椭圆基础练习题

合集下载

(完整版)椭圆基础练习题

(完整版)椭圆基础练习题

(完整版)椭圆基础练习题1. 问题描述请解决以下椭圆基础练题:1. 椭圆的标准方程是什么?请给出椭圆标准方程的一般形式和参数的含义。

2. 如何确定椭圆的焦点和直径?请解释每个参数的意义。

3. 已知椭圆的半长轴和半短轴的长度分别为a和b,求椭圆的离心率。

4. 已知一椭圆的焦点F1位于原点,离心率为e,焦点F2位于(0, c),求椭圆的标准方程。

5. 若一椭圆的长轴与x轴夹角为θ,离心率为e,求椭圆的标准方程。

2. 解答1. 椭圆的标准方程是$x^2/a^2 + y^2/b^2 = 1$,其中a和b分别为椭圆的半长轴和半短轴的长度。

2. 椭圆的焦点和直径可以通过半长轴和半短轴的长度来确定。

焦点F1和F2位于椭圆的长轴上,与长轴的中点O等距离。

焦点和直径的参数含义如下:- 焦点F1和F2:焦点是椭圆的两个特殊点,其与椭圆上的每个点到焦点的距离之和等于2a,即2倍的半长轴的长度。

- 直径:椭圆的直径是通过椭圆的中心点O,并且两端点与椭圆上的点相切。

直径的长度等于2倍的短轴的长度。

3. 椭圆的离心率e可以通过半长轴和半短轴的长度计算。

离心率的计算公式为e = √(a^2 - b^2) / a。

4. 已知椭圆的焦点F1位于原点,离心率为e,焦点F2位于(0,c)。

根据定义,焦距为c = ae。

代入焦点和离心率的信息,可以得到椭圆的标准方程为$x^2/a^2 + y^2/(a^2(1-e^2)) = 1$。

5. 若一椭圆的长轴与x轴夹角为θ,离心率为e。

由于椭圆是一个轴对称图形,所以可以将长轴对齐于x轴。

根据该信息,可以得到椭圆的标准方程为$[(x*cosθ + y*sinθ)^2 / a^2] + [(x*sinθ -y*cosθ)^2 / b^2] = 1$。

以上是关于椭圆的基础练习题的解答。

希望可以帮助到您!。

椭圆基础50题

椭圆基础50题

B.
2 2
,1
C. ( 3 , 2 ) 32
D.
3, 3
2
2
8.已知 F1 , F2 是椭圆 C :
x2 9
y2 4
1的两个焦点,点 M
在 C 上,则
MF1
MF2
的最大值为(

A.13
B.12
C.9
D.6
9.设 A
为椭圆
x2 a2
y2 b2
1a
b
0 上一点,点 A 关于原点的对称点为 B
12.设椭圆 C: x2 a2
y2 b2
1(a
b
0) 的左、右焦点分别为 F1, F2 ,过 F2 的直线与 C
交于
A,B
两点,若 ABF1 为
等边三角形,则 C 的离心率为( )
A. 3 3
B. 3 2
C. 2 3
D. 1 2
13.已知圆 C1 : x 22 y2 1 , C2 : x 22 y 2 49 ,动圆 C 满足与 C1 外切且 C2 与内切,若 M 为 C1 上的
为 32,则椭圆 C 的方程为( )
A. x2 y2 1 64 3
B. y2 x2 1 64 3
C. x2 y2 1 64 48
D. y2 x2 1 64 48
6.已知 F 是椭圆 x2 y2 1的下焦点,过点 F 的直线 l 与椭圆交于 A,B 两点,O 为坐标原点,则 AOB 面积的 2
y2 b2
1a
b
0 的左、右焦点分别为 F1 ,F2 ,过点 F2 的直线 l 与椭圆交于 A
,B
两点,若 ABF1
为正三角形,则该椭圆的离心率为( )

椭圆基础题(含答案)

椭圆基础题(含答案)

4.设 P 是椭圆 2 +
3
A.2√2
= 1上的动点,则 P 到该椭圆的两个焦点的距离之和为(
B.2√3
5.椭圆:
2
+
4
2
2
C.2√5
B.−2
2
100
+
D.4√2
= 1的左、右焦点分别为1 , 2 ,点在椭圆上,已知|1 | = 3,则|2 | =(
A.−1
6.如果椭圆

