八年级数学上册 第12章 全等三角形教案 (新版)新人教版(2)
人教版数学八年级上册12.2三角形全等的判定1教学设计

设计一些具有挑战性的实践题目,让学生动手操作,运用所学知识解决问题。在此过程中,教师要及时关注学生的学习情况,给予指导和鼓励。
5.总结反思,拓展提高
在课堂结尾,引导学生对所学知识进行总结,明确全等三角形的判定方法及其在实际问题中的应用。同时,布置课后作业,巩固所学知识。
6.教学评价
(四)课堂练习
在这一阶段,学生将通过课堂练习,巩固所学知识。
1.教师设计具有代表性的练习题,涵盖全等三角形的判定方法。
2.学生独立完成练习题,教师巡回指导,解答学生的疑问。
3.教师选取部分学生的作业进行展示和讲评,分析解题过程中的误区和注意事项。
4.针对不同层次的学生,教师进行个别辅导,提高每个学生的几何解题能力。
4.使学生能够运用全等三角形的性质和判定方法,解决一些与三角形有关的实际问题,如求角度、边长等。
(二)过程与方法
1.通过小组合作、讨论交流等形式,让学生在自主探究、合作学习中,理解和掌握三角形全等的判定方法。
2.引导学生运用观察、分析、归纳等方法,从特殊到一般,总结出三角形全等的判定规律。
3.运用问题驱动、情景教学等手段,激发学生的学习兴趣,培养学生主动探究、解决问题的能力。
(三)学生小组讨论
在这一阶段,学生将通过小组合作,加深对全等三角形判定方法的理解。
1.教师给出几个具有挑战性的问题,要求学生以小组为单位进行讨论。
2.学生在小组内部分工合作,通过尺规作图、测量等方法,探究全等三角形的判定方法。
3.各小组展示自己的讨论成果,分享解题思路和经验。
4.教师对各小组的表现给予评价和指导,引导学生发现问题和解决问题。
2.讲解SSS(边-边-边)判定方法,通过图例和实际操作,让学生直观地感受如何通过三边的相等来判断两个三角形全等。
人教版八年级上册数学第12章全等三角形教案(2)

第十二章全等三角形12.1 全等三角形教学内容本节课主要介绍全等三角形的概念和性质.教学目标1.知识与技能领会全等三角形对应边和对应角相等的有关概念.2.过程与方法经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.3.情感、态度与价值观养观察、操作、分析能力,体会全等三角形的应用价值.重点难点1.重点:会确定全等三角形的对应元素.2.难点:掌握找对应边、对应角的方法.3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,•两条对应边所夹的角是对应角.教具准备四张大小一样的纸片、直尺、剪刀.教学方法采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程一、动手操作,导入课题1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,•思考得到的图形有何特点?2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,•思考得到的图形有何特点?【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.概念:能够完全重合的两个三角形叫做全等三角形.【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?【学生活动】动手操作,实践感知,得出结论:两个三角形全等.【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?【交流讨论】通过同桌交流,实验得出下面结论:1.任意放置时,并不一定完全重合,•只有当把相同的角旋转到一起时才能完全重合.2.这时它们的三个顶点、三条边和三个内角分别重合了.3.完全重合说明三条边对应相等,三个内角对应相等,•对应顶点在相对应的位置.【教师活动】根据学生交流的情况,给予补充和语言上的规范.1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,•重合的边叫做对应边,重合的角叫做对应角.2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,•如果本图11.1─2△ABC和△DBC全等,点A和点D,点B和点B,点C和点C是对应顶点,•记作△ABC≌△DBC.【问题提出】课本图11.1─1中,△ABC≌△DEF,对应边有什么关系?对应角呢?【学生活动】经过观察得到下面性质:1.全等三角形对应边相等;2.全等三角形对应角相等.二、随堂练习,巩固深化课本P4练习.【探研时空】1.如图1所示,△ACF≌△DBE,∠E=∠F,若AD=20cm,BC=8cm,你能求出线段AB的长吗?与同伴交流.(AB=6)2.如图2所示,△ABC≌△AEC,∠B=30°,∠ACB=85°,求出△AEC各内角的度数.•(∠AEC=30°,∠EAC=65°,∠ECA=85°)三、课堂总结,发展潜能1.什么叫做全等三角形?2.全等三角形具有哪些性质?四、布置作业,专题突破课本P33习题12.1第1,2,3,4题.板书设计把黑板分成左、中、右三部分,左边板书本节课概念,中间部分板书“思考”中的问题,右边部分板书学生的练习.疑难解析由于两个三角形的位置关系不同,在找对应边、对应角时,可以针对两个三角形不同的位置关系,寻找对应边、角的规律:(1)有公共边的,•公共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角).12.2三角形全等的判定(1)(SSS)教学内容本节课主要内容是探索三角形全等的条件(SSS),•及利用全等三角形进行证明.教学目标1.知识与技能了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.过程与方法经历探索“边边边”判定全等三角形的过程,解决简单的问题.3.情感、态度与价值观培养有条理的思考和表达能力,形成良好的合作意识.重点难点1.重点:掌握“边边边”判定两个三角形全等的方法..难点:理解证明的基本过程,学会综合分析法.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学方法采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.教学过程一、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC 上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:1.画线段取B′C′=BC;2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;3.连接线段A′B′、A′C′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).(2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.二、范例点击,应用所学【例1】如课本图11.2─3所示,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.(教师板书)【教师活动】分析例1,分析:要证明△ABD≌△ACD,可看这两个三角形的三条边是否对应相等.证明:∵D是BC的中点,∴BD=CD在△ABD和△ACD中AB=ACAD=ADBD=CD∴△ABD≌△ACD(SSS).【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.三、实践应用,合作学习【问题思考】已知AC=FE,BC=DE,点A、D、B、F在直线上,AD=FB(如图所示),要用“边边边”证明△ABC≌△FDE除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB=FD,只要AD=FB两边都加上DB即可得到AB=FD.”【教学形式】先独立思考,再合作交流,师生互动.四、随堂练习,巩固深化课本P37练习1、2.【探研时空】如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?•你能找到一对全等三角形吗?说明你的理由.(BC=EF,△ABC ≌△DFE)五、课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)六、布置作业,专题突破课本P43习题12.2第1题.12.2 三角形全等判定(2)(SAS)教学目标1.知识与技能领会“边角边”判定两个三角形的方法.2.过程与方法经历探究三角形全等的判定方法的过程,学会解决简单的推理问题.3.情感、态度与价值观培养合情推理能力,感悟三角形全等的应用价值.重点难点1.重点:会用“边角边”证明两个三角形全等.2.难点:应用结合法的格式表达问题.教具准备投影仪、直尺、圆规.教学方法采用“操作──实验”的教学方法,让学生有一个直观的感受.教学过程一、回顾交流,操作分析【动手画图】【投影】作一个角等于已知角.【学生活动】动手用直尺、圆规画图.已知:∠AOB.求作:∠A1O1B1,使∠A1O1B1=∠AOB.【作法】(1)作射线O1A1;(2)以点O为圆心,以适当长为半径画弧,交OA•于点C,•交OB于点D;(3)以点O1为圆心,以OC长为半径画弧,交O1A1于点C1;(4)以点C1为圆心,以CD•长为半径画弧,交前面的弧于点D1;(5)过点D1作射线O1B1,∠A1O1B1就是所求的角.【导入课题】教师叙述:请同学们连接CD、C1D1,回忆作图过程,分析△COD和△C1O1D1•中相等的条件.【学生活动】与同伴交流,发现下面的相等量:OD=O1D1,OC=O1C1,∠COD=∠C1O1D1,△COD≌△C1O1D1.