平面向量与复数
平面向量与复数的关系

平面向量与复数的关系在数学中,平面向量和复数之间有着紧密的关联。
通过将平面向量用复数表示,我们能够更加直观地理解和计算向量的性质和运算。
本文将探讨平面向量与复数的关系,并阐述它们之间的转换和应用。
一、平面向量的表示与性质平面向量是指在平面上具有大小和方向的量。
一般来说,我们可以用坐标系中的两个有序数对来表示一个平面向量。
比如,对于平面上的点A(x1, y1)和点B(x2, y2),我们可以定义AB为一个平面向量,记作AB = (x2 - x1, y2 - y1)。
平面向量有以下重要的性质:1. 零向量:零向量是指模为0的向量,表示为0。
它的所有分量都为0,方向没有明确的定义。
2. 平行向量:如果两个向量的方向相同或相反,即它们的方向角相等或相差180度,则称它们为平行向量。
3. 向量的模:一个向量的模表示向量的长度,记作|AB|或∥AB∥,计算公式为∥AB∥ = √((x2 - x1)^2 + (y2 - y1)^2)。
4. 单位向量:如果一个向量的模为1,则称其为单位向量。
5. 向量的加法:向量的加法满足平行四边形法则,即将向量的起点放到另一个向量的终点上,连接两个向量的起点和终点,得到一个新的向量作为它们的和。
6. 数乘:将一个向量的每个分量都乘以一个实数,得到一个新的向量。
二、复数的定义与性质复数是由一个实部和一个虚部组成的数,形式为a + bi,其中a和b 是实数,i是虚数单位,满足i^2 = -1。
复数可用于表示在复平面上的点,其中实部表示实轴上的坐标,虚部表示虚轴上的坐标。
复数具有以下重要的性质:1. 共轭复数:对于一个复数a + bi,它的共轭复数定义为a - bi。
即共轭复数的实部相等,虚部的符号相反。
2. 模:一个复数的模表示复数到原点的距离,记作|z|或∥z∥,计算公式为∥z∥ = √(a^2 + b^2)。
3. 乘法:两个复数相乘的结果是一个复数。
如果两个复数分别为a + bi和c + di,则它们的乘积为(ac - bd) + (ad + bc)i。
复数与平面向量的应用知识点总结

复数与平面向量的应用知识点总结复数与平面向量在数学和物理等领域中有着广泛的应用,本文将对这两个知识点进行总结和概述。
一、复数的应用知识点复数是由实部和虚部组成的数,可以表示为 a + bi 的形式,其中 a 和 b 分别为实部和虚部。
复数的应用包括以下几个方面:1. 复数的四则运算:包括加法、减法、乘法和除法。
通过复数的四则运算,可以解决一些复杂的数学问题,例如求解方程、计算多项式的根等。
2. 复数的共轭:复数的共轭表示实部不变,虚部取负的复数,即 a + bi 的共轭为 a - bi。
共轭复数在求解方程、计算模长等问题中起到重要的作用。
3. 复数的模长和辐角:复数的模长表示复数到原点的距离,可以通过勾股定理计算。
复数的辐角可以通过计算反三角函数得到,常见的辐角有 [-π, π) 范围内的角度表示。
4. 欧拉公式:欧拉公式指出e^(iθ) = cosθ + isinθ,其中 e 是自然对数的底,i 是虚数单位。
欧拉公式将复数与三角函数联系起来,简化了一些复杂的运算。
二、平面向量的应用知识点平面向量是具有大小和方向的量,可以表示为有序对 (a, b),也可以表示为以起点和终点表示的箭头。
平面向量的应用包括以下几个方面:1. 平面向量的加法和减法:平面向量的加法满足平行四边形法则,即将两个向量的起点相连,然后以连接线段为对角线构建平行四边形,那么连接线段的终点即为两个向量相加的结果。
减法类似,只需将一个向量取相反向量再进行加法。
2. 平面向量的数量积和夹角:平面向量的数量积可以用来计算两个向量的夹角的余弦值。
数量积满足交换律和分配律,可以通过向量的坐标进行计算。
3. 平面向量的模长:平面向量的模长表示向量的长度,可以通过勾股定理计算,即模长为√(a^2 + b^2)。
4. 单位向量:单位向量是模长为 1 的向量,可以通过将向量除以其模长得到。
单位向量有很多重要的应用,例如在求解向量的投影、计算向量的夹角等问题中。
高一数学复数与平面向量的联系

例2、 分别画出复平面上满足下列
条件的区域 : (1) z的实部不小于1 (2) z的虚部不小于2 (3) z的实部绝对值小于2
(4) z (2 3i) 3
(5) z 4 z 4 10 (6) z和它的共轭复数的积小于 等于2大于等于1
;欧亿注册 / 欧亿注册
