数据挖掘研究现状综述

合集下载

数据挖掘中聚类算法研究综述

数据挖掘中聚类算法研究综述

数据挖掘中聚类算法研究综述随着数据量的不断增加,数据挖掘成为了探索数据背后规律的一种重要方法。

而聚类算法作为数据挖掘中的一种基本技术,其在数据分析、模式识别、生物信息学、社交网络分析等领域都有着广泛的应用。

本文就对数据挖掘中的聚类算法进行了研究和总结,旨在对聚类算法的原理、特点、应用等方面进行探讨。

一、聚类算法的基本原理聚类算法是指将一组对象划分为若干个组或类,使得组内对象之间的相似度尽可能大,组间对象之间的相似度尽可能小,从而达到数据分类和分析的目的。

聚类算法的基本原理包括以下三个方面:1. 相似度度量:聚类算法的基础在于相似度度量,即将每个对象之间的相似度进行计算。

相似度度量可以采用欧几里得距离、曼哈顿距离、余弦相似度等多种方法。

2. 聚类分配:聚类分配是指将每个对象划分到合适的聚类中。

聚类分配可以通过最近邻法、k-means算法等实现。

3. 聚类更新:聚类更新是指对各个聚类进行调整,使得聚类内对象之间的相似度尽可能大,聚类间对象之间的相似度尽可能小。

聚类更新可以采用层次聚类法、DBSCAN算法等。

二、聚类算法的分类根据聚类算法的不同特点和应用场景,可以将聚类算法分为以下几种类型:1. 基于距离的聚类算法:包括最近邻法、k-means算法、k-medoid 算法等。

2. 基于密度的聚类算法:包括DBSCAN算法、OPTICS算法等。

3. 基于层次的聚类算法:包括凝聚层次聚类法、分裂层次聚类法等。

4. 基于模型的聚类算法:包括高斯混合模型聚类、EM算法等。

三、聚类算法的应用聚类算法在各种领域中都有着广泛的应用,包括数据分析、模式识别、社交网络分析、生物信息学等。

下面简单介绍一下聚类算法在这些领域中的应用:1. 数据分析:聚类算法可以对数据进行分类和分组,从而提取出数据中的规律和趋势,帮助人们更好地理解和利用数据。

2. 模式识别:聚类算法可以对图像、声音、文本等数据进行分类和分组,从而实现对数据的自动识别和分类。

数据挖掘中的本体应用研究综述

数据挖掘中的本体应用研究综述

数据挖掘中的本体应用研究综述摘要:数据挖掘是个交叉领域,与人工智能、信息科学、统计分析等领域有着紧密的联系。

而本体作为一个新兴的研究领域,与数据挖掘在应用的学科领域范围上有着较大的重合,比如在生物科学和化学领域,这两者的结合研究也非常活跃。

在数据挖掘中引入本体能够极大地解决数据挖掘面临的问题。

系统研究了在数据挖掘中本体的应用情况。

关键词:数据管理;数据挖掘;本体0引言摩尔定律见证了过去40多年来计算机技术的发展:芯片的处理速度越来越快,集成电路的体积越来越小、性价比越来越高。

以硬盘为例,机械硬盘存储单位兆的成本不断下降,而性能更好的固态硬盘正在进入民用市场。

计算机的硬件成本越来越低,而硬件的性能越来越好。

存储每兆信息所需要的成本越来越低。

这为大规模的数据存储打下了物质基础。

计算机技术的普及大大提升了数据采集、存储和操作能力。

数据库与DBMS顺应了大规模的数据管理而产生。

从20世纪60年代早期简单的数据收集到建立数据库,到20世纪70年代数据库管理系统的发展,到后来各种新型数据库,到数据仓库与数据挖掘的发展,数据库发展的内在驱动因素正是出于人们对快速增长的数据利用的需求。

身处于大量数据之中,却依然感到缺乏信息,数据挖掘的产生正是为了满足从数据中挖掘信息的需求。

数据挖掘这些年来被广泛应用和研究,比如在生物科学、化学、天文和商业领域等等,这些领域的共同特点都是面临大量数据处理。

数据挖掘也面临者许多问题:处于复杂的数据环境中,需要支持多种数据源类型;挖掘算法的选择容易受使用者个人知识背景影响;产生规则过多;规则难以理解,需要领域知识背景等等。

而本体的引入,从各个方面改进了数据挖掘面临的问题。

1理论背景1.1数据挖掘的定义和KDD过程数据挖掘是“从资料中提取出隐含的过去未知的有价值的潜在信息”(1992年提出),也被认为是“从大量的、不完全的、有噪声的、模糊的、随机的数据中, 提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程”(2001年提出),后者是被广泛引用的数据挖掘定义。

