用分离变量法解常微分方程

合集下载

常微分方程组的解法

常微分方程组的解法

常微分方程组的解法常微分方程组是由多个关于未知函数及其导数的方程组成的方程组,它是数学中的重要研究对象。

常微分方程组的解法可以分为解析解法和数值解法两种。

解析解法是指通过数学方法求出常微分方程组的解析表达式。

常微分方程组的解析解法主要包括分离变量法、一阶线性方程法、变量代换法、常数变易法、特殊函数法等。

其中,分离变量法是指将常微分方程组中的各个变量分离出来,然后对每个变量分别积分,最后得到常微分方程组的解析解。

一阶线性方程法是指将常微分方程组转化为一阶线性方程,然后通过求解一阶线性方程来得到常微分方程组的解析解。

变量代换法是指通过合适的变量代换将常微分方程组转化为更简单的形式,然后通过求解简化后的方程组得到常微分方程组的解析解。

常数变易法是指将常微分方程组中的常数作为未知量,然后通过求解常数得到常微分方程组的解析解。

特殊函数法是指通过特殊函数的性质求解常微分方程组,如指数函数、三角函数等。

数值解法是指通过计算机数值计算的方法求出常微分方程组的数值解。

常微分方程组的数值解法主要包括欧拉法、龙格-库塔法、变步长法等。

其中,欧拉法是一种简单的数值解法,它的基本思想是将常微分方程组的解曲线上的点离散化为一系列点,然后通过计算机逐步求解得到常微分方程组的数值解。

龙格-库塔法是一种高阶数值解法,它通过计算机采用多个不同的计算公式来逼近常微分方程组的解曲线,从而得到更为准确的数值解。

变步长法是一种自适应数值解法,它通过计算机根据误差大小自动调整步长大小,从而得到更为准确的数值解。

常微分方程组的解法包括解析解法和数值解法两种,每种方法都有其适用的范围和优缺点。

在实际应用中,需要根据具体问题的性质和求解要求选择合适的解法来求解常微分方程组。

数理方程-分离变量法

数理方程-分离变量法

第八章 分离变量法⎪⎪⎩⎪⎪⎨⎧≤≤=∂∂=>==><<∂∂=∂∂l x x t x u x x u t t l u t u t l x x u a t u 0)()0,(),()0,(00),(,0),0(0,022222ψϕ 对于这样的定解问题,我们将介绍分离变量法求解,首先回忆高数中我们如何处理的求解的,高数中处理微分或重积分是把函数分成单元函数分离变量法的思路:对于二阶线性微分方程变换成单元函数来求解,也就是通过分离变量法把x 、t 两个变量分开来,即把常微分方程变化为两个偏微分方程来求解。

分离变量法的思想:先求出具有分离形式且满足边界条件的特解,然后由叠加原理做出这些解的线性组合,最后由其余的定解条件确定叠加系数(叠加后这些特解满足边界条件不满足初始条件,再由初始条件确定通解中的未知的数)。

叠加原理:线性偏微分方程的解的线性组合仍是这个方程的解。

特点:(1)数学上 解的唯一性来做作保证。

(2)物理上 由叠加原理作保证。

例:有界弦的自由振动1.求两端固定的弦的自由振动的规律⎪⎪⎩⎪⎪⎨⎧≤≤=∂∂=>==><<∂∂=∂∂l x x t x u x x u t t l u t u t l x x u a t u 0)()0,(),()0,(00),(,0),0(0,022222ψϕ 第一步:分离变量(建立常微分方程定解问题) 令)()(),(t T x X t x u =这个思想可从实际的物理现象可抽象出来,比如我现在说话的声音,它的振幅肯定随时间变化,但到达每个同学的位置不同,振幅又是随位置变化,可把声音分成两部分,一部分认为它随时间变化,一部分随位置变化。

第二步:代入方程(偏微分就可写成微分的形式,对于u 有两个变量,但对于X 、T 都只有一个变量))()()()(2t T x X a t T x X ''=''变形得)()()()(2t T a t T x X x X ''=''= λ- 左边与t 无关,右边与x 无关,左右两边相互独立,要想相等,必定等于一个常数。