归纳出规律:两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS•”).【评析】通过让学生回忆基本作图,在作图过程中体会相等的条件,在直观的操作过程中发现问题,获得新知,使学生的知识承上启下,开拓思维,发展探究新知的能力.【媒体使用】投影显示作法.【教学形式】操作感知,互动交流,形成共识.二、范例点击,应用新知【例2】如课本图11.2-6所示有一池塘,要测池塘两侧A、B的距离,可先在平地上取一个可以直接到达A和B 的点,连接AC并延长到D,使CD=CA,连接BC并延长到E,•使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?【教师活动】操作投影仪,显示例2,分析:如果能够证明△ABC≌△DEC,就可以得出AB=DE.在△ABC和△DEC 中,CA=CD,CB=CE,如果能得出∠1=∠2,△ABC和△DEC•就全等了.证明:在△ABC和△DEC中AC=DC∠1=∠2BC=CE∴△ABC≌△DEC(SAS)∴AB=DE想一想:∠1=∠2的依据是什么?(对顶角相等)AB=DE 的依据是什么?(全等三角形对应边相等)【学生活动】参与教师的讲例之中,领悟“边角边”证明三角形全等的方法,学会分析推理和规范书写.【媒体使用】投影显示例2.【教学形式】教师讲例,学生接受式学习但要积极参与.【评析】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.三、辨析理解,正确掌握【问题探究】(投影显示)我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,•使长木棍的另一端与射线BC的端点B重合,适当调整好长木棍与射线BC所成的角后,固定住长木棍,把短木棍摆起来(课本图11.2-7),出现一个现象:△ABC与△ABD 满足两边及其中一边对角相等的条件,但△ABC与△ABD不全等.这说明,•有两边和其中一边的对角对应相等的两个三角形不一定全等.【学生活动】观察教师操作教具、发现问题、辨析理解,动手用直尺和圆规实验一次,做法如下:(如图1所示)(1)画∠ABT;(2)以A为圆心,以适当长为半径,画弧,交BT于C、C′;(3)•连线AC,AC′,△ABC与△ABC′不全等.【形成共识】“边边角”不能作为判定两个三角形全等的条件.【教学形式】观察、操作、感知,互动交流.四、随堂练习,巩固深化课本P39练习第1、2题.五、课堂总结,发展潜能1.请你叙述“边角边”定理.2.证明两个三角形全等的思路是:首先分析条件,•观察已经具备了什么条件;然后以已具备的条件为基础根据全等三角形的判定方法,来确定还需要证明哪些边或角对应相等,再设法证明这些边和角相等.六、布置作业,专题突破1.第2、3题.2.选用课时作业设计.板书设计把黑板分成左、中、右三部分,其中右边部分板书“边角边”判定法,中间部分板书例题,右边部分板书练习题.12.2 三角形全等判定(3)(ASA)教学内容本节课主要内容是探索三角形全等的判定(ASA,AAS),•及利用全等三角形的证明.教学目标1.知识与技能理解“角边角”、“角角边”判定三角形全等的方法.2.过程与方法经历探索“角边角”、“角角边”判定三角形全等的过程,能运用已学三角形判定法解决实际问题.3.情感、态度与价值观培养良好的几何推理意识,发展思维,感悟全等三角形的应用价值.重点难点1.重点:应用“角边角”、“角角边”判定三角形全等.2.难点:学会综合法解决几何推理问题.教具准备投影仪、幻灯片、直尺、圆规.教学方法采用“问题教学法”在情境问题中,激发学生的求知欲.教学过程一、回顾交流,巩固学习【知识回顾】(投影显示)情境思考:1.小菁做了一个如图1所示的风筝,其中∠EDH=∠FDH,ED=FD,•将上述条件注在图中,小明不用测量就能知道EH=FH吗?与同伴交流.(1) (2)[答案:能,因为根据“SAS”,可以得到△EDH≌△FDH,从而EH=FH]2.如图2,AB=AD,AC=AE,能添上一个条件证明出△ABC≌△ADE吗?[答案:BC=•DE(SSS)或∠BAC=∠DAE (SAS)].3.如果两边及其中一边的对角对应相等,两个三角形一定会全等吗?试举例说明.【教师活动】操作投影仪,提出问题,组织学生思考和提问.【学生活动】通过情境思考,复习前面学过的知识,学会正确选择三角形全等的判定方法,小组交流,踊跃发言.【教学形式】用问题牵引,辨析、巩固已学知识,在师生互动交流过程中,激发求知欲.二、实践操作,导入课题【动手动脑】(投影显示)问题探究:先任意画一个△ABC,再画出一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B(即使两角和它们的夹边对应相等),把画出的△A′B′C′剪下,•放到△ABC上,它们全等吗?【学生活动】动手操作,感知问题的规律,画图如下:画一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B:1.画A′B′=AB;2.在A′B′的同旁画∠DA′B′=∠A,∠EBA′=∠B,A′D,B′E交于点C′。
人教版八年级上册12.2直角三角形全等的判定教案

二、核心素养目标
1.掌握直角三角形全等的判定方法,培养几何直观与逻辑推理能力;
2.通过实际问题的解决,提高数学抽象与模型构建的能力;
3.在探究直角三角形全等判定过程中,培养数据分析与数学运算的能力;
4.合作交流、探讨全等判定方法,提升学生沟通与合作的核心素养;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解直角三角形全等判定的基本概念。直角三角形全等是指两个直角三角形的对应边和角完全相同。这种判定是几何学中的重要内容,它在解决实际问题中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何使用SAS、ASA、AAS判定法来确定两个直角三角形是否全等,以及这些方法如何帮助我们解决实际问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直角三角形全等判定的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对直角三角形全等的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
今天我们在课堂上学习了直角三角形全等的判定,回顾整个教学过程,我觉得有几个方面值得思考。
首先,关于教学导入,我发现通过提问的方式引导学生思考日常生活中的例子,能有效激发他们的学习兴趣。然而,部分学生对这个问题似乎不太感冒,可能是因为例子不够贴近他们的生活实际。在今后的教学中,我需要更加关注学生的生活经验,寻找更合适的导入方式。
其次,在新课讲授环节,我发现学生们对SAS、ASA、AAS判定方法的理解程度不一。有些学生能迅速掌握,但也有一些学生对此感到困惑。针对这一点,我采取了举例和对比的方式进行讲解,但效果似乎并不理想。我考虑在接下来的课程中,加入更多的互动环节,让学生自己动手操作,以加深他们对这些判定方法的理解。
八年级数学上册 12.2 三角形全等的判定 第2课时 用“SAS”判定三角形全等说课稿 (新版)新人

八年级数学上册 12.2 三角形全等的判定第2课时用“SAS”判定三角形全等说课稿(新版)新人教版一. 教材分析本次说课的内容是新人教版八年级数学上册第12.2节三角形全等的判定,第2课时,主要讲解的是用“SAS”判定三角形全等。
这一节内容是在学习了三角形相似和三角形全等的概念基础上进行的,是三角形全等判定方法中的重要一环。
通过本节课的学习,学生能够理解和掌握“SAS”判定三角形全等的方法,并能够运用到实际问题中。
二. 学情分析根据我对学生的了解,他们在学习了三角形相似和三角形全等的基础上,对于全等的概念已经有了初步的认识,但是对于如何用“SAS”判定三角形全等,可能还存在着一些理解和运用上的困难。
因此,在教学过程中,我需要通过具体的例子和练习题,引导学生理解和掌握“SAS”判定三角形全等的方法。
三. 说教学目标本次课的教学目标是让学生理解和掌握“SAS”判定三角形全等的方法,能够运用“SAS”判定三角形全等,并能够解决实际问题。
四. 说教学重难点教学重点是让学生理解和掌握“SAS”判定三角形全等的方法,教学难点是如何引导学生理解和运用“SAS”判定三角形全等。
五. 说教学方法与手段在教学过程中,我会采用讲解法、示范法、练习法等教学方法。
通过讲解法,让学生了解“SAS”判定三角形全等的原理;通过示范法,让学生直观地理解“SAS”判定三角形全等的步骤;通过练习法,让学生巩固“SAS”判定三角形全等的方法。
六. 说教学过程1.导入:通过复习三角形相似和三角形全等的概念,引导学生进入本节课的学习。
2.讲解:“SAS”判定三角形全等的方法:首先,让学生观察两个三角形,找出它们的两个边和夹角分别相等;然后,根据全等三角形的性质,得出这两个三角形全等。
3.示范:通过具体的例子,演示如何用“SAS”判定三角形全等,让学生直观地理解全等的判定过程。
4.练习:让学生通过练习题,运用“SAS”判定三角形全等,巩固所学的方法。
新人教版数学八年级上册第十二章《全等三角形》全章教案

第十二章§ 12. 1全等三角形教课目的( 一 ) 知识技术 :1、认识全等形及全等三角形的观点。
2、理解掌握全等三角形的性质。
3、能够正确辩认全等三角形的对应元素。
( 二 ) 过程与方法:1、在图形变换以用操作的过程中发展空间观点,培育几何直觉。
2、在察看发现生活中的全等形和实质操作中获取全等三角形的体验。
( 三 )感情态度与价值观:在研究和运用全等三角形性质的过程中感觉到数学活动的乐趣。