点Z (a,b), 向量OZ是复数
z a bi(a,b R)的另外两种
表示形式, 它们都是复数z的 几何表示。
z a bi(a,b R)
复平面上的点
向量OZ
这种对应关系的建立,为我们 用向量方法解决复数问题,或 用复数方法解决向量问题创造 了条件。
二、复数的模:
向量OZ的模r叫做复数z a bi的
(7)( z1 z2
)
ห้องสมุดไป่ตู้
z1 z2
(z2
0)
例1、 已知复数z1 m2 1 (m2 m)i
与z2 2 (1 3m)i(m R)是共轭
复数, 求m.
四、复数加减法的几何意义:
(1)复数z a bi(a,b R)的几何 表示为点Z (a,b)或向量OZ ,由向量
例、1 2i 2 4i的几何表示。
请问: 向量的三角形法则在这
还适不适用?
(3)复数减法的几何意义 :
请同学们根据向量的减法去考虑,
应该怎样做呢 ?
五、 复平面上两点的距离公式 :
d
z1
z2
,
其中z1与z
是复平面内
2
的两点z1, z2所对应的复数,d 表示
z1
,
z
间的距离。
2
第06讲-平面向量与复数(解析版)

第06讲-平面向量与复数(解析版)第06讲-平面向量与复数(解析版)平面向量与复数是数学中的两个重要概念,它们在解析几何和复数运算中起着重要的作用。
平面向量用来描述平面上的位移和方向,而复数则是由实部和虚部构成的数,可以表示平面上的点与向量。
平面向量的定义与性质平面向量可以理解为带有方向的位移量,它由两个点确定,可以用向量箭头表示。
一个平面向量可以表示为AB(向量上面带有箭头),其中A和B为向量的起点和终点,也可以使用向量的分量形式表示为向量的横坐标和纵坐标。
平面向量有一些重要的性质,首先,向量的大小用向量的模表示,表示为|AB|,即向量的长度。
其次,向量可以进行加法和乘法运算,向量的加法是指向量与向量相加的运算,向量的乘法是指向量与标量相乘的运算。
向量的加法满足交换律和结合律,即A + B = B + A,(A + B) + C = A + (B + C)。
向量的乘法也满足一些性质,标量与向量相乘,可以改变向量的大小和方向,但是不改变其方向。
平面向量可以表示为有向线段,即从起点指向终点的线段。
向量的方向可以用角度来表示,称为向量的方向角。
向量的方向角可以通过三角函数来计算,其中正弦和余弦分别表示向量的纵坐标和横坐标与向量模的比值。
复数的定义与性质复数是由实部和虚部构成的数,可以表示为a + bi的形式,其中a 为实部,b为虚部,i为虚数单位,满足i^2 = -1。
复数在解析几何和电路等领域有广泛应用。
复数有一些重要的性质,首先,复数可以进行加法和乘法运算。
复数的加法满足交换律和结合律,即a + bi + c + di = (a + c) + (b + d)i。
复数的乘法满足交换律、结合律和分配律,即(a + bi)(c + di) = ac + adi + bci + bdi^2。
复数可以表示为平面上的点,其中实部对应点的横坐标,虚部对应点的纵坐标。
复数的大小用模表示,表示为|a + bi|,即复数的距离原点的距离。
平面向量与复数的联系与应用

平面向量与复数的联系与应用一、引言平面向量和复数是高中数学中常见的概念,它们在几何学和代数学中有着密切的联系与应用。
本文将探讨平面向量和复数之间的联系,以及它们在数学和物理中的应用。
二、平面向量与复数的定义和表示方法1. 平面向量的定义和表示方法平面向量是具有大小和方向的量,可以用有向线段来表示。
通常用字母加上一个箭头来表示向量,如A B⃗,其中A和B表示向量的起点和终点。
平面向量也可以用坐标表示,如A B⃗= (x,y),其中(x,y)为向量的坐标。
2. 复数的定义和表示方法复数是由实数部分和虚数部分组成的数,通常表示为a+bi,其中a 和b为实数,i为虚数单位。
复数可以用平面上的点表示,其中实数部分对应横坐标,虚数部分对应纵坐标。
三、平面向量与复数的联系平面向量和复数之间有着密切的联系,具体体现在以下几个方面。
1. 向量的加法与复数的加法向量的加法满足平行四边形法则,即A B⃗ +B C⃗ =A C⃗。
复数的加法满足实部相加,虚部相加的规则,即(a+bi)+(c+di)=(a+c)+(b+d)i。
2. 向量的数量积与复数的乘法向量的数量积满足A B⃗·B C⃗=|A B⃗||B C⃗|cosθ,其中θ为两向量夹角。