6.2 常微分方程的分离变量法

6.2 常微分方程的分离变量法

dy h( x ) g( y) 可分离变量的微分方程. dx 4 4 dy 例如 2 x 2 y 5 y 5 dy 2 x 2dx, dx
解法 设函数 g ( y )和h( x )是连续的, (1) 如果有y0使得 g( y0 ) 0 ,则常函数 y y0
是它的解;
(2)如果 g ( y) 0 ,原方程变形并且两边同
解得
ln | y | x C1
2ห้องสมุดไป่ตู้

y e
x 2 C1
e e
C1 x 2 C1
令C e y Ce
x2
注意到y=0时也是方程的解,但此解包含在
y C e 中,故此方程的通解最后可写为 y Ce .
说明: 在求解过程中每一步不一定
x2
x2
是同解变形,因此可能增、减解。
时积分有

1 dy h( x )dx g ( y)
1 若记G ( y ) 、 、h( x )的某一原 H ( x ) 分别为 g ( y) 函数,则
G ( y) H ( x ) c
这就是原方程的隐式通解。
dy 2 xy。 例1 解方程 dx
1 解:当 y 0 时,分离变量得 dy 2 xdx y 1 两边积分 dx 2 xdx y
dy x e (1 y ) 。 例2 解方程 dx
1 2 2
解:当 y 1 时,分离变量得
(1 y2 ) dy e xdx,
两边积分
解得
2 x (1 y ) d y e dx 1 2

1 2
arcsin y e x C
y=sin(e x C )

常微分方程的常见解法

常微分方程的常见解法

实例解析
实例1
求解一阶线性常微分方程 $y' + p(x)y = q(x)$,通过引入参数 $lambda$,可以将方程转化为 $lambda y = q(x)$,从而简化求解过程。
实例2
求解二阶常微分方程 $y'' + y' + y = 0$,通过引入参数 $lambda$,可以将方程转化为 $lambda^2 + lambda + 1 = 0$,从而求解出 $lambda$ 的值,进一步得到原方程的解。
当 (M(x)) 和 (N(x)) 均为非零函数时,该方法适用。
实例解析
1. 确定积分因子
选择积分因子为 (e^x)
5. 解出原方程
将 (e^x y = frac{1}{3} e^{3x} + C) 代入 原方程,解得 (y = frac{1}{3} x^2 + Ce^{-x})
4. 解方程
对两边积分,得到 (e^x y = frac{1}{3} e^{3x} + C)
04 积分因子法
定义与特点
定义
积分因子法是一种通过引入一个因子来简化微分方程的方法。
特点
通过乘以一个适当的因子,可以将微分方程转化为可分离变量的形式,从而简化求解过程。
适用范围
适用于形如 (M(x)y' + N(x)y = f(x)) 的线性微分方程,其中 (M(x)) 和 (N(x)) 是 已知函数,(f(x)) 是给定的函数。
实例2
考虑一阶常微分方程 (dy/dx = xy),其中 (x > 0) 且 (y > 0)。通过分离变量法, 我们可以得到 (dy/y = xdx),进一步求解得到 (ln|y| = frac{1}{2}x^2 + C),其 中 (C) 是积分常数。