教课要点 : 全等三角形的性质.教课难点:找全等三角形的对应边、对应角.预习导航 : 什么是全等三角形?如何找全等三角形的对应边和对应角?全等三角形有哪些性质?教课过程( 一 ) 提出问题,创建情境A A1出示投电影:1. 问题:你能B C B1C1发现这两个图形有什么美好的关系吗?这两个图形是完整重合的.2. 那同学们能举出现实生活中能够完整重合的图形的例子吗003F生:同一张底片洗出的同大小照片是能够完整重合的。
形状与大小都完整相同的两个图形就是全等形.3.学生自己着手(同桌两名同学配合)取一张纸,将自己预先准备好的三角板按在纸上,画以下图形,照图形裁下来,纸样与三角板形状、大小完整相同.4.获取观点让学生用自己的语言表达:全等形、全等三角形、对应极点、对应角、对应边,以及有关的数学符号.记作:△ ABC ≌ △ A ’ B’ C’符号“≌ ”读作“全等于”ADB C E F甲(注意重申书写时对应极点字母写在对应的地点上)(二).新知研究利用投电影演示1. 活动:将△ ABC沿直线 BC平移得△ DEF;将A△ABC沿 BC翻折 180 获取△ DBC;将△ ABC旋转D E 180°得△ AED.B C A2.议一议:各图中的两个三角形全等吗?B C启迪:一个图形经过平移、翻折、旋转后,位D丙置变化了, ?但形状、大小都没有改变,因此平移、乙翻折、旋转前后的图形全等,这也是我们经过运动的方法追求全等的一种策略.3.察看与思虑:找寻甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?(指引学生从全等三角形能够完整重合出发找等量关系)获取全等三角形的性质:全等三角形的对应边相等.全等三角形的对应角相等.(三)例题解说[ 例 1] 如图,△ OCA≌△ OBD, C 和 B, A 和 D是对应极点,?说出这两个三角形中相等的边和角.C BOA D1.剖析:△ OCA≌△ OBD,说明这两个三角形能够重合, ?思虑经过如何变换能够使两三角形重合?将△ OCA翻折能够使△ OCA与△ OBD重合.由于 C 和 B、A 和 D 是对应极点, ?因此 C 和 B 重合, A和 D重合.∠ C=∠B;∠ A=∠ D;∠ AOC=∠ DOB. AC=DB; OA=OD; OC=OB.2.总结:两个全等的三角形经过必定的变换能够重合.一般是平移、翻转、旋转的方法.[ 例 2] 如图,已知△ ABE≌△ ACD,∠ ADE=∠ AED,∠ B=∠ C, ?指出其余的对应边和对应角.A1. 剖析:对应边和对应角只好从两个三角形中找,B D EC 因此需将△ ABE和△ ACD从复杂的图形中分别出来.2小结:找对应边和对应角的常用方法有:(1)有公共边的,公共边是对应边.(2)有公共角的,公共角是对应角.(3)有对顶角的,对顶角是对应角一对最长的边是对应边,一对最短的边是对应边 .(4)一对最大的角是对应角,一对最小的角是对应角(5)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.(6)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角(四)讲堂练习1、填空点 O是平行四边形 ABCD的对角线的交点 , △ AOB绕 O旋转180° , 能够与△ ______重合,这说明△ AOB≌△ ______ .这两个三角形的对应边是AO与 _____, OB与_____, BA与______;对应角是∠AOB与 ________,∠ OBA与 ________,∠BAO与 ________.2、判断题1)全等三角形的对应边相等,对应角相等。
八年级数学上册 第12章 全等三角形 教案新人教版

第十二章全等三角形12.1全等三角形【知识与技能】(1)了解全等形及全等三角形的概念.(2)理解全等三角形的性质.【过程与方法】在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直观.【情感态度与价值观】(1)让学生观察、发现生活中的全等三角形并体验在实际操作中获得全等三角形的喜悦.(2)在运用全等三角形的性质的过程中感受数学活动的乐趣.全等三角形的概念及性质.掌握两个全等三角形的对应边、对应角的寻找规律,能迅速、正确地指出两个全等三角形的对应元素.多媒体课件、剪刀教师引入:一位哲学家曾经说过“世界上没有完全相同的两片叶子”,但是在我们的周围,却有着好多形状、大小完全相同的图案.你能举出这样的例子吗?学生口答,教师点评并引入本节新课.探究1:全等形及全等三角形的相关概念教师让学生完成以下活动:1.动手做.(1)和同桌一起将两本数学课本叠放在一起,观察它们能够重合吗?(2)把手中的直角三角尺按在纸上,画出三角形,并裁下来,把直角三角尺和纸三角形叠放在一起,观察它们能够重合吗?然后学生得出全等形的概念,进而得出全等三角形的概念:能够完全重合的两个图形叫作全等形,能够完全重合的两个三角形叫作全等三角形.(教师板书)2.观察.观察图12-1-1中△ABC与△A′B′C′重合的情况.师生共同总结对应顶点、对应边、对应角的概念:把两个全等的三角形重合到一起,重合的顶点叫作对应顶点,重合的边叫作对应边,重合的角叫作对应角.然后教师指出:全等的符号“≌”,读作“全等于”.教师强调:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.例如,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF 是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.接着教师出示例题:例1如图12-1-2,已知△ABN≌△ACM,∠B和∠C是对应角,AB和AC是对应边.写出其他的对应边及对应角.师生共同分析:对应边和对应角只能从两个三角形中找,所以需将△ABN和△ACM从复杂的图形中分离出来.根据元素位置来找对应元素,再依据已知的对应元素找出其余的对应元素.然后学生自主完成.解:对应角为∠BAN与∠CAM,∠ANB与∠AMC.对应边为AM与AN,BN与CM.探究2:全等三角形的性质教师让学生把△ABC沿直线BC分别进行平移、翻折、绕定点旋转,然后观察图形的大小、形状是否发生变化(如图12-1-3).师生共同得出结论:平移、翻折、旋转只能改变图形的位置,而不能改变图形的大小和形状.教师追问:那么在全等三角形中,有没有相等的角、相等的边呢?学生先思考,再小组交流,得出:全等三角形的对应边相等,对应角相等.(教师板书) 接着教师出示例题:例2已知△DEF≌△ABC,AB=AC,且△ABC的周长为23 cm,BC=4 cm,求DE的长.教师引导学生先画出图形,再进行分析,然后师生共同完成,教师板书:解:因为△ABC的周长为23 cm,BC=4 cm,AB=AC,所以AB=AC=(23-4)÷2=9.5(cm).因为△DEF≌△ABC,∴DE=AB=9.5 cm.教师强调:运用全等三角形的定义和性质时,要注意规范书写格式.1.能够完全重合的两个图形叫作全等形.能够完全重合的两个三角形叫作全等三角形.重合的顶点叫作对应顶点,重合的边叫作对应边,重合的角叫作对应角.全等三角形的对应边相等,对应角相等.2.找全等三角形对应元素的方法,注意挖掘图形中隐含的条件,如公共元素、对顶角等.第十二章全等三角形12.2全等三角形的判定课时1 “边边边(SSS)”【知识与技能】(1)明确判定两个三角形全等至少需要三个条件.(2)掌握“边边边(SSS)”条件的内容.(3)能初步运用“边边边(SSS)”条件判定两个三角形全等.(4)会作一个角等于已知角.【过程与方法】使学生经历探索三角形全等的过程,体验用操作、归纳得出数学结论的过程.【情感态度与价值观】探究三角形全等条件的判定过程,以观察思考,动手画图,合作交流等多种形式让学生共同探讨,培养学生的合作精神.三角形全等的“边边边(SSS)”判定方法.运用“边边边(SSS)”判定方法进行简单的证明.多媒体课件.教师引入:如图12-2-1,教师在黑板上画两个三角形,请仔细观察,△ABC与△A′B′C′全等吗?你们是如何判断的?学生各抒己见,如动手用纸剪下一个三角形,将剪下的三角形叠到另一个三角形上,观察这两个三角形是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等.探究1:三角形全等的条件教师提出:(1)只给一个条件(一条边或一个角)画三角形时,画出的三角形一定全等吗?(2)如果给出两个条件呢?给出两个条件画三角形时,有几种可能的情况,每种情况下画出的三角形一定全等吗?学生讨论有几种可能的情况,然后按照下面的条件画一画:①三角形的一个内角是30°,一条边是3 cm;②三角形的两个内角分别是30°和50°;③三角形的两条边长分别是 4 cm和6 cm.学生分组讨论、画图、探索、归纳,最后以组为单位展示结果.结果展示:(1)只给定一条边时,如图12-2-2.只给定一个角时,如图12-2-3.(2)给出的两个条件:一边一内角、两内角、两边,如图12-2-4.可以发现按这些条件画出的三角形都不能保证一定全等.教师提出:如果给出三个条件画三角形,你能说出有几种情况吗?(三条边,两条边和一个角,一条边和两个角,三个角)在刚才的探索过程中,我们已经发现,已知三个内角不能保证两个三角形全等.下面我们就来逐一探索其余的三种情况.(这节课只讨论第一种情况) 探究2:“边边边(SSS)”教师让学生完成以下活动:1.任意画一个△ABC,再画一个△A′B′C′,使得A′B′=AB,B′C′=BC,A′C′=AC.教师先让学生思考三角形的画法,再师生共同总结:(1)画B′C′=BC;(2)分别以点B′,C′为圆心,线段AB,AC的长为半径画弧,两弧相交于点A′;(3)连接A′B′,A′C′,如图12-2-5.2.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?