复数的乘法满足(a+bi)(c+di)=(ac-bd)+(ad+bc)i。
3. 平面向量与复数的相互转换对于平面上的向量A B⃗,可以与点B对应的复数表示形式相互转换。
即向量A B⃗对应的复数表示为z=x+yi,其中x和y分别为向量的分量。
四、平面向量与复数的应用平面向量和复数在数学和物理中有广泛的应用。
1. 平面向量的应用平面向量常用于解决几何学中的问题,如直线的判定、线段的长度和夹角的计算等。
此外,在力学和电磁学中,平面向量也被广泛应用于力的合成、力矩的计算等物理问题的求解。
2. 复数的应用复数在代数学的求解中有重要的应用。
它可以用于解决各类代数方程,如一元二次方程、三角方程等。
2024年高考数学总复习第五章《平面向量与复数》复数

2024年高考数学总复习第五章《平面向量与复数》§5.5复数最新考纲1.在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.2.理解复数的基本概念及复数相等的充要条件.3.了解复数的代数表示法及其几何意义.4.能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.1.复数的有关概念(1)定义:形如a +b i(a ,b ∈R )的数叫做复数,其中a 叫做复数z 的实部,b 叫做复数z 的虚部(i 为虚数单位).(2)分类:满足条件(a ,b 为实数)复数的分类a +b i 为实数⇔b =0a +b i 为虚数⇔b ≠0a +b i 为纯虚数⇔a =0且b ≠0(3)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ).(4)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ).(5)模:向量OZ →的模叫做复数z =a +b i 的模,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R ).2.复数的几何意义复数z =a +b i 与复平面内的点Z (a ,b )及平面向量OZ →=(a ,b )(a ,b ∈R )是一一对应关系.3.复数的运算(1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R .(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即OZ →=OZ 1→+OZ 2→,Z 1Z 2→=OZ 2→-OZ 1→.概念方法微思考1.复数a +b i 的实部为a ,虚部为b 吗?提示不一定.只有当a ,b ∈R 时,a 才是实部,b 才是虚部.2.如何理解复数的加法、减法的几何意义?提示复数的加法、减法的几何意义就是向量加法、减法的平行四边形法则.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)方程x 2+x +1=0没有解.(×)(2)复数z =a +b i(a ,b ∈R )中,虚部为b i.(×)(3)复数中有相等复数的概念,因此复数可以比较大小.(×)(4)原点是实轴与虚轴的交点.(√)(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.(√)题组二教材改编2.设z =1-i1+i +2i ,则|z |等于()A .0 B.12C .1D.2答案C 解析∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =-2i 2+2i =i ,∴|z |=1.故选C.3.在复平面内,向量AB →对应的复数是2+i ,向量CB →对应的复数是-1-3i ,则向量CA →对应的复数是()A .1-2i B .-1+2iC .3+4iD .-3-4i答案D解析CA →=CB →+BA →=-1-3i +(-2-i)=-3-4i.4.若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为()A .-1B .0C .1D .-1或1答案A解析∵z 为纯虚数,2-1=0,-1≠0,∴x =-1.题组三易错自纠5.设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案C解析∵复数a +bi=a -b i 为纯虚数,∴a =0且-b ≠0,即a =0且b ≠0,∴“ab =0”是“复数a +bi为纯虚数”的必要不充分条件.