2

D.不能确定
3.已知△ 的周长为 20,且顶点(0, −4), (0,4),则顶点的轨迹方程是(
2
2
2
2
2
2
2

2
A.36 + 20 = 1( ≠ 0) B.20 + 36 = 1( ≠ 0) C. 6 + 20 = 1( ≠ 0) D.20 + 36 = 1
2
√6
A. 3
B.−
2
2
= 1有且只有一个交点,则的值是(
√6
3
C.±
2
33.直线 y=k(x﹣2)+1 与椭圆
16
A.相离
+
2
9
2
A.相交
2
4
= 1的位置关系是(
2
A. + 3 − 4 = 0
36.已知椭圆:
2
4
+
2
2
D.无法判断

C.相离
D.不确定
= 1交于点 A、B,线段的中点为(1,1),则直线 l 的方程为(
(2)焦点在轴上的椭圆上任意一点到两个焦点的距离的和为8, = √3.

椭圆基础大题训练25道

椭圆基础大题训练25道

椭圆基础大题训练25道椭圆基础大题训练25道1.已知动点M(x,y)到直线l:x= 4的距离是它到点N(1,0)的距离的2倍.(Ⅰ) 求动点M的轨迹C的方程;(Ⅱ) 过点P(0,3)的直线m与轨迹C交于A, B两点. 若A是PB的中点, 求直线m的斜率.yA2.设椭圆C :x2a2+y2b2=1a>b>0 的左焦点为F,上顶F OPQ x点为A,过点A作垂直于AF直线交椭圆C于另外一点P,交x轴正半轴于点Q,且PQAP=85⑴求椭圆C的离心率;⑵若过A,Q,F三点的圆恰好与直线l:x+3y-5=0相切,求椭圆C的方程.3.已知椭圆E:x2a2+ y2b222 =1(a>b>0)过点A(3,1),左,右焦点分别为F,1,F2,离心率为3经过F1的直线l与圆心在x轴上且经过点A的圆C恰好相切于点B(0,2).(1)求椭圆E及圆C的方程;(2) 在直线l上是否存在一点P,使△PAB为以PB为底边的等腰三角形?若存在,求点P的坐标,否则说明理由.4. 已知F1, F2 是椭圆x21, F2 是椭圆x22+y2 = 1的左,右焦点,过F2 作倾斜角为π2 作倾斜角为π4的直线与椭圆相交于A,B两点.(1)求△F1AB的周长; (2)求△FAB的面积.1椭圆基础大题训练25道5.已知椭圆与双曲线2x2-2y2=1共焦点,且过(2, 0)(1)求椭圆的标准方程.(2)求斜率为2的一组平行弦的中点轨迹方程;6.已知椭圆C的中心在原点,焦点在x轴上,焦距为8,且经过点(0,3)(1)求此椭圆的方程(2)若已知直线l: 4x- 5y+ 40=0,问:椭圆C上是否存在一点,使它到直线l的距离最小?最小距离是多少?7.已知椭圆y2a2+x2b2=1(a>b>0)的焦点分别是F1(0,-1),F2(0,1),且3a2=4b2.(Ⅰ)求椭圆的方程;(Ⅱ)设点P在这个椭圆上,且PF 1 -PF 2 =1,求∠F1PF2的余弦值.8.已知动点P与直线x=4的距离等于它到定点F(1,0)的距离的2倍,(1)求动点P的轨迹C的方程;(2)点M1,1 在所求轨迹内,且过点M的直线与曲线C交于A,B,当M是线段AB中点时,求直线AB的方程.9.已知直线y=-x+1与椭圆x2a2+ y2b2=1(a>b>0)相交于A,B两点,且线段AB的中点在直线l:x-2y=0上.(Ⅰ)求此椭圆的离心率;(Ⅱ)若椭圆的右焦点关于直线l的对称点在圆x2+y2=4上,求此椭圆的方程.。

椭圆基础练习题

椭圆基础练习题

椭圆基础练习题一、选择题1. 椭圆的长轴和短轴长度分别为2a和2b,其中a和b的关系是()。

A. a > bB. a < bC. a = bD. 无法确定2. 椭圆的焦点到椭圆上任意一点的距离之和等于()。

A. 2aB. 2bC. a + bD. a - b3. 如果椭圆的方程是 \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中a和b是常数,那么a和b的单位是什么?A. 米B. 秒C. 无单位D. 角度4. 椭圆的离心率e的取值范围是()。

