固体物理晶体缺陷PPT

固体物理题库 第一章 晶体的结构

第一章晶体的结构 一、填空体(每空1分) 1. 晶体具有的共同性质为长程有序、自限性、各向异性。 2. 对于简立方晶体,如果晶格常数为a,它的最近邻原子间距为 a ,次近邻原子间 ,原胞与晶胞的体积比1:1 ,配位数为 6 。 3. 对于体心立方晶体,如果晶格常数为a a2/,次近邻原子间距为 a ,原胞与晶胞的体积比1:2 ,配位数为8 。 4. 对于面心立方晶体,如果晶格常数为a 邻原子间距为 a ,原胞与晶胞的体积比1:4 ,配位数为12 。 5. 面指数(h1h2h3)所标志的晶面把原胞基矢a1,a2,a3分割,其中最靠近原点的平面在a1,a2,a3上的截距分别为__1/h1_,_1/h2__,__1/h3_。 6. 根据组成粒子在空间排列的有序度和对称性,固体可分为晶体、准晶体和非晶体。 7. 根据晶体内晶粒排列的特点,晶体可分为单晶和多晶。 8. 常见的晶体堆积结构有简立方(结构)、体心立方(结构)、面心立方(结构)和六角密排(结构)等,例如金属钠(Na)是体心立方(结构),铜(Cu)晶体属于面心立方结构,镁(Mg)晶体属于六角密排结构。 9. 对点阵而言,考虑其宏观对称性,他们可以分为7个晶系,如果还考虑其平移对称性,则共有14种布喇菲格子。 10.晶体结构的宏观对称只可能有下列10种元素:1 ,2 ,3 ,4 ,6 ,i ,m ,3,4,6,其中3和6不是独立对称素,由这10种对称素对应的对称操作只能组成32 个点群。 11. 晶体按照其基元中原子数的多少可分为复式晶格和简单晶格,其中简单晶格基元中有 1 个原子。 12. 晶体原胞中含有 1 个格点。 13. 魏格纳-塞茨原胞中含有 1 个格点。 二、基本概念 1. 原胞 原胞:晶格最小的周期性单元。 2. 晶胞 结晶学中把晶格中能反映晶体对称特征的周期性单元成为晶胞。 3. 散射因子 原子内所有电子在某一方向上引起的散射波的振幅的几何和,与某一电子在该方向上引起的散射波的振幅之比。 4. 几何结构因子 原胞内所有原子在某一方向上引起的散射波的总振幅与某一电子在该方向上所引起的散射

固体物理中的晶体缺陷讲解

固体物理中的晶体缺陷 学院:化学化工与生物工程学院 班级:生物1301 学号: 131030114 姓名:李丹丹

固体物理中的晶体缺陷 1.国内外进展及研究意义 1.1 国内外对晶体缺陷的研究现状和发展动态 19世纪中叶布拉非发展了空间点阵,概括了点阵周期性的特征,1912年劳厄的晶体X 射线衍射实验成功后,证实了晶体中原子作规则排列,从理想晶体结构出发,人们发展了离子晶体的点阵理论和金属的电子理论,成功的计算了离子晶体的结合能,对于金属晶体的原子键能也有了初步了了解,并很好的解释了金属的电学性质。随后人们又认识到了晶体中原子并非静止排列,它在晶体中的平衡阵点位置作震动,甚至在绝对零度也不是凝固不动的,即还有所谓零点能的作用,从这个理论出发建立了点阵震动理论,从而建立了固体的比热理论。在20世纪20年代以后人们就发现晶体的许多性质很难用理想晶体结构来解释,提出晶体中有许多原子可能偏离规则排列,即存在有缺陷,并企图用此来解释许多用理想晶体结构无法解释的晶体性质。W.Schottky为了解释离子晶体的电介电导率问题,提出在晶体中可能由于热起伏而产生填隙离子和空位,而且发现食盐的电介导电率与这些缺陷的数目有关。随后为了解决晶体屈服强度的实验数据值与理论估计之间的巨大差别,又引进了位错这一晶体缺陷。今年来人们对晶体中各种缺陷有了更深刻的认识,建立了晶体缺陷理论。 理想晶体在实际中并不存在。实际晶体或多或少存在各种杂质和缺陷。国内外学者通过使用显微镜的对物质性能与缺陷的关系研究得相当多,也在一定意义上取得了可喜的进展。 1.2 晶体缺陷的研究意义 在晶体的生长及形成过程中,由于温度、压力、介质组分浓度等外界环境中各种复杂因素变化及质点热运动或受应力作用等其他条件的不同程度的影响会使粒子的排列并不完整和规则,可能存在空位、间隙粒子、位错、镶嵌结构等而偏离完整周期性点阵结构,形成偏离理想晶体结构的区域,我们称这样的区域为晶体缺陷,它们可以在晶格内迁移,以至消失,同时也可产生新的晶体缺陷。本文就晶体中所存在的各类缺陷做了详细说明,并且重点介绍了各类缺陷的成因及其特征。 偏离理想状态的不完整晶体,即有某些缺陷的晶体,在晶体中缺陷并不是静止地、稳定不变地存在着,而是随着各种条件的改变而不断变动的。它们可以产生、发展、运动和交互

