 e− k λτ P ( r) = τ! 根据以往经验,平均售出数为 6 单位(λ=6)。问该店订购量应为若干单位? 解: 该店的缺货损失, 每单位商品为 70-50=20。 滞销损失, 每单位商品 50-40=10, k=20, h=10 k Q 20 e−6 6τ = ≈ 0.667, P (τ ) = , F( Q) = P(τ ) k + h 20 + 10 τ! τ =0 −6 τ −6 τ 6 7 e 6 e 6 F( 6) = = 0.6063, F( 7) = = 0.7440 τ =0 τ ! τ =0 τ! k 因为 F(6) < < F( 7 ) 所以定 7 单位时损失最小。 k+h 例 2:某商店计划订购一批夏季时装,进价是 500 元,预计售价为 1000 元。夏季未售完 的要在季末进行削价处理, 处理价为 200 元。 根据以往的经验, 该时装的销量服从[50,100] 上的均匀分布,求最佳订货量。 解:根据题意可得:
确定性存储问题数学模型

第三节确定性存储问题数学模型对于工厂来说,任务是把进来的原料加工成产品,并把它销售出去。
要生产就要库存一定量的原材料,要销售也需要库存一定量的产品。
库存材料和产品就有存储费的问题,而需求又有确定型和随机型等情况。
如何确定一个最优的生产周期,使得在单位时间内所花费的生产费用最少。
这是摆在工厂管理者面前的现实问题。
我们这节讨论确定性需求存储问题的数学建模。
一、仓库只库存产品的简单情况记k为工厂生产线运转时产品的生产速率,r为商品的销售速率,Q为库存量。
仓库的库存以这样的方式变化:开始时边生产边销售,库存量以速率k-r增加,到时刻t只销售不生产,Q以速率r减少,而到时刻T,Q减少到零,如此为一个周期。
Q与t的关系如图2.3.1所示。
再记c为每开动一次生产线的成本,s为单位时间Q每件产品的存储费,W为单位时间总费用。
则问题可做如下描述:确定周期T,使单位时间的总费用W最小。
图2.3.1 库存量Q与时间t关系图(情况1)我们作如下分析:由假设条件知,单位时间成本为c/T,单位时间库存费为sA/T,其中A为三角形OPT的面积,即Ak rT t =-2又有k t = rT , 所以单位时间总费用为 W c T sA T c T s k r TT t s k r kT r c T sr k r kT=+=+-=-=+-()()()222记B sr k r k=-()2则W c T BT =+ (2.3.1)为求最小总费用点,令dW dT= 0, 得-c /T 2 +B = 0从而有T min = c b / (2.3.2)代入式(2.3.1)得W min = 2bc (2.3.3) 式(2.3.2)表明,最优周期与生产成本的平方根成正比,与存储费的平方根成反比。
这样一个结论是经过建立数学模型并进行分析计算才得出来的。
计算出来的这个最优 周期T 往往不易在实际生 产过程中操作实施,这就 需要作一点微调(或者说 做一点摄动),那么会对W 产生多大的影响呢?我 们简单分析一下这种敏感性。
确定型存储模型

由t=Q/R代入式(8.1)消去变量t,得到无条件极值
min
f
(Q)
1 2
C1Q
KR
1 Q
C3 R
求上式的极值,得到最优解(证明参看§10.6)
Q* 2C3 R / C1
Q*
t* R
2C3 / C1R
f * 2C1C3R KR C1Q KR
n*
1 t
C1R / 2C3
模型一是求总费用最小的订货批量,通常称为经典经济订货 批量(Economic ordering quantity)模型。下面要讲的几种模型 都是这种模型的推广。
C3 t
KR
得到最优解:
§9.2 确定型存储模型
Deterministic Inventory Model
Inventory Theory
2020年5月15日星期五 Page 9 of 20
Q1*
2C2C3 R C1 (C1 C2 )
Q* Rt* 2C3 R(C1 C ) C1C2
Qs* Q * Q1*
订货费:C3+KQ
则在计划期内总费用最小的存储模型为
min
f
1 2t
C1Q1t1
1 2t
C2
(Q
Q1 )(t
t1 )
C3 t
KQ
t
Q Rt,Q1 Rt1,QQ1,t,t1 0
消去目标函数中的变量Q和t1 ,式(10.8)便得
min
f (Q1, t)
1 2Rt
C1Q12
1 2Rt
C2
(Rt
Q1 ) 2
模型与式(10.1)相同,最优批量不变,订货点为
Q1=RL
(10.7)
《运筹学》第八章存贮论

– 求极小值
C3 1 dC (t ) 2 C1 R 0 dt t 2 C3 1 dC (t ) 2 C1 R 0 dt t 2 2C3 * – 最佳订货间隔 t C1 R
*
Q * Rt *
2C3 RP C1 ( P R)
R * t3 t P
*
R( P R) * A R(t t ) t P
* * * 3
平均总费用
C * 2C3 t *
模型Ⅳ:允许缺货,补充时间极短 最优存贮周期 经济生产批量
t
*
2C3 (C1 C2 ) C1C2 R
1
存贮量 R