图像数据挖掘研究综述

图像数据挖掘研究综述

0 引 言
近年来 , 随着 图像 获 取 和 图像 存 储 技 术 的迅 速 发 展 , 得 我 使
1 图像 数 据 挖 掘 的 定 义 、 点 及 与 相 关 研 究领 特 域 的 异 同处
们能够较为方便地得 到大 量有 用 的图像数 据 ( : 感 图像数 如 遥
据、 医学 图像 数 据 等 ) 。但 如 何 充 分 地 利 用 这 些 图 像 数 据 进 行 分 析 并从 中 提 取 出 有 用 的 信 息 , 为 我 们 面 临 的 最 大 问 题 。 图 成 像 数 据 挖 掘 作 为 数 据 挖 掘 中 的 一 个 新 兴 的 领 域 应 运 而 生 。
Abs r t tac I h sp pe a q t ulpit e i ie o t e e r h o w ed fdaa m i n — n t i a r, uie f l cur s gv n t he r s a c n a ne f l o t nig i i a e d t nng The c n e to m g aa mi i . o c p f
’ 中 国地 质 大 学 ( 汉 ) 算 机 学 院 ( 武 计 ( 中科 技 大 学 武 汉 光 电国 家 实 验 室 华
朱 静
湖北 武汉 407 ) 3 0 4 湖北 武汉 407 3 04)


对 数 据 挖 掘 中 的一 个 新 兴 领 域— — 图像 数 据 挖 掘 作 出 了较 为 全 面 的 研 究。 给 出 了 图像 数 据 挖 掘 的定 义 , 析 了 图像 数 分
第2 8卷 第 2期
21 0 t年 2月 来自计 算机应 用与软件
Co u e p i ai n n o wae mp t rAp lc to sa d S f r t

空间数据挖掘及技术(综述)

空间数据挖掘及技术(综述)

01
水质监测
通过挖掘水质监测数据,评估水体质量 状况,为水环境治理和水资源保护提供 依据。
02
03
土壤质量监测
利用空间数据挖掘技术,监测土壤质 量状况,为土地资源保护和农业可持 续发展提供支持。
THANKS
感谢观看
空间聚类分析
将相似的空间对象归为同一类。
空间分类模型
根据已知的空间数据对新的空间对象进行分 类。
空间数据可视化
地图可视化
将空间数据以地图的形式呈现,便于理解和 分析。
三维可视化
利用三维图形技术展示空间数据,提供更直 观的视角。
可视化交互
允许用户通过交互操作来探索和查询空间数 据。
可视化分析工具
提供专业的可视化分析功能,帮助用户深入 挖掘空间数据的价值。
可解释性机器学习
研究如何让机器学习模型产生的结果更容易被人类理解和接受。
数据隐私保护
在空间数据挖掘过程中,保护用户隐私和数据安全是重要的问题,需 要研究如何在保证隐私的前提下进行有效的数据挖掘。
05
空间数据挖掘案例研究
城市规划中的空间数据挖掘应用
城市用地适宜性评价
利用空间数据挖掘技术,对城市用地进行适 宜性评价,为城市规划提供科学依据。
人工智能与机器学习在空间数据挖掘中的应用
深度学习
利用神经网络模型对空间数据进行特征提取和 模式识别,提高挖掘精度和效率。
强化学习
通过与环境的交互学习,自动优化空间数据挖 掘任务中的参数和策略。
迁移学习
将在一个任务上学到的知识应用于其他相关任务,减少重新训练模型的时间和 成本。
空间数据挖掘与其他领域的交叉研究
2
通过空间数据挖掘,可以发现隐藏在空间数据中 的知识,揭示出地理现象的内在规律,为解决实 际问题提供科学依据。