晶体中的缺陷

第三章晶体中的缺陷 第一节概述 一、缺陷的概念 大多数固体是晶体,晶体正是以其特殊的构型被人们最早认识。因此目前(至少在80年代以前>人们理解的“固体物理”主要是指晶体。当然这也是因为客观上晶体的理论相对成熟。在晶体理论发展中,空间点阵的概念非常重要。 空间点阵中,用几何上规则的点来描述晶体中的原子排列,并连成格子,这些点被称为格点,格子被称为点阵,这就是空间点阵的基本思想,它是对晶体原子排列的抽象。空间点阵在晶体学理论的发展中起到了重要作用。可以说,它是晶体学理论的基础。现代的晶体理论基于晶体具有宏观平移对称性,并因此发展了空间点阵学说。 严格地说对称性是一种数学上的操作,它与“空间群”的概念相联系,对它的描述不属本课程内容。但是,从另一个角度来理解晶体的平移对称性对我们今后的课程是有益的。 所谓平移对称性就是指对一空间点阵,任选一个最小基本单元,在空间三维方向进行平移,这个单元能够无一遗漏的完全复制所有空间格点。考虑二维实例,如图3-1所示。 图3-1 平移对称性的示意图 在上面的例子中,以一个基元在二维方向上平移完全能复制所有的点,无一遗漏。这种情况,我们说具有平移对称性。这样的晶体称为“理想晶体”或“完整晶体”。

图3-2 平移对称性的破坏 如果我们对上述的格点进行稍微局部破坏,那么情况如何?请注意以下的复制过程,如图3-2所示。从图中我们看出:因为局部地方格点的破坏导致平移操作无法完整地复制全部的二维点阵。这样的晶体,我们就称之为含缺陷的晶体,对称性破坏的局部区域称为晶体缺陷。 晶体缺陷的产生与晶体的生长条件,晶体中原子的热运动以及对晶体的加工工艺等有关。事实上,任何晶体即使在绝对零度都含有缺陷,自然界中理想晶体是不存在的。既然存在着对称性的缺陷,平移操作不能复制全部格点,那么空间点阵的概念似乎不能用到含有缺陷的晶体中,亦即晶体理论的基石不再牢固。 幸运的是,缺陷的存在只是晶体中局部的破坏。作为一种统计,一种近似,一种几何模型,我们仍然继承这种学说。因为缺陷存在的比例毕竟只是一个很小的量(这指的是通常的情况)。例如20℃时,Cu的空位浓度为3.8×10-17,充分退火后Fe 中的位错密度为1012m-2<空位、位错都是以后要介绍的缺陷形态)。现在你对这些数量级的概念可能难以接受,那没关系,你只须知道这样的事实:从占有原子百分数来说,晶体中的缺陷在数量上是微不足道的。 因此,整体上看,可以认为一般晶体是近乎完整的。因而对于实际晶体中存在的缺陷可以用确切的几何图形来描述,这一点非常重要。它是我们今后讨论缺陷形态的基本出发点。事实上,把晶体看成近乎完整的并不是一种凭空的假设,大量的实验事实