[t1, t2 ] -以速度R满足需求及 以(P-R)速度补充[ 0, t1 ] 内 的缺货。t2时缺货补足。
P-R
S
[t2, t3 ] -以速度R满足需求, 存贮量以P-R速度增加。 t3时 刻达到最大存贮量A,并停止 生产。
t1
0
[t3, t ] -以存贮满足需求,存 贮以需求速度R减少。 t2
二、确定型存贮模型
模型Ⅰ:不允许缺货,补充时间极短
假设:
需求是连续均匀的,即单位时间的需求量R为常数 补充可以瞬时实现,即补充时间近似为零 单位存贮费C1,单位缺货费C2=∞,订购费用C3;
货物单价K
经济 订购 批量
经济订购批量
接收 订货 存贮消耗 (需求率为R)
Q
平均 存贮量
Q — 2
模型Ⅵ:需求是离散随机变量
设报童每天准备Q份报纸。 采用损失期望值最小准则确定Q
运筹学课件

假设
提出
在实践中,真正的库存情况很少与模型的假设吻合。在具 体应用中,经理必须判断模型的假设是否与现实接近,以 便更好的发挥模型的作用。
确定性 EOQ 模型
最基本的确定性 EOQ 模型 允许缺货的 EOQ 模型 连续供货速率的 EOQ 模型 数量折扣的最优订货策略
最基本的确定性 EOQ 模型
基本假设
s 2 KD 11 24,495 22,193 hs h 2.4 11
最大允许缺货量
q * M * 27,035 22,193 4,842
最优周期长度
q * 27,035 t* 4.5 D 6,000
确定性的 EOQ 模型
最基本的确定性 EOQ 模型 允许缺货的 EOQ 模型 连续供货速率的 EOQ 模型 数量折扣的最优订货策略
* h s 2 KD q s h
M*
s 2 KD hs h
实用举例
例.3 继续考虑例.1 。现在假设允许缺货产生且每个 MP3 的缺货费用为 (元/月)。试求允许缺货情况下的最优的生 产存储策略和最大允许缺货量。
s 11
解: q*
M*
h s 2 KD 2.4 11 24,495 27,035 s h 11
实用举例(解)
(2)
D 120,000 6,000 29,394 q 24,495 hq 2.4 24,495 库存费用= 29,394 2 2 KD hq pD 538,788 总费用(元) TC ( q ) q 2
启动费用= K
启动费用=库存费用
• K —— 每次的订购费用或者每批生产的启动费用 •
h —— 一单位产品在一年内的库存费用
存储论
大连大学
28
数学建模工作室
随机性存储模型的策略
❖ (1) 定期订货,但订货数量需要根据上一个周期末剩下货物的数量决
定订货量。剩下的数量少,可以多订货。剩下的数量多,可以少订或不 订货。这种策略可称为定期订货法。
❖ (2) 定点订货,存储降到某一确定的数量时即订货,不再考虑间隔的 时间。这一数量值称为订货点,每次订货的数量不变,这种策略可称之 为定点订货法。
存储模型的基本介绍
存储模型的分类
存储模型大体分为两类:一类是确定性模型,即模型 中的变量皆为确定型的量,不包括任何随机变量;另一 类是随机性模型,即模型中含有随机变量。
大连大学
7 数学建模工作室
存储模型的分类
存储模型的分类
存储模型大体分为两类:一类是确定型模型,即模型 中的变量皆为确定型的量,不包括任何随机变量;另一 类是随机型模型,即模型中含有随机变量。
确定型存储模型
(4)允许缺货,补充时间极短的经济订购批量模型
基本假设:除允许缺货外,其余条件皆与模型一相同。
大连大学
23
数学建模工作室
确定型存储模型
从图上可知:
平均存储量 Q S T1 Q S 2
2T
2Q
平均缺货量 ST2 S 2 2T 2Q
因此,最优策略为:
Q* 2CD DCP CS
Q
C
1 2
1
D P
QC
P
CDD Q
因此,平均总费用为:
大连大学
21
数学建模工作室
Q确* 定CP型2C1D存DDP 储 模 型
T * Q* D
2CD P
CPDP D
A* 1 D Q* P
存储论-确定性存储模型
确定性模型二(4)
t0
Q0
2C 3 C1R
2C 3 R C1
C0 2C1C3 R
例5 某商店经售甲商品成本单价为500元,年存储费用为成本 的20%,年需求量为365件,需求速度为常数。甲商品的订购 费为20元,提前期为10天,求E.O.Q及最低费用。
定义
订购点(或订货点) 设t1 为提前期,R为需求速度,当存储降至 L=Rt1 时即订货。L 称为~ 定点订货 不考虑t0 ,只要存储降至 L 即订货,订货量为Q0, 称这种存储策略为~ 定时订货 每隔t0时间订货一次为~
存储物资 使用和消费 供应(生产)与需求(消费)之间的不协调
供应量 ——— 需求量 供应时间——— 需求时间
现象
供不应求 供过于求
存储作用: 缓解供需之间的不协调
第4页
存储问题的提出
例1 商店
不足: 缺货—— 减少利润 储存商品 过多:积压—— 占用流动资金,周转不开
Q S W t T
S W
Q
t T
间 断 式
连 续 式
确定性:如合同 输出分为 随机性:如零售
第7页
存储论的基本概念 (补充)
补充: 存储的输入(订货或生产) 备货时间:从订货到货物进入“存储”的时间 (或称为提前时间:提前订货的这段时间)
?