故选C.6.(2020·模拟)若复数z 满足i z =2-2i(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限答案B解析由题意,∵z =2-2i i =(2-2i )·(-i )i·(-i )=-2-2i ,∴z =-2+2i ,则z 的共轭复数z 对应的点在第二象限.故选B.7.i 2014+i 2015+i 2016+i 2017+i 2018+i 2019+i 2020=________.答案-i解析原式=i 2+i 3+i 4+i 1+i 2+i 3+i 4=-i.题型一复数的概念1.(2018·武汉华中师大一附中月考)若复数z 满足(1+2i)z =1-i ,则复数z 的虚部为()A.35B .-35C.35i D .-35i答案B解析因为(1+2i)z =1-i ,所以z =1-i 1+2i=(1-i )(1-2i )5=-1-3i5,因此复数z 的虚部为-35,故选B.2.(2019·钦州质检)复数2+i1+i的共轭复数是()A .-32+12iB .-32-12iC.32-12iD.32+12i 答案D解析由复数2+i 1+i =(2+i )(1-i )(1+i )(1-i )=3-i 2=32-12i ,所以共轭复数为32+12i ,故选D.3.(2018·烟台模拟)已知复数a +2i2-i是纯虚数(i 是虚数单位),则实数a 等于()A .-4B .4C .1D .-1答案C解析a +2i 2-i =(a +2i )(2+i )(2-i )(2+i )=2a -2+(a +4)i5,∵复数a +2i2-i为纯虚数,∴2a -2=0且a +4≠0,解得a =1.故选C.思维升华复数的基本概念有实部、虚部、虚数、纯虚数、共轭复数等,在解题中要注意辨析概念的不同,灵活使用条件得出符合要求的解.题型二复数的运算命题点1复数的乘法运算例1(1)(2018·全国Ⅲ)(1+i)(2-i)等于()A .-3-iB .-3+iC .3-iD .3+i答案D解析(1+i)(2-i)=2+2i -i -i 2=3+i.(2)i (2+3i )等于()A .3-2iB .3+2iC .-3-2iD .-3+2i答案D解析i(2+3i)=2i +3i 2=-3+2i ,故选D.命题点2复数的除法运算例2(1)(2018·全国Ⅱ)1+2i1-2i等于()A .-45-35iB .-45+35iC .-35-45iD .-35+45i答案D解析1+2i 1-2i =(1+2i )2(1-2i )(1+2i )=1-4+4i1-(2i )2=-3+4i 5=-35+45i.故选D.(2)(2018·烟台模拟)已知i 是虚数单位,若复数z 满足z (1+i)=1-i ,则z 等于()A .iB .-iC .1+iD .1-i答案A解析由题意,复数z =1-i 1+i =(1-i )(1-i )(1+i )(1-i )=-i ,所以z =i ,故选A.命题点3复数的综合运算例3(1)(2018·达州模拟)已知z (1+i)=-1+7i(i 是虚数单位),z 的共轭复数为z ,则|z |等于()A.2B .3+4i C .5D .7答案C解析z =-1+7i 1+i=(-1+7i )(1-i )2=3+4i ,故z =3-4i ⇒|z |=5,故选C.(2)(2018·成都模拟)对于两个复数α=1-i ,β=1+i ,有下列四个结论:①αβ=1;②αβ=-i ;③|αβ|=1;④α2+β2=0,其中正确结论的个数为()A .1B .2C .3D .4答案C解析对于两个复数α=1-i ,β=1+i ,①αβ=(1-i)·(1+i)=2,故①不正确;②αβ=1-i 1+i =(1-i )(1-i )(1+i )(1-i )=-2i 2=-i ,故②正确;③|αβ|=|-i |=1,故③正确;④α2+β2=(1-i)2+(1+i)2=1-2i -1+1+2i -1=0,故④正确.故选C.思维升华(1)复数的乘法:复数乘法类似于多项式的四则运算.(2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数.跟踪训练1(1)已知a ∈R ,i 是虚数单位,若z =3+a i ,z ·z =4,则a 为()A .1或-1B .1C .-1D .