常微分方程解法

常微分方程解法

常微分方程解法常微分方程是数学中的一门重要分支,研究描述自然界和社会现象中变化规律的方程。

解常微分方程的方法多种多样,下面将介绍常见的几种解法。

一、分离变量法分离变量法适用于形如dy/dx=f(x)g(y)的一阶常微分方程。

解题步骤如下:1. 将方程写成dy/g(y)=f(x)dx的形式,将变量分离。

2. 对两边同时积分,得到∫dy/g(y)=∫f(x)dx。

3. 左边的积分可以通过换元或者使用常见函数的积分公式进行计算。

4. 右边的积分可以通过与左边的积分结果进行比较来判断是否需要使用特殊的积分技巧。

5. 对左右两边同时积分后,解出方程中的积分常数。

6. 将积分常数代回原方程中,得到完整的解。

二、常数变易法常数变易法适用于形如dy/dx+p(x)y=q(x)的一阶常微分方程。

解题步骤如下:1. 先求出对应的齐次方程dy/dx+p(x)y=0的通解。

2. 假设原方程的特解为y=u(x)v(x),其中u(x)是一个待定的函数,v(x)是齐次方程的通解。

3. 将y=u(x)v(x)代入原方程中,整理后得到关于u(x)和v(x)的方程。

4. 解出关于u(x)的方程,得到u(x)的值。

5. 将u(x)的值代入v(x)中,得到特解。

6. 特解与齐次方程的通解相加,即得到原方程的完整解。

三、二阶齐次线性方程解法二阶齐次线性方程的一般形式为d^2y/dx^2+p(x)dy/dx+q(x)y=0。

解题步骤如下:1. 求解对应的齐次方程d^2y/dx^2+p(x)dy/dx+q(x)y=0的特征方程r^2+p(x)r+q(x)=0,其中r为未知数。

2. 求解特征方程得到两个不同的根r1和r2。

3. 根据r1和r2的值,得到齐次方程的通解y=c1e^r1x+c2e^r2x,其中c1、c2为任意常数。

四、变量替换法变量替换法适用于形如dy/dx=f(y/x)的一阶常微分方程。

解题步骤如下:1. 进行变量替换,令u=y/x,即y=ux。

变量分离法解微分方程

变量分离法解微分方程

变量分离法解微分方程变量分离法是求解一阶常微分方程的一种常用方法,它的基本思想是将微分方程中的变量分离,从而得到两个单独关于各自变量的微分方程,进而解出原方程的解析解。

这种方法在实际问题的建模和求解中具有广泛的应用。

在变量分离法中,首先需要将原方程变形为关于两个变量的等式。

对于形如dy/dx = f(x)g(y)的微分方程,我们可以将其改写为1/g(y)dy = f(x)dx。

我们可以通过对方程两边同时积分来解出原方程的解。

下面我们以一个具体的实例来说明变量分离法的应用。

考虑一阶线性微分方程dy/dx = y/x,我们可以使用变量分离法来求解。

将方程变形为1/y dy = 1/x dx。

然后我们对方程两边同时积分,得到ln|y| = ln|x| + C,其中C为常数。

进一步,我们可以应用指数函数的对数性质得到|y| = e^(ln|x| + C) = e^(ln|x|) * e^C = Cx,其中C为非零常数。

由于|y| = Cx,我们可以将常数C的正负号去掉,得到y = Cx,其中C为任意常数。

原方程的解为y = Cx,其中C为任意常数。

通过这个具体的实例,我们可以看出变量分离法在求解微分方程时的奏效。

通过将微分方程变形为两个变量的等式,并应用积分求解的方法,我们可以得到原方程的解析解。

这种方法在实际问题的求解中具有广泛的应用,特别是对于具有分离变量性质的一阶常微分方程来说,变量分离法是一种非常有效的求解方法。

在实际应用中,变量分离法的步骤一般是比较清晰和直观的,但是在解析解的求解过程中,可能会涉及到一些复杂的积分计算,需要运用积分技巧或者其他数学工具来求解。

变量分离法在求解高阶微分方程时不是常用的方法,常用的方法是利用特征方程或者线性微分方程的特殊解求解。

总结和回顾一下,变量分离法是一种常见且实用的求解一阶常微分方程的方法。

通过将微分方程变形为两个变量的等式,并应用积分求解的方法,我们可以得到微分方程的解析解。

一阶常微分方程的解法

一阶常微分方程的解法微积分理论中,微分方程是一个非常重要的分支,它们通常用来描述一些变化或进化过程中的物理现象、生物现象或经济现象等等。

其中,一阶常微分方程是微分方程中最简单的一类。

在这篇文章中,我们将介绍一阶常微分方程的求解方法。

一、分离变量法分离变量法是求解一阶常微分方程最简单也是最常用的方法。

这个方法的基本思想是将微分方程中的变量分开,并将每个变量移到不同的方程两侧,最终得到可以分别积分的两个方程。

具体来说,如果给定一个一阶常微分方程$$\frac{dy}{dx}=f(x,y)$$我们可以将它改写为$$dy=f(x,y)dx$$然后对两边同时积分,得到$$\int dy=\int f(x,y)dx+C$$其中C为常数。

这个方法的局限性在于只适用于一些特定的微分方程,例如y'=ky这类的方程就可以很容易地用这个方法求解。

举个例子,考虑方程$$\frac{dy}{dx}=x^2y$$我们将它改写为$$\frac{dy}{y}=x^2dx$$然后对两边同时积分,得到$$\ln|y|=\frac{1}{3}x^3+C$$最终解为$$y=Ce^{\frac{1}{3}x^3}$$其中C为常数。