A. 0 ≤ e < 1B. 0 ≤ e ≤ 1C. 0 < e < 1D. 1 < e ≤ 25. 椭圆的面积公式是()。

A. πabB. π(a + b)C. π(a - b)D. π(a^2 + b^2)二、填空题6. 椭圆的中心点坐标是(____,____)。

7. 椭圆的离心率e定义为____,其中c是焦点到中心的距离。

8. 如果一个椭圆的长轴是10,短轴是6,那么它的面积是____。

9. 椭圆的焦点坐标可以表示为(____,0)和(____,0)。

10. 椭圆的方程 \( \frac{x^2}{16} + \frac{y^2}{9} = 1 \) 中,a 和b的值分别是____和____。

三、简答题11. 描述椭圆的基本性质,并给出一个实际生活中椭圆的应用例子。

12. 解释为什么椭圆的离心率总是小于1。

13. 如果一个椭圆的长轴是20,短轴是10,求出它的焦点坐标。

四、计算题14. 给定一个椭圆的方程 \( \frac{x^2}{25} + \frac{y^2}{16} = 1 \),求出它的离心率e。

15. 已知一个椭圆的长轴是26,短轴是15,求出它的面积和离心率。

五、证明题16. 证明椭圆上任意一点到两个焦点的距离之和是一个常数。

17. 证明椭圆的中心点到长轴和短轴的距离相等。

椭圆基础练习题

椭圆基础练习题

椭圆基础练习题一、选择题1. 下列关于椭圆的说法,正确的是()A. 椭圆的长轴和短轴长度相等B. 椭圆的焦点到中心的距离相等C. 椭圆的离心率大于1D. 椭圆的离心率小于02. 在椭圆的标准方程 x^2/a^2 + y^2/b^2 = 1(a>b>0)中,下列说法正确的是()A. a表示椭圆的短轴长度B. b表示椭圆的长轴长度C. a和b分别表示椭圆的焦点到中心的距离D. a和b分别表示椭圆的半长轴和半短轴长度二、填空题1. 椭圆的标准方程是 x^2/a^2 + y^2/b^2 = 1,若椭圆的焦距为2c,则离心率e=______。

2. 在椭圆 x^2/25 + y^2/16 = 1 中,长轴的长度为______,短轴的长度为______。

3. 椭圆的两个焦点到椭圆上任意一点的距离之和等于______。

三、解答题1. 已知椭圆的标准方程为 x^2/4 + y^2/3 = 1,求椭圆的焦点坐标。

2. 设椭圆的方程为 x^2/36 + y^2/25 = 1,求椭圆的离心率。

3. 已知椭圆的长轴为10,焦距为6,求椭圆的短轴长度。

4. 在椭圆 x^2/25 + y^2/16 = 1 上任取一点P,求点P到椭圆两个焦点的距离之和。

5. 已知椭圆的离心率为0.6,求椭圆的焦距与长轴长度的比值。

6. 设椭圆的方程为 x^2/9 + y^2/16 = 1,求椭圆上离原点最近的点的坐标。

7. 已知椭圆的两个焦点分别在x轴上,且椭圆经过点(2, 3),求椭圆的标准方程。

8. 设椭圆的方程为 x^2/4 + y^2/b^2 = 1(b>0),若椭圆的焦距为2,求椭圆的离心率。

9. 已知椭圆的长轴长度为8,离心率为0.5,求椭圆的焦距。

10. 在椭圆 x^2/25 + y^2/9 = 1 上任取一点P,求点P到椭圆长轴的距离范围。

四、应用题1. 一个椭圆的长轴长度为20米,短轴长度为10米,一个人从椭圆的一个焦点出发,沿着椭圆边缘行走一周,求此人走过的总路程。

椭圆练习题带答案,知识点总结(基础版)

椭圆练习题带答案,知识点总结(基础版)椭圆是平面内与两个定点F1、F2的距离的和等于常数2a (其中2a>F1F2)的点的轨迹。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