数据挖掘综述

数据挖掘综述

数据挖掘综述数据挖掘是一种通过从大量数据中发现模式、关联和趋势来提取有用信息的过程。

它是一门综合性的学科,结合了统计学、机器学习、数据库技术和人工智能等领域的知识和方法。

数据挖掘在各个行业和领域都有广泛的应用,包括市场营销、金融、医疗保健、社交网络分析等。

数据挖掘的过程通常包括以下几个步骤:1. 问题定义:明确需要解决的问题或目标,例如预测销售额、发现异常行为或推荐系统等。

2. 数据收集:收集与问题相关的数据,可以是结构化数据(如数据库中的表格)或非结构化数据(如文本、图像或音频)。

3. 数据清洗:对数据进行清洗和预处理,包括处理缺失值、异常值和重复值,以及转换数据格式和统一数据标准等。

4. 特征选择:选择对问题有预测能力的特征,以减少计算复杂性和提高模型性能。

5. 模型选择:选择适合问题的数据挖掘模型,例如分类、聚类、关联规则挖掘、时序分析等。

6. 模型训练:使用标记好的训练数据对选定的模型进行训练,以学习模式和关联规则。

7. 模型评估:使用测试数据对训练好的模型进行评估,以确定模型的性能和准确性。

8. 模型优化:根据评估结果对模型进行优化和调整,以提高模型的预测能力和泛化能力。

9. 结果解释:对模型的结果进行解释和可视化,以便理解和应用。

数据挖掘的技术和算法有很多,常见的包括决策树、神经网络、支持向量机、朴素贝叶斯、聚类算法、关联规则挖掘等。

选择合适的算法取决于问题的性质和数据的特点。

数据挖掘的应用非常广泛。

在市场营销中,可以通过分析客户购买历史和行为模式来预测客户的购买意愿和需求,从而制定个性化的营销策略。

在金融领域,可以通过分析交易数据和市场趋势来预测股票价格的波动和风险,以辅助投资决策。

在医疗保健领域,可以通过分析病人的病历和基因数据来预测疾病的风险和治疗效果,从而实现个性化的医疗服务。

在社交网络分析中,可以通过分析用户的社交关系和行为模式来发现社交网络中的影响力节点和社群结构,以及预测用户的兴趣和行为。

数据挖掘中的本体应用研究综述

数据挖掘中的本体应用研究综述
数据挖掘这些年来被广泛应 用和研究 , 比如 在 生 物 科 学 、
是 同一 概 念 。而 文 献 E 3 , 据 挖 掘被 认 为是 K D 的关 2中 数 D
键 步骤 。F a y d将 KD 的过 程分 为 以下 几 个 步 骤 : rya D ( ) 据 选 择 。从 数 据 库 中选 择 与 业 务 相关 的 目标 数 1数 据 。在 大 型 数 据 库 中 , 历 所 有 数 据 是 不 现 实 且 不 明 智 遍
的 。
() 2 数据 预处 理 。根 据 需 要 去 除 噪 声 。收 集 必 要 的信 息 用 以 建模 和 对 噪声 进 行 说 明 , 据 决 策 需 要 决 定 需 要 丢 根 弃 的数 据 , 据 时 间 需 要 等 等 因 素选 择 数 据 。 根 ( ) 据 转 化 。转 换 数 据 为 数 据 挖 掘 工 具 所 需 的 格 3数
方 法为混合本体方法 。
在单 本 体 中 , 用 一 个 统 一 的本 体 —— 全 局 本 体 来 描 采 述 所 有 的 数 据 源 。多 本 体 方 法 对 各 个 数 据 源 采 用 一 个 局 部 本 体 来 描 述 , 样 做 的 优 点 是 在 数 据 源 发 生 增 改 和 删 除 这
骤 ( ) ( ) 数 据 挖 掘 中也 被 认 为 是 数 据 挖 掘 的准 备 工 1一 4在
作 , 此 在 本 文 中将 数 据 挖 掘 与 KDD视 为 同 一 概 念 。 因
12 本体 .
本 体 方 法 、 本 体 方 法 和 混 合 方 法 ( 1 。 目前 , 用 的 多 图 ) 常
储 打下 了物 质 基 础 。
完全的 、 噪声的、 糊 的、 有 模 随机 的 数 据 中 ,提 取 隐 含 在 其 中的 、 们 事 先不 知 道 的 、 又 是 潜 在 有 用 的 信 息 和 知 识 人 但 的过 程 ” 2 0 ( 0 1年 提 出 ) 后 者 是 被 广 泛 引 用 的数 据 挖 掘 定 , 义 。数 据 挖 掘 定 义 的 变 化 伴 随 着 数 据 挖 掘 方 法 的研 究 深 入 而 变 化 ,在 商 务 智 能 领 域 , 据 挖 掘 被 定 义 为 是 对 商 业 数

数据挖掘研究现状综述


Ke rs:d t nn ;P y wo d aamiig AKDD
CL n mb :Gm n o e:A
Arce I :1 0 — 9 8( 0 8 0 — 0 1 0 t l D i 0 3 6 3 2 0 )5 0 4 — 6
2 数 据挖 掘研 究现 状
21 学术 研 究 .
( ) D ( nw eg i oe a b ss国际学术大会 1K D K o l e s vr i D t ae) d D c y n a
数 据挖 掘技术 出现于2 世纪8 年代 末 ,它促成 了数据库 O 0
中的知识发现 ( D 产生。在 1 8年美 国底特律召开的第 十 K D) 99
维普资讯
囤素 .拓 I 毒

28第 期 0年 5 0
信 息 工 作 ・
数 据 挖 掘研 究现 状 综述
王立伟 ( 上海社会科学院图书馆 上海 203 ) 0 25
摘 要 :数据挖掘作为情报学最常用的分析手段得到各个领域的广泛关注,每年K D P K D C IP D Z ̄学术会议的召开也给各国 D 、A D 和E M. K D / -
中 图分 类 号 : 5 .1 3 11
Th u m a ia i n o r s n iu to fDa a M i i g Re e r h eS m rz to fP e e tS t a in o t n n s a c
W a gLi i ( h irr f h n h i a e fS cM ce cs h n h i 0 2 5) n we T eLb ayo a g a d myo o i S in e ,S a g a ,2 0 3 S Ac
家和 地 区 进 行 学 术 交 流 提 供 便 利 。 文章  ̄ : A D P K D学 术会 议 KD ugt ̄ n ge s 的 统计 数 据对 当 前 数据 挖掘 现 状 进 行 综 述 分 析 。