不存在的实数答案A解析由题意得z =3-a i ,故z ·z =3+a 2=4⇒a =±1,故选A.(2)(2018·潍坊模拟)若复数z 满足z (2-i)=(2+i)·(3-4i),则|z |等于()A.5B .3C .5D .25答案C解析由题意z (2-i)=(2+i)(3-4i)=10-5i ,则z =10-5i 2-i =(10-5i )(2+i )(2-i )(2+i )=5,所以|z |=5,故选C.题型三复数的几何意义例4(1)(2018·天津河东区模拟)i 是虚数单位,复数1-ii在复平面上对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限答案C解析由题意得1-i i =(1-i )i i 2=1+i-11-i ,因为复数-1-i 在复平面上对应的点在第三象限,故选C.(2)如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:①AO →,BC →所表示的复数;②对角线CA →所表示的复数;③B 点对应的复数.解①∵AO →=-OA →,∴AO →所表示的复数为-3-2i.∵BC →=AO →,∴BC →所表示的复数为-3-2i.②∵CA →=OA →-OC →,∴CA →所表示的复数为(3+2i)-(-2+4i)=5-2i.③OB →=OA →+AB →=OA →+OC →,∴OB →所表示的复数为(3+2i)+(-2+4i)=1+6i ,即B 点对应的复数为1+6i.思维升华复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.跟踪训练2(1)(2018·洛阳模拟)已知复数z =5i 3+4i (i 是虚数单位),则z 的共轭复数z 对应的点在()A .第四象限B .第三象限C .第二象限D .第一象限答案A解析∵z =5i 3+4i =5i·(3-4i )(3+4i )·(3-4i )=45+35i ,∴z =45-35i ,则z 的共轭复数z 对应的点在第四象限.故选A.(2)已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-2i ,它们所对应的点分别为A ,B ,C ,O 为坐标原点,若OC →=xOA →+yOB →,则x +y 的值是________.答案5解析由已知得A (-1,2),B (1,-1),C (3,-2),∵OC →=xOA →+yOB →,∴(3,-2)=x (-1,2)+y (1,-1)=(-x +y,2x -y ),x +y =3,x -y =-2,=1,=4,故x +y =5.1.已知复数z 1=6-8i ,z 2=-i ,则z 1z 2等于()A .-8-6iB .-8+6iC .8+6iD .8-6i答案C解析∵z 1=6-8i ,z 2=-i ,∴z 1z 2=6-8i -i =(6-8i )i -i 2=8+6i.2.(2018·聊城模拟)设复数z =(1-i )21+i,则|z |等于()A .4B .2 C.2D .1答案C解析z =-2i (1-i )(1+i )(1-i )=-i(1-i)=-1-i ,|-1-i|=2,故选C.3.(2018·海淀模拟)已知复数z 在复平面上对应的点为(1,-1),则()A .z +1是实数B .z +1是纯虚数C .z +i 是实数D .z +i 是纯虚数答案C解析由题意得复数z =1-i ,所以z +1=2-i ,不是实数,所以选项A 错误,也不是纯虚数,所以选项B 错误.所以z +i =1,是实数,所以选项C 正确,z +i 是纯虚数错误,所以选项D 错误.故选C.4.已知i 为虚数单位,若复数z 满足z +iz -i=1+i ,那么|z |等于()A .1 B.2C.5D .5答案C解析∵z +i z -i=1+i ,z +i =(1+i)(z -i ),i z =(2+i)i ,∴z =2+i ,∴|z |=1+4=5,故选C.5.(2018·成都七中模拟)已知i 为虚数单位,a ∈R ,若i -2a -i为纯虚数,则a 等于()A.12B .-12C .2D .-2答案B 解析由题意知i -2a -i =(i -2)(a +i )(a -i )(a +i )=(-2a -1)+(a -2)i a 2+1=-2a -1a 2+1+a -2a 2+1i ,又由i -2a -i为纯虚数,所以-2a -1=0且a -2≠0,解得a =-12,故选B.6.