(即全等吗?)3.学生拿出直尺和圆规,按上面的要求作图并验证.教师在此过程中巡视、指导.进一步提出问题:作图的结果反映了什么规律?学生在思考、实践的基础上,归纳出判定三角形全等的方法.教师板演:三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”).教师出示教材P36例1:在如图12-2-6的三角形钢架中,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.师生共同分析:要证明△ABD≌△ACD,只需看这两个三角形的三条边是否分别相等.注意:题目中的隐含条件是AD是公共边(AD既是△ABD的边又是△ACD的边,我们称它为这两个三角形的公共边).分析完之后,师生共同证明,教师板书过程:教师总结证明三角形全等的书写格式可分为三部分:一是全等条件的证明;二是罗列两个三角形全等的条件;三是写三角形全等的结论.这里要求注明判定方法.(注意强调书写过程的严谨性).探究3:作一个角等于已知角教师:由三边分别相等判定三角形全等的结论还可以得到用直尺和圆规作一个角等于已知角的方法.师生共同展示:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图12-2-7,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与(2)中所画的弧相交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.完成之后,教师让学生进行练习:教材P37练习第1,2题(学生首先独立思考,然后让两名学生板演,最后教师点评).1.三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).利用两个三角形全等可进行一些相关的计算和证明.2.尺规作图:作一个角等于已知角.第十二章全等三角形12.2全等三角形的判定课时2 “边角边(SAS)”【知识与技能】(1)掌握“边角边(SAS)”条件的内容.(2)能初步运用“边角边(SAS)”条件判定两个三角形全等.(3)知道两个三角形具备两边和一对角相等时,不一定全等.【过程与方法】使学生经历探索三角形全等的过程,培养学生观察图形、分析图形以及动手操作的能力.【情感态度与价值观】通过探究三角形全等条件的活动,培养学生合作交流的意识和大胆猜想、乐于探索的良好品质及发现问题的能力.对“边角边(SAS)”条件的理解和应用.运用“边角边(SAS)”判定方法进行简单的证明.多媒体课件.教师出示投影,让学生认识卡钳:如图12-2-8,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),在图中,利用这个工具就可以测量工件内的槽宽,你们能解释其中的道理吗?学生思考之后进行简单的回答,教师点评并引入本节课题.(板书)教师:上节课我们学习了三边分别相等的两个三角形全等,如果已知两个三角形的两条边及一个角对应相等,那么能判定这两个三角形全等吗?探究1:两边及其夹角分别相等〔“边角边(SAS)”〕教师让学生完成以下活动:图12-2-91.先任意画一个△ABC,再画一个△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A(即两边和它们的夹角相等).师生共同分析:要画一个三角形,首先要确定这个三角形的三个顶点.然后教师出示作法,学生独立完成:如图12-2-9,(1)画∠DA′E=∠A;(2)在射线A′D上截取A′B′=AB,在射线A′E上截取A′C′=AC;(3)连接B′C′.2.引导学生剪下三角形,看是不是与原三角形全等.师生共同得出结论:两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).教师补充:也就是说,如果三角形的两条边的长度和它们的夹角的大小确定,那么这个三角形的形状、大小就能确定.用符号语言表示为(教师板书):教师强调:“SAS”中的“A”必须是两个“S”所夹的角.教师从而解决情境导入中的问题,卡钳测量工件内的槽宽的原理是利用全等三角形的对应边相等,把不能直接测量的物体“移”到可以直接测量的位置进行测量.接着教师出示投影,让学生完成这道练习题(学生口答):图12-2-10中全等的三角形有(D).探究2:两边及其邻角分别相等(边边角)教师提出:如果把“两边及其夹角分别相等”改为“两边及其邻角分别相等”,即“两边及其中一边的对角相等”,那么这两个三角形还全等吗?学生分小组进行讨论,教师在此过程中及时点拨,画出反例图形,如图12-2-11.学生通过反例说明“已知两边及其中一边的对角分别相等的两个三角形全等”不一定成立(即SSA不一定成立).教师出示教材P38例2:如图12-2-12,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离,为什么?教师引导学生把实际问题转化为数学问题,然后师生共同分析:如果能证明△ABC≌△DEC,那么就可以得出AB=DE.由题意可知,△ABC和△DEC具备“边角边”的条件.师生共同解答,教师板书过程:最后教师总结:因为全等三角形的对应边相等,对应角相等,所以在证明线段相等或角相等时,常常通过证明它们是全等三角形的对应边或对应角来解决.教师让学生完成:教材P39练习第1,2题.让学生在黑板上板演,教师点评,并强调证明过程的规范书写.1.运用“边角边(SAS)”判定两个三角形全等,注意“边边角”不能判定两个三角形全等.2.判定两个三角形全等时,要注意使用公共边和公共角.第十二章全等三角形12.2全等三角形的判定课时3 “角边角(ASA)”“角角边(AAS)”【知识与技能】(1)掌握“角边角(ASA)”及“角角边(AAS)”条件的内容.(2)能初步运用“角边角(ASA)”及“角角边(AAS)”条件判定两个三角形全等.【过程与方法】使学生经历作图、证明等探究过程,从而提高学生分析、作图、归纳、推理等能力.【情感态度与价值观】通过探索和动手操作的过程,体会数学思维的乐趣,激发应用数学的意识,通过合作交流,培养合作意识,体验成功的喜悦.掌握三角形全等的“角边角”“角角边”判定方法.运用“角边角”“角角边”的判定方法进行简单的证明.多媒体课件.1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?(2)到目前为止,可以作为判定两三角形全等的方法有几种?分别是什么?学生举手回答,教师点评并表扬.2.教师引入:在三角形中,已知三个元素的四种情况中,我们研究了三种,接着探究已知两角一边是否可以判定两三角形全等.(板书课题)教师:已知两角和一边对应相等有两种情况,首先我们研究第一种情况,即两角及这两角的夹边对应相等.探究1:“角边角(ASA)”教师提出问题:如果“两角及一边”条件中的边是两角所夹的边,那么这两个三角形全等吗?学生完成以下活动:1.先任意画一个△ABC,再画一个△A′B′C′,使得∠A′=∠A,∠B′=∠B,A′B′=AB.教师指导△A′B′C′的作法:如图12-2-14,(1)作线段A′B′,使A′B′=AB;(2)分别以A′,B′为顶点,A′B′为一边在A′B′的同旁画∠DA′B′,∠EB′A′,使∠DA′B′=∠CAB,∠EB′A′=∠CBA;(3)射线A′D与B′E相交于一点,记为点C′,即可得到△A′B′C′.2.将画好的△A′B′C′剪下来,放到△ABC上,发现两个三角形全等.3.教师让学生模仿上一节所学的“边角边”定理,用一句话来总结一下:两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”).教师补充:也就是说,三角形的两个角的大小和它们的夹边的长度确定了,这个三角形的形状、大小就确定了.教师出示教材P40例3:如图12-2-15,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:AD=AE.师生共同分析:证明△ACD≌△ABE,就可以得出AD=AE.学生写出证明过程,教师点评.探究2:“角角边(AAS)”教师提出问题:如果把“两角和它们的夹边分别相等”改为“两角及邻边分别相等”,即“两角分别相等且其中一组等角的对边相等”,两个三角形还全等吗?教师出示教材P40例4:如图12-2-16,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.教师引导学生分析题目中的已知条件,让学生思考解题思路:如果能证明∠C=∠F,就可以利用“角边角”证明△ABC和△DEF全等,由三角形的内角和定理可以证明∠C=∠F.学生分小组交流想法,教师点评.师生共同完成证明过程,教师板书:证明:在△ABC中,∠A+∠B+∠C=180°,∴∠C=180°-∠A-∠B.同理∠F=180°-∠D-∠E.又∠A=∠D,∠B=∠E,∴∠C=∠F.在△ABC和△DEF中,∠B=∠E,BC=EF,∠C=∠F,∴△ABC≌△DEF(ASA).教师:我们从这道例题可以得到两角分别相等且其中一组等角的对边相等的两个三角形全等(可以简写成“角角边”或“AAS”).也就是说,三角形的两个角的大小和其中一个角的对边的长度确定了,这个三角形的形状、大小就确定了.教师紧接着让学生完成P41练习第1,2题.学生板演,教师点评.教师最后总结:(1)已知两个三角形的两组角对应相等,要证明这两个三角形全等,应选择判定方法“ASA”或“AAS”.(2)在运用“ASA”或“AAS”判定三角形全等时,同样要注意题目中的隐含条件,如公共边、公共角、对顶角等.最后,教师提出:到此为止,在三角形中已知三个条件探索两个三角形全等的问题已全部结束.然后让学生把两个三角形全等的判定方法做一个小结.学生自我回忆总结,然后小组讨论、交流,补充:边边边(SSS),边角边(SAS),角边角(ASA),角角边(AAS).1.