当椭圆焦点在x轴上时,标准方程为x^2/a^2+y^2/b^2=1(a>b>0)。

当椭圆焦点在y轴上时,标准方程为x^2/b^2+y^2/a^2=1(a>b>0)。

椭圆的范围为-a≤x≤a,-b≤y≤b。

椭圆有x轴和y轴两条对称轴,对称中心为坐标原点O(0,0)。

椭圆的长轴长为2a,短轴长为2b。

椭圆的顶点坐标为(±a,0),(0,±b)。

椭圆的焦点坐标为(±c,0),其中c^2=a^2-b^2.椭圆的离心率为e=c/a(其中0<e<1)。

a、b、c、e的几何意义:a叫做长半轴长;b叫做短半轴长;c叫做半焦距;a、b、c之间满足a^2=b^2+c^2.e叫做椭圆的离心率,e可以刻画椭圆的扁平程度,e越大,椭圆越扁,e 越小,椭圆越圆。

对于椭圆上任一点P和椭圆的一个焦点F,PF_max=a+c,PF_min=a-c。

当点P在短轴端点位置时,∠F1PF2取最大值(余弦定理)。

椭圆方程常用三角换元为x=acosθ,y=bsinθ。

弦长公式为:设直线y=kx+b交椭圆于P1(x1,y1),P2(x2,y2),则|P1P2|=√(1+k^2(x1-x2)^2)或|P1P2|=√(1+(y1-y2)^2/k^2)(k≠0)。

判断点P(x,y)是否在椭圆内,当且仅当x^2/a^2+y^2/b^21.若椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为c/a,短轴长为4√2,则它的长轴长为2a=6.1.在椭圆$x^2/a^2+y^2=1$的内部,点$A(a,1)$,则$a$的取值范围是$-2<a<2$。

2.已知椭圆方程$x^2/16+y^2/8=1$,焦点为$F_1,F_2$,点$P$在椭圆上且$\angle F_1PF_2=\pi/3$。

椭圆基础训练题(学生版)

椭圆基础训练题(学生版)1.已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是( )(A )5x 2+3y 2=1(B )25x 2+9y 2=1 (C )3x 2+5y 2=1 (D )9x 2+25y 2=12.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( )(A )21(B )22(C )23(D )333.已知椭圆x2+2y2=m ,则下列与m 无关的是( )(A )焦点坐标 (B )准线方程 (C )焦距 (D )离心率4. 曲线25x 2+9y 2=1与曲线k 25x 2-+k 9y 2-=1 (k<9),具有的等量关系是( )。

(A )有相等的长、短轴 (B )有相等的焦距(C )有相等的离心率 (D )一相同的准线5. P(x, y)是椭圆16x 2+9y 2=1上的动点,过P 作椭圆长轴的垂线PD ,D 是垂足,M 是PD 的中点,则M 的轨迹方程是( )。

(A )4x 2+9y 2=1 (B )64x 2+9y 2=1 (C )16x 2+9y 42=1 (D )16x 2+36y 2=16.过椭圆x2a2+y2b2=1(0<b<a)中心的直线与椭圆交于A 、B 两点,右焦点为F2(c,0),则△ABF2的最大面积是( )A .abB .acC .bcD .b27. 椭圆4x2+9y2=144内有一点P(3, 2),过P 点的弦恰好以P 为中点,那么这条弦所在的直线方程是( )。

(A )3x -2y -12=0 (B )2x +3y -12=0(C )4x +9y -144=0 (D )4x -9y -144=08. 如果椭圆的两个焦点将长轴三等分,那么这个椭圆的两条准线的距离与焦距的比是( )。

(A )4 : 1 (B )9 : 1 (C )12 : 1 (D )18 : 19. 设A(-2, 3),椭圆3x2+4y2=48的右焦点是F ,点P 在椭圆上移动,当|AP|+2|PF|取最小值时P 点的坐标是( )。

椭圆的标准方程(基础)