数据挖掘技术的应用研究综述与启示——在会计舞弊识别研究中的应用


— —
曼 鱼 £ 塞 量 匠 曼△ △ 璺 韩学鸿 贾瑞敏 ( 河北经贸大学信息技术 学院石家庄 ;天津财经大学天津)
数据挖掘技 术的应 用研 究综述 与启示
上非常有 效 ,并建议 审计师在 审计初 始阶段 的识别 具有较 高的准确率 ,是一 种具有现 实 使用 该模型。F n ig o g r(9 8 利用人 可 操作性 的舞 弊识别 方法 。岳殿 民( 0 8 采 a n n 和C g e 1 9 ) 2 0) 对这些 海量 的,存储 形式各 异的数据 资料 , 工神经 网络建立 了基于 八个变 量的管 理舞弊 用 关联规则 挖掘方 法深入 挖掘会 计舞弊模 式 数 据 挖 掘 技 术 则 脱 颖 而 出 成 为从 这 些 数 据 中 识 别模型 ,并通 过与其 他判别 分析和逻 辑 回 关联特征 ,用A r o i p ir P 两种算法 p ir 和A r o i T 发掘有 用信 息的有效 方法。 目前 ,数据 挖掘 归模 型进行 的比较发现该模型更有效 。E s n 找 出 上 市 公 司 使 用 的 舞 弊 手 段 间 的 强 关 联 规 h a 技 术 已不断的应 用于 不同的领域 ,本 文主要 等 (oo 采用 人工神 经网络方 法检验红 旗标 则 ,并对这些 规则进 行解释 ,给 出舞 弊识别 2o ) 对 会计舞 弊识别 中运 用该 方 法的相关研 究进 志 的预测 能力 ,研 究表 明人工神 经 网络模 型 方法。 行 了回 顾 与 评 述 , 并 分 析 了数 据 挖 掘 方 法 在 的识 别 率 为 8 % 而 且 证 明 了财 务 红旗 标 志 和 1, 三 、简单评述与分析 识 别会计舞弊 中的优势和未来的应用前景。 非财务红旗 标志有 很好的预测能力 。 常规 的统计 学方法 大多需要 根据现 有的 关键词 :数据挖掘;会计舞弊:识别 人 工神经 网络 的应 用除 了一般 自适应 神 经济理 论建立假 设 ,然 后通过大 量 的数 据和 前言 经 网络 结构 (A N ) G N A 和逻辑 网络 (L ) A N ,还 包 模 型来检 验其假 设的有效 性 。由于使用 的研 数据挖掘 (a a M n n ) D t i i g 的定义是多种多 括与 人工 神经 网络 集成 的模 糊规 则 。L n i 等 究假设和 模型均来 源于研 究者对 客观环 境的 样 的,但基本 上可 以将其看 作是从 大量 的、 (0 3 证 实集成 的模糊神经 网络 的效果 比先 观 察和分 析, 因此 很难避 免研究 者主观 判断 20 ) 不 完 全 的 、有 噪 声 的 、 模 糊 的 、 随 机 的 数 据 前研究所 采用 的人工神 经网络 及大 多数的统 对研 究过程的影 响。 而数据挖 掘方法无 需事 中 , 提 取 隐 含 在 其 中 的 、 人 们 事 先 不 知 道 计 模 型 更 好 。 先 建立假 设和模型 ,避免 了主观 因素对研 究 的 、但 又是潜在 有用 的、可 以理解 的信 息和 除 了 利 用 某 种 数 据 挖 掘 方 法 进 行 研 的影响 ,弥补 了上述 不足 。另外 ,数 据挖掘 知识 的过程 。简单的说 ,数据挖 掘就 是从大 究 外 ,下 面 的几 篇 文 章则 采 用 几种 挖 掘 方 方法对 数据 的要求不 苛刻 ,避免 了常规统计 量数据 中提取或 发现有 价值 的信 息和 知识 。 法 相 结 合 的方 式 进 行 了不 同 的 研 究 。 S n 方法使 用 的局 限性 、例如 ,在会计舞 弊识别 u 数 据 库 中 的 知 识 发 现 (n w e g D c v r 和L e 2 0 ) 对公 司为 样 本 ,选取 了 Ko lde i o ey s e ( 0 6 以1 5 3 中运用较多 的T 检验 ,线 性回归要求数据符合 i D t b s , K D 通 常 可 以 和 数 据 挖 掘 互 3 个 财 务 指标 ,综 合 利用 面 向属性 的归 纳 正态分 布 。逻 辑回归对 自变量 要求严格 ,自 n aa ae D) 5 换。 法 、 信息 增 益 法 和 决策 树 模 型来 预 测 财 务 变量越多样本数也要相应增加 ,一般 为1 一 O O 2 目前 , 数 据 挖 掘 技 术 已 不 断 的 应 用 于 不 困 境 。研 究 结 果 表 明数 据 挖掘 方 法 是 识 别 倍 ,且 要 求 自变 量 无 共 线性 ,不 存在 自相 同的领域 ,诸如农业 、金融 业 、互 联网及 医 舞 弊财 务 报 告 的切 实 可 行 且有 效 的 方 法 。 关。数据挖掘方法则可 以弥补这些缺 陷。 学等 。 