用“角边角”“角角边”判定两个三角形全等.2.用三角形全等来证明线段或角相等.3.到目前已经学习了四种判定两个三角形全等的方法.第十二章全等三角形12.2全等三角形的判定课时4 “斜边直角边(HL)”【知识与技能】(1)探索和了解直角三角形全等的条件——“斜边、直角边(HL)”.(2)会运用“斜边、直角边(HL)”判定两个直角三角形全等.【过程与方法】让学生在合作交流中获取知识,组织学生通过观察、发现、交流、体验、说理归纳等活动,感知并掌握直角三角形的判定方法.【情感态度与价值观】通过创设情境,激发学生的求知欲,通过动手操作等活动,让学生乐于探究,培养学生独立思考和合作交流的能力.探究直角三角形全等的条件.灵活运用直角三角形全等的条件进行证明.多媒体课件.教师出示投影:如图12-2-18,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但两个三角形都有一条直角边被花盆遮住无法测量其长度.你们能帮他想个办法吗?学生思考之后,回答:方法一:测量斜边和一个对应的锐角(“AAS”);方法二:测量没遮住的一条直角边和一个对应的锐角(“ASA”或“AAS”).教师继续指出:工作人员只带了一把卷尺,他测量了两个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“这两个直角三角形是全等的”.你们相信他的结论吗?学生回答:这两个三角形都是直角三角形,也许是全等的.因为它还有直角这个特殊条件.教师点评:有道理,但科学是严谨的,今天我们就来探究“两个直角三角形全等的条件”.(板书课题)探究1:“斜边、直角边(HL)”教师:对于两个直角三角形,除了直角相等的条件外,还要满足几个条件,这两个直角三角形就全等了?教师出示教材P42探究5:师生共同按照下面的步骤做一做(如图12-2-19):画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB.图12-2-19(1)画∠MC′N=90°;(2)在射线C′M上截取B′C′=BC;(3)以点B′为圆心,AB长为半径画弧,交射线C′N于点A′;(4)连接A′B′.教师提问:Rt△A′B′C′就是所求作的三角形吗?接着让学生把画好的Rt△A′B′C′剪下来放在Rt△ABC上,观察这两个三角形是否全等.学生由此可以得到判定两个直角三角形全等的一个方法:斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).教师出示教材P42例5:如图12-2-20,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证:BC=AD.师生共同分析:要想证明BC=AD,首先应寻找和这两条线段有关的三角形,这里有△BAD 和△ABC,△ADO和△BCO,其中O为DB,AC的交点,经过对条件的分析,发现△ABD和△BAC 具备全等的条件.师生共同完成证明过程,教师板书:证明:∵AC⊥BC,BD⊥AD,∴∠C与∠D都是直角.教师接着提问:你能够用几种方法判定两个直角三角形全等?学生回答:直角三角形是特殊的三角形,所以不仅能用一般三角形判定全等的方法“SAS”“ASA”“AAS”“SSS”,还能用直角三角形独有的判定全等的方法——“HL”.最后教师总结:对于两个直角三角形,满足一边一锐角分别相等,或两条直角边分别相等,则这两个直角三角形全等.如果满足斜边和一条直角边分别相等,这两个直角三角形也全等.在判定三角形全等的各个条件中,一个必要的条件为至少有一条边对应相等.判定两个三角形全等时,要注意对应边、角的相对位置关系,然后按照以下思路寻求解题方法:(1)已知两边找夹角→SAS找直角→HL找第三边→SSS(2)已知两角找夹边→ASA找一角的对边→AAS(3)已知一边一角边为角的对边→找一角→AAS边为角的邻边找夹边的另一角→ASA 找边的对角→AAS找夹角的另一边→SAS紧接着,让学生完成:教材P43练习第1,2题.(学生板演,教师点评)1.斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).2.直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它.同时,直角三角形又是特殊的三角形,有它的特殊性,“HL”定理是直角三角形全等独有的判定方法,所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.第十二章全等三角形12.3角的平分线的性质课时一角的平分线的性质【知识与技能】(1)掌握已知角的平分线的画法.(2)利用角的平分线的定义进行简单的证明与计算.(3)利用全等三角形证明角的平分线.(4)掌握角的平分线的性质.(5)了解角的平分线的性质在生活、生产中的应用.【过程与方法】经历角的平分线的画法和角的平分线的性质的探索过程,体会探索、研究问题的基本方法,培养学生的合作精神,体会转化的数学思想,感受数学来源于生活.【情感态度与价值观】在探究角的平分线的作法及性质的过程中,培养学生探究问题的兴趣,获得解决问题的成功体验,增强解决问题的信心.角的平分线的性质,能灵活运用角的平分线的性质解题.灵活运用角的平分线的性质解题.多媒体课件.复习引入教师提出问题:1.角的平分线的概念.2.点到直线(射线)的距离的概念.学生举手回答.探究1:角的平分线的画法教师引入:工人师傅常常用一种简易平分角的仪器(如图12-3-1),其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是∠DAB的平分线.你能说明它的道理吗?学生分组讨论,说明简易平分角仪器的原理,并写出证明过程.(教师提示:用全等三角形的知识)教师:其实这种平分角的方法告诉了我们作已知角的平分线的一种方法.然后教师引导学生用尺规作图:已知:∠AOB.求作:∠AOB的平分线.先让学生讨论作法,再由教师总结作法,师生共同作图:(1)以点O为圆心,适当长为半径画弧,分别交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC.射线OC即为所求,如图12-3-2.教师紧接着提出问题:你们能说明OC为什么是∠AOB的平分线吗?学生进行交流,教师提示(可证明△MOC≌△NOC),然后让学生写出证明过程.教师巡示并指导.探究2:角的平分线的性质教师让学生完成以下活动:1.任意作一个∠AOB,作出∠AOB的平分线OC.在OC上任取一点P,过点P画出OA,OB 的垂线,分别记垂足为D,E,测量PD,PE并作比较,你得到什么结论?2.在OC上再取几个点试一试.3.通过以上测量,你发现了角的平分线的什么性质?学生动手操作,独立思考,然后举手回答自己的发现,学生互相补充,教师指导,一起概括出角的平分线的性质:角的平分线上的点到角的两边的距离相等.教师进一步提问:你们能通过严格的逻辑推理证明这个结论吗?教师首先引导学生分析命题的条件和结论.如果学生感到困难,可以让学生先将命题改写成“如果……那么……”的形式,再引导学生逐字分析结论,进而发现并找出结论中的隐含条件(垂直).最后让学生画出图形,用符号语言写出已知和求证,并独立完成证明过程.接着师生共同概括证明几何命题的一般步骤:一般情况下,我们要证明一个几何命题时,可以按照类似于以下的步骤进行,即1.明确命题中的已知和求证;2.根据题意,画出图形,并用符号表示已知和求证;3.经过分析,找出由已知推出要证的结论的途径,写出证明过程.最后教师归纳:利用角的平分线的性质可直接推导出与角的平分线有关的两条线段相等,但在推导过程中,不要漏掉垂直关系的书写.以后涉及角的平分线上的点到角的两边的垂线段时,可直接得到其相等,不必再通过证两个三角形全等而走弯路.教师出示例题:例1如图12-3-3,在△ABC中,∠C=90°,AM平分∠CAB,BM=5.2 cm,点M到AB的距离为3 cm.求BC的长.师生共同分析:只需补出点M到AB的距离,利用角的平分线的性质得到CM=3 cm,从而求出BC的长.师生共同完成证明过程,教师板书:解:过点M作MN⊥AB于点N,∴MN=3 cm.∵AM平分∠CAB,∠C=90°,∴CM=MN=3 cm.又∵BM=5.2 cm,∴BC=CM+BM=3+5.2=8.2(cm).进而教师让学生独立完成:教材P50练习第2题(学生完成之后,教师点评).本节课我们学习了角的平分线的性质是由三个条件(一条角平分线,两条垂线段)得到一个结论(线段相等),角的平分线的性质可独立地作为证明两条线段相等的依据.。
2024年人教版八年级数学上册教案及教学反思第12章12.2 三角形全等的判定(第4课时)
第十二章全等三角形12.2.三角形全等的判定第4课时直角三角形全等的判定一、教学目标【知识与技能】掌握直角三角形全等的条件:“斜边、直角边”.能运用全等三角形的条件,解决简单的推理证明问题.【过程与方法】经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系.【情感、态度与价值观】通过画图、探究、归纳、交流,发展学生的实践能力和创新精神.二、课型新授课三、课时第4课时,共4课时。
四、教学重难点【教学重点】掌握判定两个直角三角形全等的特殊方法——HL.【教学难点】熟练选择判定方法,判定两个直角三角形全等.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规。