椭圆的标准方程一、选择题1、(2019•北镇市校级月考)焦点坐标为(0,3),(0,-3),长轴长为10,则此椭圆的标准方程为( )A 、19110022=+y x B 、19110022=+x y C 、1162522=+y x D 、1251622=+x y 2、(2019•益阳模拟)已知椭圆)0(12222>>=+b a b y a x 的离心率为31,则=ba( )A 、89 B 、223 C 、34D 、4233、(2019•沙坪坝区校级月考)已知椭圆122222=-+-mn y n m x 的焦点在x 轴上,若椭圆的短轴长为4,则n 的取值范围是( )A 、),12(+∞B 、)12,4(C 、)6,4(D 、),6(+∞4、(2019•雁峰区校级期中)设直线L 经过椭圆的一个顶点和一个焦点,若椭圆中心到L 的距离为其短轴长的61,则该椭圆的离心率为( )A 、31 B 、21 C 、32 D 、43 5、(2018•末央区校级期末)若曲线11122=++-ky k x 表示椭圆,则K 的取值范围是( ) A 、1>k B 、1-<k C 、11<<-k D 、01<<-k 或10<<k6、(2018•昌平区期末)“0,0>>n m ”是“方程122=+ny m x 表示椭圆”的( ) A 、充分而不必要条件 B 、必要而不充分条件 C 、充分必要条件 D 、既不充分也不必要条件 7、(2018•南关区校级期末)椭圆的长轴长为10,其焦点到中心的距离为4,则这个椭圆的标准方程是( )A 、18410022=+y x B 、192522=+y x C 、18410022=+y x 或11008422=+y x D 、192522=+y x 或125922=+y x8、(2019•西城区校级模拟)若曲线122=+by ax 为焦点在x 轴上的椭圆,则实数a,b 满足( ) A 、22b a > B 、ba 11< C 、b a <<0 D 、a b <<09、(2018•广安期末)ABC ∆的周长是8,B (-1,0),C (1,0),则顶点A 的轨迹方程是( )A 、)3(18922±≠=+x y xB 、)0(18922≠=+x y xC 、)0(13422≠=+y y xD 、)0(14322≠=+y y x 10、(2019•金山区一模)已知方程12222=++m y m x 表示焦点在x 轴上的椭圆,则m 的取值范围是( ) A 、2>m 或1-<m B 、2->m C 、21<<-m D 、2>m 或12-<<-m二、填空题11、(2019•越城区校级月考)椭圆19422=+y x 的半焦距是________,离心率是_________12、(2019•五华区校级月考)已知定点A (0,-2),点B 在圆C :032422=--+y y x 上运动,C 为圆心,线段AB 的垂直平分线交BC 于点P ,则动点P 的轨迹E 的方程为_______________13、(2019•东宝区校级期末)椭圆122=+my x 的长轴长是短轴长的两倍,则m 的值为________14、(2019•虹口区期中)椭圆的长轴长是短轴长的2倍,它的一个焦点为)0,3(,则椭圆的标准方程是_______15、(2019•兴庆区校级四模)若方程16222=++a y a x 表示焦点在x 轴上的椭圆,则实数a 的取值范围是_______16、(2018•勇桥区期末)若椭圆12222=+by a x 过抛物线x y 82=的焦点,且与双曲线122=-y x 有相同的焦点,则该椭圆的方程为__________________三、解答题17、(2019•西湖区校级模拟)如图,椭圆)1(1222>=+a y ax 的离心率为22,过点P (2,0)作直线L 交椭圆于不同两点A ,B 。

(完整word版)椭圆基础训练题(含答案提示)(2),推荐文档

椭圆基础训练题1.已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是( )(A )5x 2+3y 2=1(B )25x 2+9y 2=1 (C )3x 2+5y 2=1 (D )9x 2+25y 2=12.椭圆5x 2+4y 2=1的两条准线间的距离是( )(A )52 (B )10 (C )15 (D )3503.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( )(A )21(B )22(C )23(D )334.椭圆25x 2+9y 2=1上有一点P ,它到右准线的距离是49,那么P 点到左准线的距离是( )。

(A )59(B )516 (C )441 (D )5415.已知椭圆x 2+2y 2=m ,则下列与m 无关的是( )(A )焦点坐标 (B )准线方程 (C )焦距 (D )离心率6.椭圆mx 2+y 2=1的离心率是23,则它的长半轴的长是( )(A )1 (B )1或2 (C )2 (D )21或17.椭圆的中心为O ,左焦点为F 1,P 是椭圆上一点,已知△PF 1O 为正三角形,则P 点到右准线的距离与长半轴的长之比是( )(A )3-1 (B )3-3 (C )3 (D )18.若椭圆my 12m 3x 22-+=1的准线平行于y 轴,则m 的取值范围是 。