K r o , p t i 和 M n lp u o (0 7 比较 iksSahs a o o o l s2 0 ) 表 1 示 了本文 所搜 集整 理 的 国内外 文 列 ( )数据 挖掘技 术在 农业 中主要用 来 了决策 树、神 经网络和 贝叶斯 网络识 别舞弊 献 使用不同数据挖掘方法 的情况 。从表 1 一 可以 分析 农产 品市场信息 及预测 农产 品价格变化 财 务报 告的有 效性 ,模 型 的输 入变量 来 自财 看 到,数据 挖掘 方法作为 一种会 计舞弊 识别 趋势。 务报告 中的 比率,结果 表 明贝叶斯 网络模型 方 法在 国内的应用 还 比较 少 ,但是 除 了神经 ( )数据 挖掘技 术在金 融业 中主要用 的效果 更好 ,数 据挖掘 方法使 审计人 员的工 网络方法外 其他方 法的应 用弥补 了国外 的不 二 于 投 资 预测 及 欺 诈 甄 别 。 作 变 得 更 容 易 。 A a S y e 2 0 ) 合 应 用 足 。 总 体 而 言 ,神 经 网 络 是 应 用 最 广 泛 的挖 t 和 e r k(0 9 综 ( ) 数 据 挖 掘 技 术 在 互 联 网 中主 要 用 决 策树和神 经 网络 模型检 验财 务指标 的预警 掘 方 法 。 除 了 表 中 所 列 的 5 挖 掘 方 法 外 , 三 种 于信 息检 索 及 网络 安 全 管 理 。 能 力,结果 证实 资产负债 率和 资产报酬 率是 粗糙 集 、遗传 算法等 数据挖 掘方法 未得到应 ( ) 数 据 挖 掘 技 术 在 医 学 中 主 要 用 于 制造 业上市 公司舞 弊的重 要征兆 ,其他 的指 用 。因此 ,数 据挖掘 方法在 今后 的研 究 中还 四 DA 测及疾病诊断。 N监 标还 有存货 占总 资产 比重 、财务 费用 占营业 有很 大的发展 空 间。尝试使 用新 的方法 ,找 随着会 计研 究方法 的发展 ,数据挖 掘技 成本的 比重以及流动比率等 。 到会 计舞弊识 别 的更 有效方 法可 以作为未来 术 逐 渐 被 运 用 到 了 会 计 领 域 中 。 由 于 上 市 公 国 内学 者 应 用 数 据挖 掘 技 术 识 别 会 计 的一个研 究方向。 ’ 司 的 定 期 财 务 报 告 包 含 了大 量 反 映 公 司 经 营 舞弊相 对 国外来说较 晚一 些。刘 君,王里 平 业 绩 和 财 务 状 况 的 数 据 ,各 方 利 益 相 关 者 希 (0 6 以3 家上市 公司的 14 20 ) 6 4 组财务指标 和 参考文献 望 能 从 这 些 数 据 中 获 得 真 实 有 用 的 信 息 。 数 股本结 构指标为样 本, 采用径 向基概率神 经 [] B P G E N a d . n C O , 1 . . R E , n J . HI “ es n t Ri k o Ma As si g s he f s nag ment e 据 挖 掘 技 术 作 为 一 种 发 现 知 识 的工 具 , 能 够 网络 的方法建 立 了财 务舞 弊识别模 型 。经 过 从 大量的数据 中提取 有用 的信 息 ,因而逐 步 对 样 本 的训练 和 学 习, 现其 预测 精度 比一 Fr au d th rou gh Ne u ra I Ne tw o rk 发 c o1 y ud ti : o rn f i 被 会 计 研 究 人 员 关 注 。 本 文 主 要 探 讨 其 在 会 般 的线性 模型更 高。翟剑 虹 (0 7 使用聚类 Te hn og ” . A i rg A J u al o 2 0) cti e d or o1 6, N o.1 , 计 舞 弊 识 别研 究 中 的应 用 。 算 法 , 并 根 据 聚 类 结 果 选 择 分 类 器 的 训 练 样 Pra c an The Y, V .1 二 、文 献 回 顾 7 P .1 9 8 本 ,提 高 了 上市 公 司 财 务舞 弊 识 别 的 准确 1 9 , P 4—2 . 数据挖 掘方 法一般包 括关 联规则 、决策 率 ,训练样本的准确率 为8 .%,测试样本 的 [】 E h r d e n a d r o s R , 2 t e g , . n B o k , . i 57 “ e a1 n t r s a e t c n o y . N ur e wo k : n w e h o1 g ” 树 、聚 类 、 基 于 样 例 的 学 习 、 贝 叶 斯 学 习 、 准 确 率 为 7 . % 。 田金 玉 , 聂 丹 丹 (0 8 以 96 20 ) e P Jo r u na1 , 6 , 3 Mar h 1 4 4 , c 9 , 9 粗 糙 集 、 神 经 网 络 和 遗 传 算 法 等 。 从 本 文 搜 ¨ 6 上 市 公 司 为 研 究 样 本 , 依 据 主 成 分 分 Th