若复数z 满足(3+4i )z =1-i(i 是虚数单位),则复数z 的共轭复数z 等于()A .-15-75iB .-15+75iC .-125-725iD .-125+725i 答案D解析由题意可得z =1-i 3+4i =(1-i )(3-4i )(3+4i )(3-4i )=-1-7i25,所以z =-125+725i ,故选D.7.(2018·济南模拟)设复数z 满足z (1-i)=2(其中i 为虚数单位),则下列说法正确的是()A .|z |=2B .复数z 的虚部是i C.z =-1+iD .复数z 在复平面内所对应的点在第一象限答案D解析z =21-i =2(1+i )(1-i )(1+i )=1+i ,∴|z |=12+12=2,复数z 的虚部是1,z =1-i ,复数z 在复平面内所对应的点为(1,1),显然在第一象限.故选D.8.已知集合M ={1,m,3+(m 2-5m -6)i},N ={-1,3},若M ∩N ={3},则实数m 的值为________.答案3或6解析∵M ∩N ={3},∴3∈M 且-1∉M ,∴m ≠-1,3+(m 2-5m -6)i =3或m =3,∴m 2-5m -6=0且m ≠-1或m =3,解得m =6或m =3,经检验符合题意.9.(2018·江苏)若复数z 满足i·z =1+2i ,其中i 是虚数单位,则z 的实部为________.答案2解析由i·z =1+2i ,得z =1+2ii=2-i ,∴z 的实部为2.10.(2018·天津)i 是虚数单位,复数6+7i1+2i=________.答案4-i解析6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=20-5i5=4-i.11.已知复数z 满足z +3z =0,则|z |=________.答案3解析由复数z 满足z +3z=0,则z 2=-3,所以z =±3i ,所以|z |= 3.12.若复数z =1-i ,则z +1z 的虚部是________.答案-12解析z +1z =1-i +11-i =1-i +1+i 2=32-12i ,故虚部为-12.13.(2018·厦门质检)已知复数z 满足(1-i)z =i 3,则|z |=________.答案22解析由题意知z =i 31-i =-i (1+i )(1-i )(1+i )=-i +12=12-12i ,则|z |=22.14.(2019·天津调研)已知i 为虚数单位,复数z (1+i)=2-3i ,则z 的虚部为________.答案-52解析由z (1+i)=2-3i ,得z =2-3i 1+i =(2-3i )(1-i )(1+i )(1-i )=-1-5i 2=-12-52i ,则z 的虚部为-52.15.已知复数z =b i(b ∈R ),z -21+i是实数,i 是虚数单位.(1)求复数z ;(2)若复数(m +z )2所表示的点在第一象限,求实数m 的取值范围.解(1)因为z =b i(b ∈R ),所以z -21+i =b i -21+i =(b i -2)(1-i )(1+i )(1-i )=(b -2)+(b +2)i 2=b -22+b +22i.又因为z -21+i 是实数,所以b +22=0,所以b =-2,即z =-2i.(2)因为z =-2i ,m ∈R ,所以(m +z )2=(m -2i)2=m 2-4m i +4i 2=(m 2-4)-4m i ,又因为复数(m +z )2所表示的点在第一象限,2-4>0,4m >0,解得m <-2,即m ∈(-∞,-2).16.若虚数z 同时满足下列两个条件:①z +5z是实数;②z +3的实部与虚部互为相反数.这样的虚数是否存在?若存在,求出z ;若不存在,请说明理由.解存在.设z =a +b i(a ,b ∈R ,b ≠0),则z +5z =a +b i +5a +b i=又z +3=a +3+b i 的实部与虚部互为相反数,z +5z是实数,0,+3=-b ,因为b ≠02+b 2=5,=-b -3,=-1,=-2=-2,=-1.所以z =-1-2i 或z =-2-i.17.