六、教学过程(一)导入新课小明去公园玩,在公园看到了如下两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF相等,小明说只要测量出左边滑梯AB的长度就可以知道右边滑梯有多高了,小明的说法正确吗?(出示课件2-4)(二)探索新知1.师生互动,探究直角三角形全等的判定方法教师问1:判定两个三角形全等的条件有哪些?(出示课件6)学生回答:SSS、SAS、AAS、ASA教师提出问题:前面学过的四种判定三角形全等的方法,对直角三角形是否适用?(出示课件7)教师问2:两个直角三角形,除了直角相等外,还要满足几个条件,这两个直角三角形就全等了?(出示课件8)(让学生观察课件中的两个直角三角形并思考回答:分析:1.再满足一边一锐角对应相等,就可用“AAS”或“ASA”证全等了.2.再满足两直角边对应相等,就可用“SAS”证全等了.教师问3:那么,如果满足斜边和一条直角边对应相等,这两个直角三角形全等吗?学生不能作肯定回答,经过小组讨论,只能作出猜测:可能全等.教师讲解:现在不要求马上给出结论.看看通过动手探究,你是否能得出结论.直角三角形我们用Rt△表示.教师问4:如图,已知AC=DF,BC=EF,∠B=∠E,△ABC≌△DEF 吗?(出示课件9)学生讨论并回答:证明三角形全等不存在SSA定理.所以一般的三角形不一定全等.教师问5:如果这两个三角形都是直角三角形,即∠B=∠E=90°,且AC=DF,BC=EF,现在能判定△ABC≌△DEF吗?(出示课件10)我们完成下边的问题:思考:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使B′C′=BC,A′B′=AB,把画好的Rt△A′B′C′剪下,放到Rt△ABC 上,看看它们是否全等.(课件出示11-14,师生一起看题)(学生独立探究,动手作图)分析:画法直接由教师给出,而不安排学生画出,是考虑学生画图有一定的难度,况且作图不是本节课的重点.教师问6:Rt△ABC就是所求作的三角形吗?学生回答:是要求作的三角形.教师问7:画好后,把Rt△A′B′C′剪下,放到Rt△ABC上,看它们全等吗?学生动手做后回答:全等.教师问8:这样你发现了什么结论?学生回答:有一条斜边和直角边相等的两个直角三角形全等》教师板书:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边,直角边”或“HL”).总结点拨:(出示课件15)“斜边、直角边”判定方法文字语言:斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:在Rt△ABC和Rt△ A′B′C′ 中,AB=A′B′,BC=B′C′,∴Rt△ABC ≌ Rt△ A′B′C′ (HL).警示注意:(1)一是“HL”是仅适用于Rt△的特殊方法;二是应用“HL”时,虽只有两个条件,但必须先有两个三角形是Rt△的条件.(2)“SSA”可以判定两个直角三角形全等,但是“边边”指的是斜边和一直角边,而“角”指的是直角.例1:如图,AC⊥BC,BD⊥AD,AC﹦BD.求证:BC﹦AD.(出示课件17)师生共同解答如下:证明:∵ AC⊥BC,BD⊥AD,∴∠C与∠D 都是直角.在Rt△ABC 和Rt△BAD 中,AC=BD .∴Rt△ABC≌Rt△BAD (HL).∴ BC﹦AD.例2:如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE. 求证:BC=BE.(出示课件22)师生共同解答如下:证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC =AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD-CD=BF-EF. 即BC=BE.总结点拨:(出示课件23)证明线段相等可通过证明三角形全等解决,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.例3:如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?师生共同解答如下:解:在Rt△ABC和Rt△DEF中,BC=EF,AC=DF .∴Rt△ABC≌Rt△DEF (HL).∴∠B=∠DEF(全等三角形对应角相等).∵∠DEF+∠F=90°,∴∠B+∠F=90°.(三)课堂练习(出示课件29-34)1. 判断两个直角三角形全等的方法不正确的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等2. 如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点E ,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长为()A.1 B.2 C.3 D.43.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC________(填“全等”或“不全等”),根据_______________(用简写法).4. 如图,在△ABC中,已知BD⊥AC,CE ⊥AB,BD=CE.求证:△EBC≌△DCB.5. 如图,AB=CD, BF⊥AC,DE⊥AC, AE=CF.求证:BF=DE.6. 如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P,Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等?参考答案:1.D2.A3. 全等HL4. 证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90 °.在Rt△EBC 和Rt△DCB 中,CE=BD,BC=CB .∴Rt△EBC≌Rt△DCB (HL).5. 证明: ∵ BF⊥AC,DE⊥AC,∴∠BFA=∠DEC=90 °.∵AE=CF,∴AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,AB=CD,AF=CE.∴Rt△ABF≌Rt△CDE(HL).∴BF=DE.6. 解:(1)当P运动到AP=BC时,∵∠C=∠QAP=90°.在Rt△ABC与Rt△QPA中,∵PQ=AB,AP=BC,∴Rt△ABC≌Rt△QPA(HL),∴AP=BC=5cm;(2)当P运动到与C点重合时,AP=AC.在Rt△ABC与Rt△QPA中,∵PQ=AB,AP=AC,∴Rt△QAP≌Rt△BCA(HL),∴AP=AC=10cm,∴当AP=5cm或10cm时,△ABC才能和△APQ全等.(四)课堂小结今天我们学了哪些内容:1.直角三角形“HL”判定方法2.灵活选择三角形全等的判定方法来解决问题(五)课前预习预习下节课(12.3)教材48页到49页的相关内容。
2024年人教版八年级数学上册教案及教学反思全册第12章 全等三角形12.1 全等三角形教案
第十二章全等三角形12.1 全等三角形一、教学目标【知识与技能】1.掌握全等形、全等三角形的概念,能应用符号语言表示两个三角形全等;2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质,并解决相关简单的问题.【过程与方法】掌握全等三角形对应边相等,对应角相等的性质,并能进行简单的推理和计算,解决一些实际问题.【情感、态度与价值观】联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.二、课型新授课三、课时第1课时四、教学重难点【教学重点】全等三角形的概念、性质及对应元素的确定.【教学难点】全等三角形对应元素的识别.五、课前准备教师:课件、三角尺、全等图形等。
学生:三角尺、直尺、全等图形、三角形纸板。
六、教学过程(一)导入新课观察这些图片,你能找出形状、大小完全一样的几何图形吗?(出示课件2-3)(二)探索新知1.观察图形,学习全等图形教师问1:下列各组图形的形状与大小有什么特点?(出示课件5)学生回答:每一组图中的两个图形形状相同,大小相等.教师问2:观察思考:每组中的两个图形有什么特点?(出示课件6)学生回答:前三组图形的形状相同,大小也相等,第4组图形的形状相同,但是大小不相等,第5组图形的形状不相同,但是大小相等.教师问3:它们能够完全重合吗?你能再举出一些类似的例子吗?学生讨论分析,教师引导后学生回答:举例:学生手中含30度角的三角板;含45度角的三角板;学生手中的小量角器;由同一张底片洗出的尺寸相同的照片;两本数学书等.教师讲解:由图①②③中的图形,我们可以看到,它们的形状相同,大小相等,像这样,形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.教师问4:同学们讨论一下,全等图形有什么性质呢?学生回答:全等图形的形状相同,大小相等.总结点拨:全等图形定义:能够完全重合的两个图形叫做全等图形.全等形性质:如果两个图形全等,它们的形状和大小一定都相等.2.师生互动,认识全等三角形的概念教师问5:观察下边的两个三角形,它们的形状和大小有何特征?学生回答:它们的形状相同,大小相等.教师问6:这两个三角形能够完全重合吗?学生回答:能够完全重合教师问7:这两个三角形能够完全重合之后,△ABC的顶点A、B、C与△DEF的顶点D、E、F那两个点重合呢?它们的边呢?它们的角呢?学生回答:点A与点D重合,点B与点E重合,点C与点F重合,边AB 与边DE重合,边AC与边DF重合,边CB与边FE重合,∠A与∠D重合,∠B与∠E重合,∠C与∠F重合.教师总结:(出示课件9)像上图一样,把△ABC 叠到△DEF上,能够完全重合的两个三角形,叫做全等三角形. 把两个全等的三角形重叠到一起时,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.教师问8:平移、翻折、旋转前后的两个三角形什么变化,什么没有变化呢?学生讨论并回答:三角形的形状和大小没有变化,位置变化了.教师问9:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?