文本数据挖掘综述

文本数据挖掘综述陈光磊(专业:模式识别与智能系统)摘要:作为从浩瀚的信息资源中发现潜在的、有价值知识的一种有效技术,文本挖掘已悄然兴起,倍受关注。

目前,文本挖掘的研究正处于发展阶段,尚无统一的结论,需要国内外学者在理论上开展更多的讨论。

本文首先引出文本挖掘出现的缘由,再对文本挖掘的的概念、组成及其具体实现过程。

着重分析了文本挖掘的预处理、工作流程与关键技术。

关键词: web挖掘,文本挖掘1引言面对今天浩如烟海的文本信息,如何帮助人们有效地收集和选择所感兴趣的信息,如何帮助用户在日益增多的信息中自动发现新的概念,并自动分析它们之间的关系,使之能够真正做到信息处理的自动化,这已经成为信息技术领域的热点问题。

有数据表明,一个组织80%的信息是以文本的形式存放的,包括WEB页面、技术文档、电子邮件等。

由于整个文本集合不能被方便地阅读和分析,而且由于文本经常改变,要跟上变化的节奏,就要不停地回顾文本的内容,处理数量巨大的文本变得越来越来困难。

人们迫切需要能够从大量文本集合中快速、有效地发现资源和知识的工具。

在这样的需求驱动下,文本挖掘的概念产生了。

2文本挖掘的概述2.1文本挖掘的定义文本挖掘是抽取有效、新颖、有用、可理解的、散布在文本文件中的有价值知识,并且利用这些知识更好地组织信息的过程。

1998年底,国家重点研究发展规划首批实施项目中明确指出,文本挖掘是“图像、语言、自然语言理解与知识挖掘”中的重要内容。

文本挖掘是数据挖掘的一个研究分支,用于基于文本信息的知识发现。

文本挖掘利用智能算法,如神经网络、基于案例的推理、可能性推理等,并结合文字处理技术,分析大量的非结构化文本源(如文档、电子表格、客户电子邮件、问题查询、网页等),抽取或标记关键字概念、文字间的关系,并按照内容对文档进行分类,获取有用的知识和信息。

文本挖掘是一个多学科混杂的领域,涵盖了多种技术,包括数据挖掘技术、信息抽取、信息检索,机器学习、自然语言处理、计算语言学、统计数据分析、线性几何、概率理论甚至还有图论。

数据挖掘神经网络法的研究现状和发展趋势综述

数据挖掘神经网络法的研究现状和发展趋势综述摘要:随着计算机技术的迅猛发展,数据挖掘技术越来越受到世界的关注。

从数据挖掘的概念出发,介绍了数据挖掘的对象、功能及其挖掘过程,结合数据挖掘的几种常见挖掘算法:决策树法、关联规则法和神经网络法等,对其主要思想及其改进做了相关描述;总结了国内外数据挖掘的研究现状和应用,指出了数据挖掘的发展趋势。

关键词:数据挖掘;决策树法;关联规则法;神经网络法;研究现状;发展趋势0引言数据挖掘作为一个新兴的多学科交叉应用领域,正在各行各业的决策支持活动中扮演着越来越重要的角色。

随着信息技术的迅速发展,各行各业都积累了海量异构的数据资料。

这些数据往往隐含着各种各样有用的信息,仅仅依靠数据库的查询检索机制和统计学方法很难获得这些信息,迫切需要将这些数据转化成有用的信息和知识,从而达到为决策服务的目的。

数据挖掘分析得到的信息和知识现在已经得到了广泛的应用,例如商务管理、生产控制、市场分析、工程设计和科学探索等。

数据挖掘是一个多学科领域,它融合了数据库技术、人工智能、机器学习、统计学、知识工程、信息检索等最新技术的研究成果。

本文主要介绍了数据挖掘的几种主要算法及其改进,并对国内外的研究现状及研究热点进行了总结,最后指出其发展趋势<sup>[1]</sup>。

1研究背景1.1数据挖掘目前数据挖掘是人工智能和数据库领域的研究热点,数据挖掘是发现数据库中隐含知识的重要步骤。

数据挖掘出现于20世纪80年代末,早期主要研究从数据库中发现知识(Knowlegde Discovery in Database,KDD),数据挖掘的概念源于1995年在加拿大召开了第一届知识发现和数据挖掘国际会议<sup>[2]</sup>。

数据挖掘作为一种多学科综合的产物,综合利用人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,自动分析数据并从中得到潜在隐含的知识,从而帮助决策者做出合理并正确的决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据挖掘引言数据挖掘是一门交叉学科,涉及到了机器学习、模式识别、归纳推理、统计学、数据库、高性能计算等多个领域。

所谓的数据挖掘(Data Mining)指的就是从大量的、模糊的、不完全的、随机的数据集合中提取人们感兴趣的知识和信息,提取的对象一般都是人们无法直观的从数据中得出但又有潜在作用的信息。