9.椭圆的长半轴是短半轴的3倍,过左焦点倾斜角为30°的弦长为2则此椭圆的标准方程是 。

10. 椭圆的中心在原点,焦点在x 轴上,若椭圆的一个焦点将长轴分成的两段的比例中项等于椭圆的焦距,又已知直线2x -y -4=0被此椭圆所截得的弦长为354,求此椭圆的方程。

11.证明:椭圆上任意一点到中心的距离的平方与到两焦点距离的乘积之和为一定值。

12. 已知椭圆的对称轴是坐标轴,离心率e =32,长轴长为6,那么椭圆的方程是( )。

(A ) 36x 2+20y 2=1 (B )36x 2+20y 2=1或20x 2+36y 2=1(C ) 9x 2+5y 2=1 (D )9x 2+5y 2=1或5x 2+9y 2=113. 椭圆25x 2+16y 2=1的焦点坐标是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆练习题目
命题人:宁老师 满分:100分 时间:90分钟
一、选择题:(每小题3分,共12小题,共36分)
1、已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是( )
(A )椭圆 (B )直线 (C )圆 (D )线段
2、过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另
一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( ) A. 22 B. 2 C. 2 D. 1 3、方程m y x ++16m -2522=1表示焦点在y 轴上的椭圆,则m 的取值范围是 ( ) (A)-16<m <25 (B)-16<m <29 (C)29<m <25 (D)m >2
9 4、设椭圆的标准方程为22
135x y k k
+=--,若其焦点在x 轴上,则k 的取值范围是( ) (A )k >3 (B )3<k <5 (C )4<k <5 (D )3<k <4
5、椭圆x 2+4y 2
=1的离心率为 ( )
(A)2)D (25
)C (22
)B (23
6、椭圆的两个焦点和短轴两个顶点,是一个含60°角的菱形的四个顶点,则椭圆的离心率为 ( )
(A)21 (B)23 (C)33 (D)2
1或23 7、如果椭圆的焦距、短轴长、长轴长成等差数列,则其离心率为
(A )53 (B )312 (C )43 (D )910
8、已知椭圆x y m
22
51+=的离心率e =105,则m 的值为 ( ) (A)3 (B)3或253 (C)15 (D)15或53
15 9、椭圆的一焦点与两顶点为等边三角形的三个顶点,则椭圆的长轴长是短轴长的 ( )
(A)3倍 (B)2倍 (C)2倍 (D)32倍 10、曲线19y 25x 22=+与曲线1m
9y m 25x 2
2=-+-(m <9)一定有 ( ) (A)相等的长轴长 (B)相等的焦距 (C)相等的离心率 (D)相同的准线 11、过点(3, -2)且与椭圆4x 2+9y 2=36有相同焦点的椭圆的方程是
(A )2211510x y += (B )221510x y += (C )2211015x y += (D )22
12510
x y += 12、与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是( )
(A)185
y 80x )D (145y 20x )C (125y 20x )B (120y 25x 2222222
2=+=+=+=+ 二、填空题(每小题5分,共20分)
13、已知椭圆116
252
2=+y x 上一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 _____
14、已知椭圆x a y a 22
2
2+=1的焦距为4,则这个椭圆的焦点在_____轴上,坐标是_____ 15、已知椭圆x m y 22
41+=的离心率为12
,则m = 16、已知圆Q A y x C ),0,1(25)1(:22及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,
则点M 的轨迹方程为 。

三、解答题(共44分)
17、求下列椭圆的标准方程(每小题5分,共25分)
(1)中心在原点,长半轴长与短半轴长的和为92,离心率为0.6;
(2)对称轴是坐标轴,离心率等于
32
,且过点(2,0)
(3)短轴长为6,且过点(1,4) ; (4)顶点(-6,0),(6,0),过点(3,3)
(5)椭圆的一个顶点为A (2,0),其长轴长是短轴长的2倍,
18、(1)△ABC 的两个顶点坐标分别是B (0,6)和C (0,-6),另两边AB 、AC 的斜率的乘
积是-9
4,求顶点A 的轨迹方程.(6分)
(2)已知三角形ABC 的两顶点为(2,0),(2,0)B C -,它的周长为10,求顶点A 轨迹方程. (6分)
(3)已知圆22y x +=1,从这个圆上任意一点P 向y 轴作垂线段PP′,求线段PP′的中点M 的轨迹.(7分)。

相关文档
最新文档