(2018·威海模拟)若复数a +i 1+i (i 是虚数单位)在复平面内对应的点在第一象限,则实数a 的取值范围是()A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)答案C 解析由题意得z =a +i 1+i =(a +i )(1-i )(1+i )(1-i )=a +1+(1-a )i 2,因为z 在复平面内对应的点在第一象限,+1>0,-a >0,所以-1<a <1.故选C.18.已知a ∈R ,i 是虚数单位,若复数z =a +3i 3+i∈R ,则复数z =________.答案3解析∵复数z =a +3i 3+i =(a +3i )(3-i )(3+i )(3-i )=3(1+a )+(3-a )i 4=3(1+a )4+3-a 4i ∈R ,∴3-a 4=0,即a =3.则复数z =3(1+a )4=434= 3.19.复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+4sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围是()A .[-1,8] B.-916,1C.-916,7 D.916,7答案A 解析由复数相等的充要条件可得=2cos θ,-m 2=λ+4sin θ,化简得4-4cos 2θ=λ+4sin θ,由此可得λ=-4cos 2θ-4sin θ+4=-4(1-sin 2θ)-4sin θ+4=4sin 2θ-4sin θ=θ-1,因为sin θ∈[-1,1],所以4sin 2θ-4sin θ∈[-1,8].20.给出下列命题:①若z ∈C ,则z 2≥0;②若a ,b ∈R ,且a >b ,则a +i>b +i ;③若a ∈R ,则(a +1)i 是纯虚数;④若z =-i ,则z 3+1在复平面内对应的点位于第一象限.其中正确的命题是________.(填上所有正确命题的序号)答案④解析由复数的概念及性质知,①错误;②错误;若a =-1,则a +1=0,不满足纯虚数的条件,③错误;z 3+1=(-i)3+1=i +1,④正确.。
复数的应用平面向量

复数的应用平面向量复数的应用——平面向量复数是数学中的一个重要分支,它在平面向量的研究中起到了关键作用。
平面向量是指在平面内具有大小和方向的量,它可以用复数来表示。
本文将介绍复数在平面向量中的应用。
一、复数的定义与基本运算复数是由实数和虚数构成的数,形式可表示为a+bi,其中a为实数部分,b为虚数部分,i为虚数单位。
复数的加减法与实数的加减法相似,乘法与实数的乘法也遵循相同的规律。
二、复数表示平面向量复数可以表示平面向量的长度和方向。
对于平面上的向量AB,可以用复数表示为a+bi,其中a和b分别为向量的水平分量和竖直分量。
复数的模表示向量的长度,辐角表示向量的方向。
三、复数的加法平面向量的加法可以转化成复数的加法。
设有两个向量A和B,分别表示为a+bi和c+di,则其相加的结果为(a+c)+(b+d)i,即两个复数实部相加得到新复数的实部,虚部相加得到新复数的虚部。
四、复数的乘法平面向量的乘法可以通过复数的乘法运算来实现。
设有两个向量A和B,分别表示为a+bi和c+di,则其相乘的结果为(ac-bd)+(ad+bc)i,即两个复数的实部和虚部按照一定规律相乘。
五、复数的共轭与模的平方复数的共轭指将复数的虚部取相反数,记作z*。
对于复数z=a+bi,其共轭为z*=a-bi。
复数的模表示复数到原点的距离,可以通过复数的实部和虚部计算得到,即|z|=√(a²+b²)。
复数的模的平方可以表示为|z|²=a²+b²。
六、复数表示向量的旋转复数的辐角可以表示向量的旋转角度。
将平面上的向量表示为复数z=a+bi,其辐角θ可以通过计算得到,即θ=arctan(b/a)。
同时,可以通过构造模为1的复数来表示旋转角度θ的向量,即z=cosθ+isinθ。
七、复数的应用举例1. 平面向量的加减法可通过复数的加法和减法来实现,简化了运算过程。
2. 复数的乘法可以用于向量的缩放和旋转操作,方便了平面向量的变换。
第六章平面向量和复数

(4)
-
4 3
i
-
2 5
i
7i.
(2) i-5 = 1 = 1 = i =-i; i5 i i i
(3) 2i+ 1 i- 1 = 5 i+i= 7 i; 2 i2 2
(4)
-
4 3
i
-
2 5
i
7i
=
56 15
i3
=-
56 15
i.
二、复数
a
定理 两个非零向量a,b平行的充要条件是存在一个数使
得a b.定理中的"非零"二字可否省去?