多久补充一次 一次的量多少
存储策略:决定多久补一次以及 每次补充数量的策略
(1)不允许缺货,求最优订购批量 及年订购次数; (2)允许缺货,问单位缺货损失费 为多少时一年只需订购3次?
第30页
确定性模型四(1)
模型四:允许缺货(缺货需补足) 生产时间需一定时间 假设:
运筹学详解教程 7.2确定性存储模型
10.46(元)
2 0.4 5100 0.15 0.4 0.15
四、修正的EOQ模型:库存容量有限
当经济批量Q大于库存容量W时,我们作 如下假设
按经济批量采购,多余部分存储在租用库房, 单位租用存储费用CW
首先使用租用库房的物品,用完后使用自己库 房的物品,用完后再次采购。
有关分析用图见后图。
t0
2C3 P C1R(P R)
模型二的经济批量
经济采购批量E.O.Q.
Q0 Rt0 最少费用为
2C3 RP C1(P R)
C0 C(t0 )
2C1C3R(P R) P
模型二的最佳生产时间T和最大库存量S
第 最佳生产时间
十 章
T0
Rt0 P
2C3 R C1P(P R)
存 最大库存量为
模型一存储量的变化
Q 斜率=-R
Q0
0
t0
T
模型一的费用
订货费 存储费
C3 KRt C3 KQ
t
0 C1RTdT
1 2
C1
Rt
2
1 2 C1Qt
平均费用
C (t )
C3 t
1 2
C1Rt
KR
RC3 C1Q KR Q2
关于单位费用的讨论
单位费用共三项
1)第一项是订购费,它与订货量无关,因 此订货量越大(可用时间越长),单位货 物费用越少,从这一点上说应当每次尽量 多采购一些;
批量
年存储费 年订购费 年总费用 费用最小
Q
C1Q / 2 C3R / Q C
批量
100
5
80
85
200
10
40
50
运筹学第八章库存决策
已知该商品的购进单价为1.25元,出售单价为15元,若当 天未能售出,第二天的处理价格为11.25元。试求合理的 进货数量。 解:k 1512.5 2.5,h 12.5 11.25 1.25,
存量
Q
(如图),
RL
这时的存量LR称为订货点。
时间
L
模型二:在制批量存贮模型
(不允许缺货,生产需一定时间)
设:C3=∞,L=0,R,C1,C2均为常数,生产速率P>R 求:Q*与t*
A
R PR
t1 t
解:(T时)总费用 订货费 存贮费
订货费
n
C1
C1
R Q
T
单位时间存量
A 2
1 2
(P
R)t1Q
其中A类物品虽数量不到10%,但占用的资金却达50%。故 应重点加强对A类的库存管理。同时对B类和C类也可分别订 出库存管理措施。 以下我们仅就单一种类的物品来讨论。
占 100
90
资 80 金
50
10 A B
C
10
50
物品数量百分比
100
数量
二、存贮所包含的基本要素
1、需求量: (1)确定的,需求率(单位时间需求量)R
第八章 库存决策
绪论
生产和消费是关系国计民生的两件大事,存贮是其间 的一个重要环节。即生产→存贮→消费 存贮是解决供求间不协调的矛盾的一种手段,其必要 性是显然的。 “存贮得越多越好”的思想,不是绝对的。存贮过程 中要有一定的损失和消耗,经济上要付出代价。存贮 论就是要研究如何合理的进行库存,以使总的费用最 小。