《固体物理学答案》第一章晶体的结构

第一章、晶体的结构 习题 1.以刚性原子球堆积模型,计算以下各结构的致密度分别为: (1)简立方, 6 π ; (2)体心立方, ; 8 3 π (3)面心立方,; 6 2 π(4)六角密积,; 6 2 π (5)金刚石结构,; 16 3 π [解答] 设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度, 设n为一个晶胞中的刚性原子球数,r表示刚性原子球半径,V表示晶胞体 积,则致密度ρ= V r n3 3 4 π (1)对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积,如图 1.2所示,中心在1,2,3,4处的原子球将依次相 切,因为, , 4 33a V r a= = 面1.2 简立方晶胞 晶胞内包含1个原子,所以 ρ= 6 ) ( 3 3 2 3 4π π = a a (2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如图1.3所示,体心位置O的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为, , 4 33a V r a= =晶胞内包含2个原子,所以 ρ=π π 8 3 ) ( * 2 3 3 4 3 3 4 = a a

图1.3 体心立方晶胞 (3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为 3,42a V r a ==,1个晶胞内包含4个原子,所以 ρ= 6 2) ( *43 3 4 234ππ= a a . 图1.4面心立方晶胞 (4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切, 图 1.5 六角晶胞 图 1.6 正四面体 晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高 h =2 23 2 32c r a == 晶胞体积 V = 2 22 360sin ca ca = , 一个晶胞内包含两个原子,所以 ρ= ππ62)(*22 2 3 3 234= ca a .

《固体物理学》房晓勇主编教材-习题解答参考04第四章 晶体结构中的缺陷

第四章 晶格结构中的缺陷 4.1 试证明,由N 个原子组成的晶体,其肖托基缺陷数为 s B k T s n Ne μ?= 其中s μ是形成一个空位所需要的能量。 证明:设由N 个原子组成的晶体,其肖托基缺陷数为s n ,则其微观状态数为 !()!s ! s s N P N n n =? 由于s μ个空位的出现,熵的改变 []!ln ln ln ()ln()ln ()!! B s B B s s s s s s N S k P k k N N N n N n n n N n n Δ===????? 晶体的自由能变化为 []ln ()ln()ln s s s s B s s s F n T S n k T N N N n N n n n μμ=?Δ=?????s 要使晶体的自由能最小 B ()ln 0s s s s T n F u k T n N ?????Δ=+=??????????n 整理得 s B k T s s n e N n μ ?=? 在实际晶体中,由于, s n N <

固体物理知识点总结

一、考试重点 晶体结构、晶体结合、晶格振动、能带论的基本概念和基本理论和知识 二、复习内容 第一章晶体结构 基本概念 1、晶体分类及其特点: 单晶粒子在整个固体中周期性排列 非晶粒子在几个原子范围排列有序(短程有序) 多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积 准晶体粒子有序排列介于晶体和非晶体之间 2、晶体的共性: 解理性沿某些晶面方位容易劈裂的性质 各向异性晶体的性质与方向有关 旋转对称性 平移对称性 3、晶体平移对称性描述: 基元构成实际晶体的一个最小重复结构单元 格点用几何点代表基元,该几何点称为格点 晶格、 平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量 基矢 元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体。原胞是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。每个原胞含1个格点,原胞选择不是唯一的 晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴)为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞。

晶格常数 WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞。WS原胞含一个格点 复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格 简单格子 点阵格点的集合称为点阵 布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子。 4、常见晶体结构:简单立方、体心立方、面心立方、 金刚石 闪锌矿 铅锌矿

氯化铯 氯化钠 钙钛矿结构

5、密排面将原子看成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面 密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积。 六脚密堆积密排面按AB\AB\AB…堆积 立方密堆积密排面按ABC\ABC\ABC…排列 5、晶体对称性及分类: 对称性的定义晶体绕某轴旋转或对某点反演后能自身重合的性质 对称面 对称中心 旋转反演轴