(出示课件10)学生回答:平移、翻折、旋转前后的两个三角形全等.总结点拨:(出示课件11)一个图形经过平移、翻折、旋转后,位置变化了,但形状和大小都没有改变,即平移、翻折、旋转前后的两个图形全等.学生小组活动:教师提出下列要求:①请你用事先准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;②在练习本上画出这些图形,标上字母,并在小组内交流;③指出这些图形中的对应顶点、对应边、对应角.教师问10:请同学们观察分析,指出下列图形的对应边、对应角和对应顶点.学生分组做完后并点名回答教师问11:寻找对应元素有什么方法和规律吗?学生思考交流后,师生共同归纳、板书.(出示课件13)1. 有公共边,则公共边为对应边;2. 有公共角(对顶角),则公共角(对顶角)为对应角;3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;4. 对应角的对边为对应边;对应边的对角为对应角.教师问12:全等三角形的对应边、对应角有什么数量关系?学生回答:全等三角形的对应边相等,全等三角形的对应角相等.教师问:全等三角形用什么表示呢?学生阅读教材32页内容回答:全等”用符号“≌”表示,△ABC全等于△DEF,记作△ABC≌△DEF.教师问13:全等三角形有哪些性质呢?学生讨论回答:全等三角形的对应边相等,对应角相等.总结点拨:全等的表示方法:“全等”用符号“≌”表示,读作“全等于”. (出示课件15)警示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等的性质:(出示课件16-17)全等三角形的对应边相等,对应角相等.几何语言:∵△ABC≌△DEF(已知),∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等).例1:如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.(出示课件18)师生共同解答如下:解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.例2:如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.(出示课件20)师生共同解答如下:解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC–BF=7–4=3.例3:如图,△EFG≌△NMH,EF=2.1cm,EH=1.1cm,NH=3.3cm.(1)试写出两三角形的对应边、对应角;(2)求线段NM及HG的长度;(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.(出示课件22-23)师生共同解答如下:解:(1)对应边有EF和NM,FG和MH,EG和NH;对应角有∠E和∠N,∠F和∠M,∠EGF和∠NHM.(2)解:∵△EFG≌△NMH,∴NM=EF=2.1cm,EG=NH=3.3cm.∴HG=EG –EH=3.3 – 1.1=2.2(cm).(3)解:结论:EF∥NM证明:∵ △EFG≌△NMH,∴ ∠E=∠N. ∴ EF∥NM.总结点拨:全等三角形的性质:能够重合的边是对应边,重合的角是对应角,对应边所对的角是对应角.对应角所对的边是对应边;两个全等三角形最大的边是对应边,最小的边也是对应边; 两个全等三角形最大的角是对应角,最小的角也是对应角.(三)课堂练习(出示课件27-30)1.能够_________的两个图形叫做全等形.两个三角形重合时,互相__________的顶点叫做对应顶点.记两个全等三角形时,通常把表示___________顶点的字母写在_________的位置上.2.如图,△ABC≌ △ADE,若∠D=∠B,∠C= ∠AED,则∠DAE=_______;∠DAB=__________ .3.如图,△ABC≌△BAD,如果AB=5cm,BD=4cm,AD=6cm,那么BC 的长是( )A.6cmB.5cmC.4cmD.无法确定4.在上题中,∠CAB的对应角是( )A.∠DABB.∠DBAC.∠DBCD.∠CAD5. 如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD∥BC,且AD = BC6.如图,△ABC ≌△AED,AB是△ABC 的最大边,AE是△AED的最大边,∠BAC 与∠ EAD是对应角,且∠BAC=25°,∠B= 35°,AB =3cm,BC =1cm,求出∠E,∠ ADE 的度数和线段DE,AE 的长度.参考答案:1. 重合重合对应相对应2. ∠BAC ∠EAC3.A4.B5.C6. 解:∵ △ABC ≌△AED,(已知)∴∠E= ∠B = 35°,(全等三角形对应角相等)∠ADE =∠ACB =180°–25°–35°=120 °,(全等三角形对应角相等) DE = BC =1cm,AE = AB =3cm.(全等三角形对应边相等)(四)课堂小结今天我们学了哪些内容:1.全等三角形的有关概念2.全等三角形的性质3.寻找对应元素的方法(五)课前预习预习下节课(11.2)教材35页到教材37页的相关内容。
人教版八年级上数学教学设计《第12章全等三角形》
人教版八年级上数学教学设计《第12章全等三角形》一. 教材分析人教版八年级上数学第12章《全等三角形》是初中数学中的重要内容,主要介绍了全等三角形的概念、性质和判定方法。
通过本章的学习,使学生理解和掌握全等三角形的判定和性质,能运用全等三角形的知识解决一些实际问题。
教材中安排了丰富的例题和练习题,有利于学生巩固所学知识。
二. 学情分析学生在学习本章内容前,已经掌握了相似三角形的知识,并具备一定的逻辑思维能力和空间想象能力。
但全等三角形与相似三角形既有联系又有区别,学生需要通过对比、分析、归纳等方法,理解和掌握全等三角形的概念和性质。
同时,学生需要通过大量的练习,提高运用全等三角形知识解决实际问题的能力。
三. 教学目标1.知识与技能目标:使学生理解和掌握全等三角形的概念、性质和判定方法,能运用全等三角形的知识解决一些实际问题。
2.过程与方法目标:通过观察、操作、对比、分析等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的勇气。
四. 教学重难点1.教学重点:全等三角形的概念、性质和判定方法。
2.教学难点:全等三角形的判定方法以及在实际问题中的运用。
五. 教学方法1.情境教学法:通过生活实例引入全等三角形的概念,激发学生的学习兴趣。
2.对比教学法:对比全等三角形与相似三角形的异同,帮助学生深入理解全等三角形的性质。
3.实践操作法:让学生动手操作,通过实际操作得出全等三角形的判定方法。
4.小组合作学习法:培养学生团队合作精神,共同解决实际问题。
六. 教学准备1.教学课件:制作全等三角形的相关课件,包括图片、动画、例题等。
2.教学素材:准备一些全等三角形的实际问题,用于巩固和拓展学生的知识。
3.练习题:挑选一些具有代表性的练习题,用于检验学生对全等三角形知识的掌握程度。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,引导学生思考:如何判断两个三角形是否全等?从而引出全等三角形的概念。
人教版数学八年级上册12.2三角形全等的判定(角边角判定三角形全等)教学设计
(二)教学设想
1.创设情境,导入新课
通过呈现生活中全等三角形的实例,如拼图游戏、建筑图案等,激发学生的学习兴趣,引导学生关注全等三角形的特点和判定方法。
2.自主探究,合作交流
将学生分成小组,让他们观察、讨论全等三角形的性质,自主发现“角边角”判定法则。在此过程中,教师巡回指导,解答学生的疑问,引导学生深入探讨。
3.案例分析,突破难点
设计具有挑战性的问题,如:如何在一个复杂图形中找出全等三角形?如何运用“角边角”判定法则解决实际问题?通过案例分析和讨论,帮助学生突破学习难点。
4.课堂练习,巩固知识
设计不同难度的练习题,让学生在课堂上进行练习,巩固所学知识。同时,教师及时反馈,针对学生的错误进行指导,提高学生的解题能力。
7.要求学生家长参与作业的检查和评价,了解学生的学习情况,关注学生在几何学习中的进步和困惑,共同促进学生的全面发展。
针对以上学情,教师应采取适当的教学策略,如设计生动有趣的导入环节,激发学生的学习兴趣;注重启发式教学,引导学生主动探究和发现几何规律;加强课堂练习,巩固学生对全等判定方法的掌握;鼓励学生积极参与合作交流,提高他们的表达能力和团队协作能力。通过有针对性的教学,帮助学生克服学习难点,提升几何学科素养。
三、教学重难点和教学设想
3.教师结合具体实例,讲解“角边角”判定法则的应用,让学生理解并掌握这个判定方法。
4.强调在运用“角边角”判定法则时,需要注意的要点,如角度的对应关系、边的对应关系等。
(三)学生小组讨论,500字
1.教师将学生分成小组,让他们观察和分析一些含有全等三角形的图形,讨论如何运用“角边角”判定法则。
2.学生在小组内分享自己的观点和发现,通过合作交流,共同解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形教学目标:知识与技能:1.理解全等形、全等三角形的概念及全等三角形表示方法;2.会寻找全等三角形的对应边、对应角和对应顶点;3.掌握全等三角形的性质,并能进行简单的推理和计算,能解决一些实际问题.过程和方法目标:1.通过学生的实际动手操作,提高学生的概括能力;2.通过学生自主探索,提高学生的观察能力、分析能力.情感和价值目标:1.通过平移、翻折、旋转等图形变换,培养学生运动的观点、联系的观点;2.联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.教学重点:探究全等三角形的性质教学难点:掌握两个全等三角形的对应边、对应角教学过程:一、情景导入(2分钟)问题1:观察下列图案,指出这些图案中中形状与大小相同的图形问题 2:通过观察上面的图片,你有什么感受?还能举出生活中一些这样的实际例子吗?问题3:把三角形平移、翻折、旋转后,什么发生了变化?什么没有变?二、自学指导(8分钟)自学课本P31---P32.会应用全等三角形的性质。