证明 充分性 a b,由向量数乘定义b//b,因此a//b.
必要性a//b,则a与b同向或反向,若a与b同向,取 = a ,由向量
b
相等的定义,则a = b,若a与b反向,取 = - a ,则有a = b.
我们规定, 如果向量a和b的模相等并且方向也相同,则称 它们是相等的,记作a = b.非零向量a和b方向相同或方向相反, 则称a和b平行,记作a//b.和向量a方向相反,长度相等的向量 叫做a的相反向量,记作 - a.模为1个长度单位的向量叫做单位 向量.长度为零的向量叫做零向量.记作0为0.零向量的方向不 确定, 视情况而定.和向量a方向相同且长度为1的向量称为a 的单位向量,记作a0 .
f = ma
这说明向量与数量有一种结合关系.
定义5 向量a与实数的乘积是一个向量,记作a,a的模 等于a的模的 倍,即 a a , a的方向 : 当 > 0时,a与a反
向, 我们把这种运算叫做向量与数量的乘法,简称数乘.
显然,a = 0的充要条件是=0或a = 0;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量与复数
平面向量是数学中的重要概念,它与复数之间存在着紧密的联系和
相互转化的关系。
本文将介绍平面向量和复数的基本概念,并探讨它
们之间的关联。
一、平面向量的基本概念
1. 平面向量的定义:平面向量是具有大小和方向的有向线段,通常
用有序数对表示。
设有平面上两个点A和B,用→AB表示从点A指向点B的有向线段,这条有向线段便是平面向量。
2. 平面向量的表示:平面向量的表示通常有三种方式,即坐标表示、模长与方向角表示、分解成单位向量表示。
a. 坐标表示:如果平面向量→AB的起点坐标为A(x₁, y₁),终点坐标为B(x₂, y₂),则向量的坐标表示为(x₂-x₁, y₂-y₁)。
b. 模长与方向角表示:平面向量→AB的模长记作|→AB|,方向
角表示为θ,这样,向量的模长与方向角表示为(|→AB|,θ)。
c. 分解成单位向量表示:平面向量→AB可以表示为它在两个单
位向量上的投影和,即→AB = |→AB|cosθ·→i + |→AB|sinθ·→j,其中
→i和→j分别为横轴和纵轴上单位长度的向量。
二、复数的基本概念
1. 复数的定义:复数是由实数和虚数构成的数,记作a+bi,其中a
为实部,b为虚部,i为虚数单位,满足i²=-1。
2. 复数的表示:复数可以用代数形式和三角形式表示。
代数形式为a+bi,三角形式为r(cosθ+isinθ),其中r为模长,θ为辐角。
3. 复数的运算:复数的运算包括加法、减法、乘法和除法。
具体的运算规则与实数的运算类似,只是需要注意虚数单位i的运算规律。
三、平面向量与复数的关系
1. 平面向量的表示与复数的表示:平面向量可以通过复数的模长与方向角表示。
设平面向量→AB的表示为(|→AB|,θ),则可以将→AB对应的复数记作z=|→AB|cosθ+|→AB|sinθ·i。
2. 复数的运算与平面向量的运算:复数的加法、减法和乘法可以直接对应到平面向量的加法、减法和数量乘法上,这是因为复数运算与平面向量的运算都遵循平行四边形法则和数量乘法的分配律。
3. 平面向量与复数的转化:通过平面向量的坐标表示,可以将平面向量转化为复数。
已知平面向量→AB的坐标表示为(x₂-x₁, y₂-y₁),则可以将它对应的复数记作z=(x₂-x₁)+(y₂-y₁)·i。
4. 复数与平面向量的性质:复数的乘法有关的模长和辐角与平面向量的数量乘法有关的模长和方向角相对应,这为解决平面向量相关问题提供了便利。
综上所述,平面向量与复数之间存在着密切的联系和相互转化的关系。
通过理解和运用平面向量和复数的相关概念和性质,可以更加灵活地解决与二维几何相关的问题,提高数学问题的解决能力。
同时,
这种联系也为平面向量和复数的进一步研究提供了契机,有助于深化对它们的认识和理解。