固体物理——缺陷

班级成绩 学号第十二章晶体中的缺陷(crystal defect) 姓名 一、简要回答下列问题(answer the following questions): 1、为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低? [答]形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子。因此形成一个肖特基缺陷所需的能量,可以看成晶体表面一个原子与其他原子的相互作用能,和晶体内部一个原子与其他原子的相互作用能的差值。 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子。因此形成一个弗仑克尔缺陷所需的能量,可以看成晶体内部一个填隙原子与其他原子的相互作用能,和晶体内部一个原子与其他原子的相互作用能的差值。 填隙原子与相邻原子的距离非常小,它与其他原子的排斥能比正常原子间的排斥能大得多。由于排斥能是正值,包括吸引能和排斥能的相互作用能是负值,所以填隙原子与其他原子的相互作用能的绝对值,比晶体表面一个原子与其他原子的相互作用能的绝对值要小。 也就是说,形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低。 2、什么是刃位错与螺位错?它们各有什么特征? [答]当晶格周期性的破坏发生在晶体内部一条线的周围则称为线缺陷,通常又称之为位错。 刃位错: 亦称棱位错。其特点是: (1)原子的滑移方向与位错线的方向相垂直。 (2)晶体中有中断的原子面。 螺位错的特点是: (1)原子的滑移方向与位错线平行,且晶体内没有多余的半个晶面。 (2)垂直于位错线的各个晶面可以看成由一个晶面以螺旋阶梯的形式构成。 3、何为小角晶界?这种缺陷是面缺陷还是线缺陷? [答]具有完整结构的晶体两部分彼此之间的取向有着小角度θ的倾斜,在角θ里的部分是由少数几个多余的半晶面所组成的过渡区,这个区域称小角晶界。 这种缺陷是面缺陷。 二、解释下列物理概念(explain the following physics concepts): 1、缺陷 缺陷――晶体中的缺陷表征对晶体理想的周期结构的任何形式的偏离。

《固体物理学答案》第四章 晶体的缺陷

1.求证在立方密积结构中,最大的间隙原子半径R 之比为 414.0R r [ 解答] 对于面心立方结构,如图4.1所示,1原子中心与8原子中心的距离,等于1原子中心与2原子中心的距离,对于立方密积模型, 图 4.1 面心立方晶胞 因为1原子与8原子相切,所以1 原子与2原子也相切,同理,1,2,3,4原子依次相切,过1,2,3,4原子中心作一剖面,得到图4.2.1与2间的距离为 图4.2通过面心立方晶胞上下左右面心的剖面图 a R 2 22= , 即a R 4 2 = .与1,2,3,4相切的在1,2,3,4间隙中的小球的半径r 由下式决定 ,22r R a += 即a r )4221(-=. 于是有414.012=-=R r . 2.假设把一个Na 原子从Na 晶体中移到表面上所需的能量为1eV,计算室温时肖特基缺陷的浓度. [解答] 对于肖特基缺陷,在单原子晶体中空位数为 T k u B Ne n 1 1-= 式中N 为原子数, 1u 为将一个原子由晶体内的格点移到表面所需的能量,取室温时K T 300=,得到温时 肖特基缺陷的相对浓度17 6.382319110*72.1300*10*38.110*60.1exp 1 -----==??? ? ??-==e e N n T k u B 3.在上题中,相邻原子向空位迁移时必须越过0.5eV 的势垒,设原子的振动频率为1012 Hz 试估计室温下空位 的扩散系数.计算温度C 100时空位的扩散系数提高百分之几. [解答] 由《固体物理教程》(4.32)式可知,空们扩散系数的表示式为