二、齐次方程如果方程中的所有项均能够写成y和x的某个函数的乘积,那么这个方程就是齐次方程。

对于这类方程,我们可以利用变量替换来把它转化为分离变量的形式。

具体来说,如果给定一个一阶常微分方程$$\frac{dy}{dx}=f(\frac{y}{x})$$我们可以进行变量替换,令y=ux,其中u是关于x的未知函数。

因此,$$\frac{dy}{dx}=u+x\frac{du}{dx}$$将其带入原方程,得到$$u+x\frac{du}{dx}=f(u)$$将u视为自变量,x视为函数,可转化为$$\frac{dx}{du}=\frac{1}{f(u)-u}$$然后对两边同时积分,得到$$x=\int \frac{1}{f(u)-u}du+C$$最后将u替换成y/x即可。

微分方程的变量分离法

微分方程的变量分离法微分方程是数学中重要的概念,它描述了变量之间的关系以及变量的变化规律。

在解微分方程的过程中,变量分离法是一种常用的方法。

它的基本思想是将含有多个变量的微分方程化简为仅涉及一个变量的两个方程,进而求解得到最终的解析解或数值解。

一、变量分离法的基本原理变量分离法适用于可以将微分方程写成以下形式的情况:dy/dx = f(x)·g(y)其中,f(x)和g(y)是x和y的某些函数。

根据变量分离法的思想,我们将式中的x和y分别移到方程的两边,并将其对应的微分形式分离开来:g(y)dy = f(x)dx二、求解步骤对于形如g(y)dy = f(x)dx的微分方程,我们可以按照以下步骤来解:1. 将g(y)和f(x)分别表示为它们的微分形式,即g(y)dy和f(x)dx;2. 将上述微分方程两边同时积分:∫g(y)dy = ∫f(x)dx这样,我们就得到了方程的解析解或数值解。

三、解析解的求解在某些情况下,我们可以通过对上述积分方程进行进一步的计算和求解,得到解析解。

例如,考虑如下的微分方程:dy/dx = x/y首先,我们将方程进行变形,得到:ydy = xdx然后,我们对上述方程进行积分:∫ydy = ∫xdx经过计算,我们得到:y^2/2 = x^2/2 + C其中,C为常数。

这样,我们就得到了方程的解析解为:y^2 = x^2 + C四、数值解的求解在某些情况下,微分方程的解析解很难或无法求得,此时可采用数值方法来求解微分方程。

数值解的求解过程包括以下几个步骤:1. 将微分方程的初值条件代入微分方程,得到具体的初始条件;2. 使用数值方法(如欧拉方法、龙格-库塔方法等)进行离散化计算,得到近似解;3. 根据离散化计算结果,进行迭代求解,得到微分方程的数值解。

五、变量分离法的应用变量分离法不仅适用于一阶微分方程,也适用于高阶微分方程。

例如,考虑如下的二阶线性微分方程:y''(x) + p(x)y'(x) + q(x)y(x) = r(x)可以通过引入一个新的变量来将该微分方程转化为一阶微分方程的形式,然后利用变量分离法进行求解。

一阶常微分方程公式

一阶常微分方程公式常微分方程是研究自变量和未知函数之间的关系的数学分支。

其中,一阶常微分方程是指未知函数的导数只涉及到一阶的微分方程。

一阶常微分方程的一般形式可以表示为:dy/dx = f(x)其中,y是未知函数,x是自变量,f(x)是已知函数。

这个方程描述了未知函数的导数与自变量之间的关系。

一阶常微分方程可以通过不同的方法求解。

下面将介绍几种常用的求解方法。

1. 可分离变量法可分离变量法是求解一阶常微分方程的常用方法之一。

对于可以写成dy/dx = g(x)h(y)形式的方程,我们可以将其变换为h(y)dy = g(x)dx的形式,然后对方程两边进行积分求解。

2. 齐次方程法对于形如dy/dx = f(y/x)的齐次方程,我们可以通过变量代换y = vx将其转化为可分离变量的形式,然后进行求解。

3. 线性方程法线性方程是指形如dy/dx + P(x)y = Q(x)的方程,其中P(x)和Q(x)是已知函数。

对于这种方程,我们可以通过积分因子的方法将其转化为可分离变量的形式,然后进行求解。

4. 变量替换法对于一些特殊形式的一阶常微分方程,可以通过适当的变量替换将其转化为已知的一阶常微分方程,然后进行求解。

5. 恰当方程法对于形如M(x,y)dx + N(x,y)dy = 0的方程,如果存在一个函数u(x,y),使得∂u/∂x = M(x,y)和∂u/∂y = N(x,y),则该方程称为恰当方程。