从本质上来说,数据挖掘是在对数据全面了解认识的基础之上进行的一次升华,是对数据的抽象和概括。

如果把数据比作矿产资源,那么数据挖掘就是从矿产中提取矿石的过程。

与经过数据挖掘之后的数据信息相比,原始的数据信息可以是结构化的,数据库中的数据,也可以是半结构化的,如文本、图像数据。

从原始数据中发现知识的方法可以是数学方法也可以是演绎、归纳法。

被发现的知识可以用来进行信息管理、查询优化、决策支持等。

而数据挖掘是对这一过程的一个综合性应用。

目录引言 (1)第一章绪论 (3)1.1 数据挖掘技术的任务 (3)1.2 数据挖掘技术的研究现状及发展方向 (3)第二章数据挖掘理论与相关技术 (5)2.1数据挖掘的基本流程 (5)2.2.1 关联规则挖掘 (6)2.2.2 .Apriori算法:使用候选项集找频繁项集 (7)2.2.3 .FP-树频集算法 (7)2.2.4.基于划分的算法 (7)2.3 聚类分析 (7)2.3.1 聚类算法的任务 (7)2.3.3 COBWEB算法 (9)2.3.4模糊聚类算法 (9)2.3.5 聚类分析的应用 (10)第三章数据分析 (11)第四章结论与心得 (14)4.1 结果分析 (14)4.2 问题分析 (14)4.2.1数据挖掘面临的问题 (14)4.2.2 实验心得及实验过程中遇到的问题分析 (14)参考文献 (14)第一章绪论1.1 数据挖掘技术的任务数据挖掘技术并不是仅仅面向特定数据库的简单检索查询,而是对大量的数据从宏观、微观的角度进行统计、分析、综合和推理,进而来指导现实生活中实际问题的解决,有时还要根据已有的数据展开推理预测。

数据挖掘的主要任务是分类、聚类、关联、序列等。

分类就是在数据中找出一个类别的概念描述,这个概念代表了这类数据的基本信息,即该类概念的内涵描述,然后根据这种描述建立模型。

常用的分类构造方法主要有统计方法、机器学习方法、神经网络方法等。

其中统计方法包括贝叶斯法和非参数法,机器学习方法包括决策树法和规则归纳法,神经网络法主要是以BP算法为主。

聚类就是把具有相似性的数据归纳成若干类别,同一类别的数据相似,不同类别的数据相异,聚类分析可以在分类的基础上进一步建立宏观的概念,进而发现数据的分布模式。

当两个或者两个以上变量的取值直接存在某种规律性时,我们就可以称之为关联。

序列和关联类似,只是把关联中一起发生的项目间关系扩展成一段时间的项目集间的关系,因此,序列常常被看作由时间变量连起来的关联。

序列的主要作用是分析长时间的相关记录,进而发现经常发生的模式。

1.2 数据挖掘技术的研究现状及发展方向近年来,随着计算机科学领域的快速发展,数据挖掘技术作为一种新兴的学科,其研究热度正在逐渐升温,研究的水平也在逐步提高,同时由于国家政府的政策支持与资金支持,越来越多的数据专业研究者被吸引加入其中。

在数据挖掘技术未来的研究过程中,其主要方向应包括以下几点:(1)参照于SQL 语言的标准化的研究成果,对数据挖掘技术进行形式化的描述,即发现数据语言。

(2)为实现关于数据额挖掘技术人机交互工作的顺利开展,应满足用户对知识发现过程的可视化进程。

(3)研究在计算机领域的数据挖掘技术的发展,可以通过数据挖掘服务器的有效配合的方式实现。

数据挖掘技术是面向应用的。

数据挖掘的研究有利地促进了数据挖掘技术应用的发展与推广。

在当今,数据的信息量是非常的庞大的,因为我们所获得的大量的实验数据的观测如果仅仅是去依靠一些比较传统的分析数据的工具,是非常的不靠谱的。

所以,对一些具有强大功能且具有自动化的工具的需要就越来越迫切了,这很显然的推动了数据挖掘技术的发展,并还在一定的程度之上取得了重要的成果。

随着研究的深入,数据挖掘技术的应用越来越广泛。

主要集中在以下几方面:(1)医学领域,随着医院信息系统和健康网站的发展,医疗活动、医学研究和健康信息行为中的数据被存储下来,形成了海量的健康医疗大数据。

这类数据的数据量大,存储形式多样,难以用传统数据处理方法进行处理数据挖掘由于能够分析海量异构数据,越来越多地被应用于健康医疗领域。

针对相关的生物医学与DNA的数据所分析的数据进行挖掘。

数据挖掘技术在基因工程中的染色体、基因序列的识别分析、基因表达路径分析、基因表达相似性分析、以及制药、生物信息和科学研究等方面都有广泛应用。

(2)金融领域,针对其金融的分析因为一些金融的投资一般都存在着很大的风险,所以我们在进行投资和决策的时候,就需要去对各种各样的投资方向相关的数据进行分析,我们现在不但可以对所获取的一些信息进行加工和处理,还可以对市场进行预测。