T k E u T k u b B e v a qqD Ne n /)(012 11111 2 11+--= =, (1) 式中a 为空们跳跃一步所跨的距离, 01v 为与空们相邻的原子的振动频率,1u 为形成一个空位所需要的能量, 1E 为相邻原子抽空位迁移时必须越过的势垒高度,已知 晶体是体心立方结构,晶格常数 A a 282.4' =空位每跳一步的距离为2/3'a a =,120110=v Hz ,=1u 1eV ,=1E 0.5eV 将上述 数据代入(1)式,得到K T 300=,373K 时空位扩散系数分别为 s m s m e D K /10*584.4/*10*10*282.4*23*212332)300*10*38.1/(10*6.1*5.1122 10 30012319---=??? ? ??=-- s m s m e D K /10*874.3/*10*10*282.4*23*212282)373*10*38.1/(10*6.1*5.1122 10 3732 2319---=??? ? ??=-- 于是得到 430013001373110*451.8=-K K K D D D . 从上式可知,温度C 100时空位的扩散系数比室温下空位的扩散系数提高4个数量级. 4.对于铜,形成一个不肖特基缺陷的能量为 1.2eV,形成一个填隙原子所需要的能量为4eV.估算接近1300K (铜的熔点)时,两种缺隙浓度时的数量级差多少. [解答] 根据《固体物理教程》中(4.19)(4.20)式可知,空位和填隙原子的数目分别为T k u B Ne n /1 1-=, T k u B Ne n /221-=. 在第二式中已取间隙位置数等于原子数 ,由上述两式得单位体积铜中空位和填隙原子的浓度分别为 T k u B e m N n C /0111-= =ρ, T k u B e m N n C /02221-==ρ . T k u B e m N n C /02221-==ρ . 式中m 为摩尔质量,ρ为质量密度,将 J eV u 19110*602.1*2.12.1-==,J eV u 19210*602.1*44-==, 310*54.63-=m kg/mo1, 23010*022.6=N /mo1, 310*92.8=ρkg/m 3,K T 1300=, K J k B /10*381.123-= 代入1C 和2C 得 3 )1300*10*381.1/(10*602.1*2.13 3231231910*54.6310*9.8*10*022.6m e C ----= 3243708.102810*891.1*10*454.8---==m m e 3 )1300*10*381.1/(10*602.1*43 3232231910 *54.6310*9.8*10*022.6m e C ----= 313369.352810*674.2*10*454.8---==m m e . 从以上两式可以看出,接近K 1300(铜的熔点)时,肖特基缺陷和填隙原子缺陷浓度相差11个数量级. 5.在离子晶体中,由于,电中性的要求,肖特基缺陷都成对地产生,令n 代表正负离子空位的对数,E 是形成一

浅谈固体物理中的晶体缺陷

浅谈固体物理中的晶体缺陷 20074051024 刘珊珊 实际晶体或多或少存在各种杂质和缺陷。依照传统的分类有:点缺陷、线缺陷(见位错)和面缺陷。它们对固体的物性以及功能材料的技术性能都起重要的作用。半导体的电学、发光学等性质依赖于其中的杂质和缺陷。大规模集成电路的工艺中控制(和利用)杂质和缺陷是极为重要的。目前人们感兴趣的有深能级杂质、发光中心机理、无辐射跃迁的微观过程等。H.A.贝特在1929年用群论方法分析晶体中杂质离子的电子能级的分裂,开辟了晶体场的新领域。数十年来在这领域积累了大量的研究成果,为顺磁共振技术、微波激射放大器、固体激光器的出现准备了基础。金属中的杂质对其物理性质有广泛的影响。最为突出的是磁性杂质对金属低温下物性的影响,这个现象称为近藤效应,因为近藤淳在1946年首先提出说明这现象的理论。磁杂质对超导体的性质有显著影响,会降低其临界温度。在特殊物质(例如,LaAl2、CoAl2)中,近藤杂质可使这合金在温度T吤进入超导电状态又于T扖离开这个状态。此外,离子晶体中的缺陷对色心现象和电导过程占有决定性的地位。Я.И.夫伦克耳对金属强度的理论值作了估计,远大于实际的强度,这促使人们去设想金属中存在某种容易滑移的线缺陷。1934年G.I.泰勒、E.奥罗万和M.波拉尼独立地提出刃位错理论说明金属强度。F.C.夫兰克在1944年根据实验观察结果提出螺位错促进晶体生长的理论,后来,人们利用电子显微术直接看到位错的运动。位错以及它同杂质和缺陷的互作用对晶体的力学、电学性质有重大影响。甚至,晶体熔化也可能同位错的大量产生有关。随着晶体生长技术发展,人们又发现了层错──一种面缺陷。 硬铁磁体、硬超导体、高强度金属等材料的功能虽然很不同,但其技术性能之所以强或硬,却都依赖于材料中一种缺陷的运动。在硬铁磁体中这缺陷是磁畴壁(面缺陷),在超导体中它是量子磁通线,在高强度金属中它是位错线,采取适当工艺使这些缺陷在材料的微结构上被钉住不动,有益于提高其技术性能。 高分辨电子显微术正促使人们在更深的层次上来研究杂质、缺陷和它们的复合物。电子顺磁共振、穆斯堡尔效应、正电子湮没技术等已成为研究杂质和缺陷的有力手段。在理论上借助于拓扑学和非线性方程的解,正为缺陷的研究开辟新的方向(见晶体缺陷)。 固体物理学 表面和界面以及超点阵和低维固体这是近二十年来固体物理学中新 兴的领域。从60年代起人们开始在超高真空条件下研究晶体表面的本征特