对于恰当方程,我们可以通过求解关于u的方程来得到原方程的解。

6. 数值解法如果无法通过解析的方法求解一阶常微分方程,我们可以通过数值计算的方法得到其近似解。

常用的数值解法有欧拉法、改进的欧拉法、龙格-库塔法等。

总结起来,一阶常微分方程是描述未知函数导数与自变量之间关系的数学方程。

通过可分离变量法、齐次方程法、线性方程法、变量替换法、恰当方程法和数值解法等方法,我们可以求解一阶常微分方程并获得其解析或数值解。

微分方程几种求解方法

微分方程几种求解方法微分方程是数学中的重要工具,用于描述自然界中关于变化的数学模型。

微分方程的求解方法有多种,可以根据不同的特征和条件选择不同的方法。

下面将介绍微分方程的几种常见求解方法。

1.可分离变量法可分离变量法适用于形如 dy/dx = f(x)g(y) 的一阶微分方程。

该方法的基本思路是将变量分离,即将方程写成 dx / f(x) = dy / g(y),然后两边同时积分,从而得到方程的解。

2.齐次方程法齐次方程指的是形如 dy/dx = f(x / y) 的一阶微分方程。

齐次方程法的基本思路是变量替换,令 y = vx,然后将方程转化为关于 v 和 x 的一阶微分方程,再用可分离变量法求解。

3.线性方程法线性方程是指形如 dy/dx + p(x)y = q(x) 的一阶微分方程。

线性方程法的基本思路是找到一个积分因子,使得原方程变为恰当方程,然后进行积分求解。

常见的积分因子有e^(∫p(x)dx) 和 1 / (y^2),选择合适的积分因子可以简化计算。

4.变量替换法变量替换法适用于一些特殊形式的微分方程。

通过合适的变量替换,可以将原方程转化为标准的微分方程形式,从而便于求解。

常见的变量替换包括令 y = u(x) / v(x),令 v = dy/dx等。

5.常数变易法当已知一个特解时,可以利用常数变易法求解更一般的微分方程。

该方法的基本思路是令y=u(x)y_0,其中y_0是已知的特解,然后将y代入原方程得到一阶线性非齐次方程,再用线性方程法进行求解。

6.欧拉法欧拉法是一种数值求解微分方程的方法。

它通过在函数的变化区间内分割小区间,并在每个小区间上用直线逼近函数的变化情况,从而得到微分方程的近似解。

欧拉法的计算公式为y_(n+1)=y_n+h*f(x_n,y_n),其中h为步长,f(x,y)为微分方程的右端。

7.泰勒级数法泰勒级数法是一种近似求解微分方程的方法,利用函数的泰勒级数展开式进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用分离变量法解常微分方程.1直接可分离变量的微分方程1.1形如dxdy =()x f ()y ϕ(1.1) 的方程,称为变量分离方程,这里()x f ,()y ϕ分别是的连续函数.如果ϕ(y)≠0,我们可将(1.1)改写成)(y dy ϕ=()x f ()x d , 这样,变量就“分离”开来了.两边积分,得到通解:⎰)(x dy ϕ=⎰dx x f )(+c. (1.2) 其中,c 表示该常数,⎰)(x dy ϕ,⎰dx x f )(分别理解为)(1y ϕ,()x f 的原函数.常数c 的取值必须保证(1.2)有意义.使()0=yϕ的0y y =是方程(1.1)的解. 例1求解方程01122=-+-dx y dy x 的通解.解:(1)变形且分离变量:(2)两边积分:c x dx y dy+-=-⎰⎰2211,得c x y +-=arcsin arcsin .可以验证1±=y 也是原方程的解,若视x 和y 是平等的,则1±=x 也是原方程的解.我们可以用这个方法来解决中学常见的一些几何问题.例2曲线L 上的点),(y x P 处的法线与x 轴的交点为Q ,且线段PQ 被y 轴平分.求曲线L 的方程.分析:这是一个利用几何条件来建立微分方程的例子.先建立法线PQ 的方程,用大写的),(Y X 表示法线上的动点,用小写的表示曲线L 上的点,法κ为过点),(y x P 的法线的斜率.解:由题意得y '-=1法κ. 从而法线PQ 的方程为)(1x X yy Y -'-=-. 又PQ 被y 轴平分,PQ 与y 轴交点M 的坐标为⎪⎭⎫ ⎝⎛2,0y ,代入上式,得 )0(12x y y y -'-=-. 整理后,得x y y 2-=',其中c 2形如⎪⎭⎫ ⎝⎛=x y dx dy ϕ(1.3) 的微分方程,称为齐次微分方程.这里)(u ϕ是u 的连续函数.对方程(1.3)做变量变换xy u =,(1.4) 即ux y =,于是u dxdu x dx dy +=.