此外,数据挖掘技术广泛应用于银行的存款贷款趋势预测,优化存款贷款策略和投资组合。

(3)零售业,在零售业当中,运用数据挖掘技术不但可以在一定的程度之上了解相关消费者的消费倾向,从而迎合消费者的口味,制定出更加接地气的市场政策,以提高销售额。

当然,还可以适当的预测行业状况。

例如,数据挖掘技术被用来进行分析购物篮来协助货架设置,安排促销商品组合和促销时间商业活动。

(4)保险业,当中数据挖掘的应用我们知道,保险业是一种风险性十分巨大的业务。

相关的研究表明,数据挖掘技术的运用不但可以预测相关风险性,还可以在一定的程度之上为保险业务工作者提供正确的方向。

很明显,这是非常的有利于保险业的持续性发展的。

(5)商务管理,数据挖掘技术被用于分析客户的行为,分类客户,以此进一步针对客户流失、客户利润、客户响应等方面进行分析,最终改善客户关系管理。

第二章数据挖掘理论与相关技术2.1数据挖掘的基本流程在数据挖掘领域中使用率较高的是跨行业标准数据挖掘流程CRISP-DM(Cross-Industry Standard Process for Data Mining),它是欧盟机构于1999 年联合起草的。

CRISP-DM 流程可以简单分为如图2-2 所示的围绕被挖掘数据展开的六个步骤:1.商业理解理解数据来源业务的目标,也就是说通过数据想要挖掘到什么信息,想要达到或者实现什么样的结果。

这一步骤是通过CRISP-DM 基本流程进行数据知识获取的“目标和方向”。

2.数据理解了解可以进行数据挖掘的数据概况,包括数据源、数据内容、数据类型、数据完整性等等。

这一步骤与上一步骤是一个迭代关系,在进行数据理解的时候要结合商业理解来判断和检查数据,筛选出与商业理解有关联的可用数据,剔除掉无关和无用的数据。

同时在进行数据理解的时候也是对商业理解的融会贯通和横纵扩展,能进一步明确和丰富挖掘目标。

3.数据准备这一步骤是将通过第一二步骤初步确定出的源数据进行萃取(Extract)—转制(Transform)—加载(Load)后的提炼过程,简称ETL过程。

当数据源的数据数量越庞大、数据的转换规则越复杂时,ETL的过程就越困难。

但这一过程完成的好坏也直接决定进行分析的数据质量,从而影响分析和挖掘结果的准确性和可靠性。

4.建立模型当数据准备完成后,当然就是根据数据情况和业务目标特征,选择合适的算法模型,对数据进行建模。

运行合适的模型能够有效的达到挖掘目标,提炼出有意义的知识模式。

5.评估模型挖掘出什么样的结果才是真正有趣的知识模式?对模型进行评估就是通过检测结果的可信度、精确度等,从而判定结果是否达到了挖掘目标。

如果评估后发现建模结果并不理想,那就需要再返回第三步或第四步,认真检查数据是否符合需求,以及模型是否需要进行修正或变更等。

6.发布模型当确认分析和挖掘结果达到要求了,需要将结果进行发布。

,通过简洁的文字描述,或者转化为多维表格、时间序列折线图、散列图、饼状图等这些直观、形象的可视化图表,展示最终结果。

2.2关联规则挖掘主要算法2.2.1 关联规则挖掘从数据库中发现关联规则近几年研究最多。

目前,已经从单一概念层次关联规则的发现发展到多个概念层次的关联规则的发现。

关联分析包括数据属性间关联关系的分析和数据属性间关联规则的发现两部分。

关联关系主要有简单关系、时序关系、因果关系等多种类型,关联分析的目的在于发现数据之间是否存在相互关联相互影响的情况,从而组建数据属性之间的关系网。

关联关系的确定和强弱可以通过协方差来衡量,协方差在数学统计和概率学中是标识两个随机变量相互关系的一种统计测度。

关联规则数据挖掘中最经典的案例就是沃尔玛的啤酒和尿布的故事。

在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。

一个意外的发现是:“跟尿布一起购买最多的商品竟是啤酒!”2.2.2 .Apriori算法:使用候选项集找频繁项集该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。

然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。

然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。

一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。

使用了递推的方法, 生成所有频繁项目集。

2.2.3 .FP-树频集算法FP-树频集算法针对Apriori算法的固有缺陷。

采用分而治之的策略,不产生候选挖掘频繁项集,在经过第一遍扫描之后,把数据库中的频集压缩进一棵频繁模式树(FP-tree),同时依然保留其中的关联信息,随后再将FP-tree分化成一些条件库,每个库和一个长度为1的频集相关,然后再对这些条件库分别进行挖掘。

当原始数据量很大的时候,也可以结合划分的方法,使得一个FP-tree可以放入主存中。

实验表明,FP-growth对不同长度的规则都有很好的适应性,同时在效率上较之Apriori算法有巨大的提高。

2.2.4.基于划分的算法算法先把数据库从逻辑上分成几个互不相交的块,每次单独考虑一个分块并对它生成所有的频集,然后把产生的频集合并,用来生成所有可能的频集,最后计算这些项集的支持度。

这里分块的大小选择要使得每个分块可以被放入主存,每个阶段只需被扫描一次。

而算法的正确性是由每一个可能的频集至少在某一个分块中是频集保证的。

该算法是可以高度并行的,可以把每一分块分别分配给某一个处理器生成频集。

产生频集的每一个循环结束后,处理器之间进行通信来产生全局的候选k-项集。

通常这里的通信过程是算法执行时间的主要瓶颈;而另一方面,每个独立的处理器生成频集的时间也是一个瓶颈。

相关文档
最新文档