叫做全等形叫做全等三角形叫做对应顶点,叫做对应边,叫做对应角全等三角形的相等,相等。
设计意图:通过设置富有阶梯形的自学指导,引导学生自主学习,发现问题,解决问题。
注意事项:教师出示自学指导,先让学生自学课本P31---P32。
,能够说出全等形、全等三角形、对应顶点、对应边、对应角的定义,理解掌握全等三角形的性质.三、自学检测(5分钟)1、如图:△ ABC≌△DCB.指出所有的对应边和对应角。
2、如图:△ABC≌△ECD找出这两个三角形中相等的边和角。
设计意图:考查学生自学效果,提高学生自学效率注意事项:在说出全等三角形对应元素时,要做到严格的对应,注意字母的先后顺序不要弄颠倒了。
对应角最好用数字法表达。
四、合作探究(10分钟)1、如图:D为BC边上一点,△ABD≌△ACD.则AD与BC的位置关系如何?试说明理由。
2、△EFG≌△NMH,∠F和∠M是对应角。
在△EFG中,FG是最长边,在△NMH中,MH是最长边,EF=2.1cm,EH=1.1cm,HN=3.3cm.(1)写出其他的对应边及对应角(2)求线段NM及HG的长度设计意图:学生分组合作探究,每个小组讨论完成后,给出答案并进行展示,让学生上台说明,培养学生总结能力,大胆发言的良好习惯注意事项:1.两道题都考查了全等三角形的性质,第一题考查了垂直定义,第2题将未知转化为已知,向学生渗透了转化思想。
2.在合作探究环节中,教师要关注学生在展示过程中出现的问题,并及时予以点拨。
五、课堂小结(3分钟)问题1 本节课你学习了什么?问题2 本节课你有哪些收获?问题3 通过本节课的学习,你想进一步探究的问题是什么?设计意图:以上三个问题引导学生回顾自己的学习过程,畅所欲言,进一步进行反思、提炼及知识的归纳,并纳入自己的知识结构中;注意事项:找全等三角形的对应元素的方法,注意挖掘图中隐含的条件如公共元素,对顶角等,要注意公共顶点有时不一定是对应顶点,在运用全等三角形的定义和性质时应注意规范书写格式。
六、课堂检测A组(基础限时练)(4分钟)1、已知△ABC≌△DEF,A与D是对应顶点,∠B与∠E是对应角,BC=12, DE=15, ,DF=10 ,则△ABC的周长是2.已知△MNP≌△NMQ, 且MN=6cm,NP=7cm,则MQ=3.如图,△AEB≌△ADC, C和B是对应顶点,∠ABE=25°,∠AEB=105°,则∠A= ,∠ACB= ,∠ADC=4、如图,△ABC≌△CDA,那么下列等式中正确的是()A、EA=EBB、BC=BEC、AD=CBD、AC=BDB组(能力拓展)(11分钟)1、已知,△ABC≌△FED,且BC=ED,求证:AB∥FE2、已知△ABD≌△ACE,试说明∠1=∠2。
设计意图:分层设计课堂检测,体现了对学生的因材施教,让不同层次的学生各有所得。
注意事项:1.按照规定时间完成A组(基础限时练)。
B组依时间选做。
2.B组练习如果课堂不能当堂完成,可作为课下作业,并不影响课堂的教学目标的完成。
七、作业设计必做题:课本第33页习题12.1的第2、3题选作题:1、第33页习题12.1的第5、6题教学反思:课题:12.2.1 三角形全等的判定(一)——SSS教学目标:知识与技能1.掌握已知三边画三角形的方法;2.掌握边边边公理,能用边边边公理证明两个三角形全等;3.会添加较明显的辅助线.过程与方法1.通过尺规作图使学生得到技能的训练;2.通过公理的初步应用,初步培养学生的逻辑推理能力.情感、态度与价值观:1.在公理的形成过程中渗透:实验、观察、归纳;2.培养学生“举一反三”的学习习惯.教学重点:SSS公理、灵活地应用SSS判定三角形全等。
教学难点:如何根据题目条件和求证的结论,灵活地运用SSS判定两个三角形全等。
已知三边画三角形的方法.教学过程:一、情景导入(2分钟)问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?二、自学指导(8分钟)1 自学课本P35—37,完成探究1和探究2.2 的两个三角形全等(可以简写成或)注意事项:探究1和探究2是教学核心,引导学生动手操作,通过实践、自主探索、交流获得新知,同时也渗透了分类的思想,得出结论:只给出一个或两个条件时,都不能保证所画的两个三角形一定全等。
得出结论的过程是自然的,学生易于接受,有了探究1的铺垫,探究2就比较顺利,归纳得出结论,同时也明确了判断两个三角形全等的条件。
三、自学检测(5分钟)1.如图,F是AB的中点,AD=FE, FD=BE, ∠B=58°,∠A=72°,求∠DFE的度数。
2.如图,在四边形ABCD中,AB=BC, AD=CD, 求证:∠A=∠C.设计意图:考查学生自学效果,提高学生自学效率注意事项:第2题要引导学生通过添加辅助线,构造一对全等三角形。
四、合作探究(10分钟)1.如图,点A、C、B、D在同一直线上,且AM=CN, BM=DN,AC=DB. 问AM与CN有怎样的位置关系?2.如图,已知△ABC≌△ADE, 求证:∠CED=∠BCE.设计意图:学生分组合作探究,每个小组讨论完成后,给出答案并进行展示,让学生上台说明,培养学生总结能力,大胆发言的良好习惯注意事项:1.这两道题均着重考查全等三角形的判定SSS,第一题综合了平行线的判定,第二题需要再次证明三角形全等。
2.在合作探究环节中,教师要关注学生在展示过程中出现的问题,并及时予以点拨。
五、课堂小结(3分钟)问题1 本节课你学习了什么?问题2 本节课你有哪些收获?问题3 通过本节课的学习,你想进一步探究的问题是什么?设计意图:以上三个问题引导学生回顾自己的学习过程,畅所欲言,进一步进行反思、提炼及知识的归纳,并纳入自己的知识结构中;六、课堂检测A组(基础限时练)(5分钟)1.如图,已知AB=AC,若使△ABD≌△ACD.则需补充的一个条件可以是2.如图,AD=BC, OA=OB, OC=OD,∠A=40°, ∠C=80°, 则∠AOD等于()A. 40°B. 60°C.80°D.120°图1 图23.如图,在四边形ABCD中,AB=CD,AD=BC,你能说出∠B和∠D的关系吗?为什么?B组(能力拓展)(10分钟)1.如图,已知AD=BC,AC=BD.求证:∠A=∠B2.如图,A.F.C.D.在同一直线上,AB=DE,BC=EF,AF=CD.求证:BC∥EF设计意图:分层设计课堂检测,体现了对学生的因材施教,让不同层次的学生各有所得。
注意事项:1.按照规定时间完成A组(基础限时练)。
B组依时间选做。
2.B组练习如果课堂不能当堂完成,可作为课下作业,并不影响课堂的教学目标的完成。
七、作业设计必做题:课本第43页习题11.2的第1、2题选作题:1、.春天,小华作了如图所示的风筝,他想去验证∠B和∠C是否相等,手头只有一把足够长的尺子,你能帮他想个办法吗?说明你这样做的理由。
教学反思:课题:12.2.2三角形全等的判定(二)-----SAS教学目标:知识与技能1.掌握“边角边”条件的内容2.能初步应用“边角边”条件判定两个三角形全等过程与方法1.使学生经历探索三角形全等的过程,体验操作,归纳得出的数学结论的过程。
情感、态度与价值观:1.通过探究三角形全等的条件下的活动,培养学生观察分析图形的能力及运算能力,培养学生对于探索的良好品质以及发现问题的能力。
教学重点:应用SAS证明两个三角形全等,进而得出线段或角相等教学难点:指导学生分析问题,寻找判断两个三角形全等的条件教学过程:一、情景导入(2分钟)问题 1 我们知道,有三边对应相等的两个三角形全等,由“两边及其夹角对应相等”能判定两个三角形全等吗?问题 2 我们是怎样探究“边边边”条件的呢?二、自学指导(8分钟)1.认真阅读课本第38-39页,记准“边角边”条件会做例2.2.画一个△ABC,使A’B’=AB,A’C’=AC,∠A’=∠A。
步骤是:(1)(2)(3)连接B’C’两边和它们的夹角 .(可以简写成或)设计意图:通过设置富有阶梯形的自学指导,引导学生自主学习,发现问题,解决问题。
注意事项:教师出示自学指导,先让学生自学课本第38-39页,让学生在探究新知的基础上总结规律,锻炼学生的归纳总结能力及数学语言表达能力。
三、自学检测(5分钟)1.如图,只要________则△ABC≌△ADC()A. AB=AD.∠B=∠DB.AB=AD.∠ACB=∠ACDC.BC=DC. ∠BAC=∠DACD.AB=AD. ∠BAC=∠DAC2如图,AB∥CD,AB=CD.AF=CE,求证:△ABC≌△CDF设计意图:考查学生自学效果,提高学生自学效率注意事项:第2题要引导通过平行线的性质得出对应角相等,通过线段的和差得出对应边相等,这是难点。
四、合作探究(10分钟)1.如图,已知AC,BD互相平分交于O求证:△AOB≌△COD设计意图:学生分组合作探究,每个小组讨论完成后,给出答案并进行展示,让学生上台说明,培养学生总结能力,大胆发言的良好习惯注意事项:在合作探究环节中,教师要关注学生在展示过程中出现的问题,并及时予以点拨。
五、课堂小结(3分钟)问题1 本节课你学习了什么?问题2 本节课你有哪些收获?问题3 通过本节课的学习,你想进一步探究的问题是什么?设计意图:以上三个问题引导学生回顾自己的学习过程,畅所欲言,进一步进行反思、提炼及知识的归纳,并纳入自己的知识结构中;六、课堂检测A组(基础限时练)(6分钟)1.如图,已知AB=AC,D,E分别是AB和AC上的点,且DB=EC,试证明:∠B=∠C.B组(能力拓展)(10分钟)已知:∠3=∠4,BP=CP,求证:AM平分∠BAC设计意图:分层设计课堂检测,体现了对学生的因材施教,让不同层次的学生各有所得。