(1.5) 将(1.4),(1.5)代入(1.3),则原方程变为)(u u dxdu x ϕ=+,整理后,得到xu u dx du -=)(ϕ.(1.6) 方程(1.6)是一个变量分离方程.可按前面(1.1)的方法求解,然后代回原来的变量,便得到(1.3)的解.例3求微分方程dxdy xy dx dy x y =+22的通解. 解:原方程化为()22y dxdy x xy =-()x y ≠, 即 1-⎪⎭⎫ ⎝⎛=xy x y dx dy , 于是,令x y u =,即xu y =,将dxdu u dx dy +=代入该方程,得 12-=+u u dx du x u , 整理,即有112-=--=u u u u u dx du x , 分离变量,得xdx du u u =-1()0≠u , 两边积分,得1ln ln ln c x u u +=-, 将xy u =代回来,得 ()y c c x x y x y 11ln ln =⎪⎭⎫ ⎝⎛⋅⋅=, ∴xye y c =1, 即xyce y =,其中c 为任意常数. 另, 0=u 即0=y 也是原方程的解,但此解课包含于通解0=c 之中.故,方程的通解为xyce y =.2.2形如222111c y b x a c y b x a dx dy ++++=(1.7) 的方程,这里212121,,,,,c c b b a a 均为常数.此方程经变量变换可化为变量分离方程.我们分三种情形来讨论:2.2.1()常数k c c b b b a ===212111的情形. 这时方程化为有通解c kx y +=,其中为任意的常数c .2.2.2212111c c k b b a a ≠==的情形. 令y b x a u 22+=,这时有是变量分离方程.2.2.32111b b b a ≠的情形. 如果方程()1.2中21,c c 不全为零,方程右端分子、分母都是y x ,的一次多项式,因此121=++c y b x a ,0222=++c y b x a .(1.8)代表Oxy 平面上两条相交直线,设交点()βα,.若令α-=x X ,β-=y Y .则(2.2)化为11=+Y b X a ,022=+Y b X a .从而(2.1)变为⎪⎭⎫ ⎝⎛=++=X Y Y b X a Y b X a dX dY ϕ2211.(1.9)因此,求解上述变量分离方程,最后代回原变量即可得原方程(2.1)的解.如果方程(2.1)中021==c c 可不必求解(2.2),直接取变换xy u =即可. 上述解题的方法也适用于比方程(2.1)更一般的方程类型⎪⎪⎭⎫ ⎝⎛++++=222111c y b x a c y b x a f dx dy . 例4求解方程766322-++-=y x y x dx dy (2.0) 解:解方程组0322=+-y x ,0766=-+y x , 得34,61=-=y x . 于是,令61-=X x , 34+=Y y , 代入方程(2.4),则有YX Y X dx dy 6622+-=.()1.2 再令XY u =,即uX Y =,则()5.2化为 du uu u X dX 2211--+=, 两边积分,得cu u X ~12ln ln 22+-+-=, 因此()1~2212c e u u X c =±=-+, 代回原变量,得1222c X XY Y =-+,即122613461234c x y x y =⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-.因此,方程(2.3)的通解为c x y xy x y =--+-184737222, 其中,c 为任意常数.通过上述的求解,我们发现以上的方法是非常的准确的,但是对于像例5这种形式的的方程,我们发现还可以用另一种方法——凑微分进行求解. 凑微分 当方程 满足: 21b a -=(2.2) 时,方程会有更简便的求解方法(全微分的知识的运用). 即:将12b a -=代入方程222111c y b x a c y b x a dx dy ++++=中, 有即展开,得=++dx c ydx b xdx a 111dy c ydy b xdy a 222++(2.3)有条件(2.6)可知,dx b xdy a ydx a xdy a xy d a 12222)(-=+=(2.4)将(2.8)代入(2.7)中,得0)222(1212222=--++x c x a y c y b xy a d .很显然,这是一个全微分方程,从而原方程的通解为C x c x a y c y b xy a =--++1212222222,其中C 为任意常数.例5求解方程85+-+-=y x y x dx dy.解法一:,令y x u -=.则dy dx du -=所以,原方程可化为83+=u dx du .这是一个分离变量方程.整理可得x u u 6162=+.将y x u -=代入,可得即,通解为c y x xy y x =-+-+1610222.其中c 为任意常数.观察例6可以发现,方程也满足条件(2.6),于是用凑微分的方法同样可以求解.解法二:原方程变形为dx y x dy y x )5()8(+-=+-.整理得058)(=--+-+dx xdx dy ydy ydy xdy .所以0)521821(22=--+-x x y y xy d . 两边积分,得原方程的通解为x x y y xy 52182122--+-=C ,其中C 为任意常数. 以上的两种方法都是求解微分方程的常用方法,下面再介绍几种比较常见的课分离变量的方程.2.3形如()c by ax f y x dx dy ++=--βαβα11的方程也可以经变量变换化为变量分离方程,这里的c b a ,,均为常数.做变量变换c by ax u ++=βα,这时有()u f x b x a dxdy y b x a dx du ⋅⋅⋅+⋅⋅=⋅⋅⋅+⋅⋅=----1111ααβαβαβα, 即()dx x u f b a du 1-=⋅⋅+⋅αβα. 是变量分离方程.而当1==βα时,()c by ax f dxdy ++=为其特殊形式. 例7求解方程yx xy y x dx ++=3dy . 解:因为yx xy y x dx ++=3dy ,(2.5) 可以化为()1dy 22++=y x y x dx . 于是,令122++=y x u .(2.6)则xu x dxdy y x dx du 2222+=+=,(2.7) 将(2.9)代入(2.11)可以知道,这是一个分离变量方程.即xdx du u =+221. 两边同时积分,得()121ln c x u +=+.(2.8)再将(2.10)代入(2.12),得()12222ln c x y x +=++. 所以整理得,2222x Ce y x =++,其中C 为任意常数. 2.4其他几种变量能分离的方程类型2.4.1形如()()0=+dy xy xg dx xy yf ,(2.9)的方程同样可已经变量替换化为变量分离方程.将(2.13)变形为()()xy yf xy xg dx dy -=(3.0) 做变量替换xy u =.这时有2xudx xdu dy -=,(3.1) 将(2.15)代入(2.14)中,得()()()dx xdu u uf u ug u g 1=-. 是变量分离方程.2.4.2形如()xy f dxdy x =2,(3.2) 的方程是变量分离方程.做变量替换xy u =,则2xudx xdu dx dy -=,(3.3) 代入原方程,得()dx xdu u f u 11=-. 是变量分离方程.2.4.3形如⎪⎭⎫ ⎝⎛=2x y xf dx dy ,(3.4) 的方程是变量分离方程.做变量替换2xy u =, 则,有xudx du x dy 22+=,(3.5)将(2.19)代入(2.18)中,得()dx xdu u u f 121=-, 所以,原方程同样是变量可替换方程.2.4.4形如βαby ax dxdy +=(3.6) (其中α、β满足βααβ-=)的方程.可令1+=αz y ,方程(2.20)化为齐次方程⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+=-b x z dx dz ααα11, 事实上,()dxdz z dx dy αα1+=, 由于ααβαβαβααααbz x bz x by x dxdz +=+=+=+, 所以()ααααbz ax dxdz z +=+1, 即()⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+=-b x z dx dz ααα11, 再,设xz u =,可化为变量分离变量. 除此之外,还有一些一般形式,如()⎪⎭⎫ ⎝⎛+=x y f x x y dx dy ϕ可以通过变量替换x y u =化为变量分离方程求解;形如()()()()ydx xdy y x N ydy xdx y x M -++,,(其中M 、N 为y x ,齐次函数,次数可以不相同)也可通过变量替换θρθρsin ,cos ==y x 化为变量分离方程求解.变量代换是求解一阶微分方程的一种重要方法,在一阶微分方程的初等解法中具有重要的作用.。

相关文档
最新文档