燃气轮机热力循环性能的分析计算
2-燃气轮机-第二讲(热力循环)

比功与压比、温比的关系: 比功与压比、温比的关系:
结论2——效率与压比、温比的关系: 结论2——效率与压比、温比的关系: 效率与压比 仅取决于压比π,而与温比τ (1)燃气轮机的循环效率 仅取决于压比 ,而与温比 )燃气轮机的循环效率η仅取决于压比 无关; 无关; 随压比增大而增大。 (2)效率 随压比增大而增大。 )效率η随压比增大而增大
其他多种热力循环组合的联合循环
–必要性:单独的一种热力循环各有优缺点,而几种 必要性:单独的一种热力循环各有优缺点, 必要性 热力循环结合使用则可扬长避短,达到理想效果。 热力循环结合使用则可扬长避短,达到理想效果。 –多种热力循环组合的联合循环方式: 多种热力循环组合的联合循环方式: 多种热力循环组合的联合循环方式 间冷再热循环 间冷回热循环 再热回热循环 间冷再热回热循环 燃气-蒸汽联合循环
第二讲
燃气轮机热力循环
一、燃气轮机的理想简单循环 二、理想简单循环效率的影响因素 三、燃气轮机的实际简单循环 四、燃气轮机常见其他热力循环
第一节 燃气轮机的简单循环
思考题一:何为理想循环? 思考题一:何为理想循环? 1、理想气体 、 2、稳定流动 、 3、可逆过程 、
二、理想简单循环
思考题二:简单循环的组成? 思考题二:简单循环的组成?
q3-4= 0
工质在涡轮中膨胀做功,称为膨胀功wT
= c p (T3* − T4* )
= c pT3* (1 − π* -m )
* * p − v图上,wT = 面积3-4-p1 -p2 -3
④4s-1 大气中的等压放热过程
q2 = q4−1 = h − h
* 4
* 1
kJ/kg
q1
= c p (T4* − T1* )
燃气轮机的实际热力循环

作者:水之北
1. 燃气轮机的实际循环 1.1. 燃气轮机的实际循环如图 1 的实线所示,包括四个热力过程:
n n n
熵增的多变压缩过程:空气从 p1 压缩至 p2; 略有压降的的加热过程:燃烧后的烟气温度从 T2 升至 T3,压力从 p2 略降至 p3; 熵增的多变膨胀过程,热烟气从 p3 膨胀至 p4=p1,烟温从 T3 降至 T4; 等压放热过程,膨胀后的烟气从 T4 冷却至 T1。
h 02 h 01 1 h 02s h 01 c
(1)
其中ηc 是压气机的效率。那么:
h 02 h 02s 1 c h01 c
~1~
(Байду номын сангаас)
过程 1—2 的空气压缩功为:
L c 1 h 02 h 01
(3)
2.2. 略有压降的加热过程 2—3 已知参数:p2,T2,T3; 求解参数:p3,q2-3。 设燃烧室总压恢复系数为 σb,则:
(8)
将(8)带入(5) ,得到:
mf h 03 h 02 b H f K 03h 03 h f 2
(9)
2.3. 熵增膨胀过程 3—4 已知参数:p3,T3,p4; 求解参数:T4。
~2~
与式(1)类似,3—4 的等熵和熵增过程之间的关系为:
h g3 h g4 T h g3 h g4s h g4 1 T h g3 h g4s
p3 b p2
(4)
设喷油量为 mf,燃油的低发热值为 Hf,燃烧室燃烧效率为ηb,则:
q 23 b m f H f m f h f 2 1 m f h g3 h 02
(5)
燃气轮机组热力计算指标

������
������n qB
=
∗ ∗ ∗ Cp T∗ 3 −T 4 −C p T 2 −T 1 ∗ Cp T∗ 3 −T 2
1 = 1 − T4 ∗ −T ∗ = 1 − 3 2
T ∗ −T ∗
1
k −1 π k
„„„„„„(4)
式中,f——燃料的质量流量与空气的质量流量之比,称为燃料空气比; f = G f kg 燃料/kg 空气;k 为绝热指数;
n
B
3600 G f qn
=η
3600
gt H u
;式中 B 为气耗量
4)热耗率:产生单位有效功率所耗的燃料热量,kJ/(kWh)
qe =
BH u qn
=
3600 η gt
2.联合循环机组的主要参数及性能指标 2.1.联合循环热效率和功比率
热效率和功比率是联合循环的两个基本特性参数, 以常规的余热锅炉型联合 循环(一台燃气轮机、一台余热锅炉、一台汽轮机,电动机可以一台,也可以两 台,也称“一拖一”方案)为例,介绍这两个参数。 余热锅炉型联合循环的热效率指通过燃气轮机获得的轴工和通过汽轮机获 得的轴功之和在加入系统的燃料热中所占的比例,记为ηcc 。 联合循环的功比率是指蒸汽轮机与燃气轮机的轴功之比,记为Scc 。 设燃料全部从燃气轮机燃烧室加入的, 设单位时间内从燃气轮机燃烧室加入 的燃料热为Qf(kJ/s) ;通过燃气轮机获得的轴功为Pgt(kW) ;通过气轮机获得的 轴功为Pst (kW) ;则, ηcc =
∗ ∗ ∗ ∗ ������n = ������T − ������C = Cp T3 − T4 − Cp (T2 − T1 )„„„„„„„(3)
式中,������T ——透平的比功,J/kg 或 kJ/kg; ������C ——压气机的比功,J/kg 或 kJ/kg; Cp ——工质的定压比热(在知道压力、温度时,可查表得出) 。 2)循环热效率:当工质完成一个循环时,输入的热量功转化为输出功的部 分所占的百分数,记为ηgt ,计算公式为: ηgt = fHn =
布雷顿循环效率

布雷顿循环(Brayton Cycle)是一种理想气体循环,通常用于燃气轮机(如燃气轮机和航空发动机)的热力循环分析。
布雷顿循环的效率可以通过热机效率来评估,热机效率定义为输出功率与输入热量之比。
布雷顿循环的热机效率取决于循环中的压缩比和高温燃气温度比。
以下是布雷顿循环热机效率的表达式:
η= 1 - (1 / r^(γ-1))
其中,η表示热机效率,r表示压缩比,γ表示气体比热容比(Cp/Cv)。
气体比热容比γ取决于工质的性质,对于空气来说,γ约为1.4。
需要注意的是,上述表达式描述了理想布雷顿循环的热机效率。
在实际应用中,布雷顿循环的效率可能会受到多种因素的影响,如机械损失、燃烧不完全和热损失等。
因此,实际燃气轮机的效率通常会低于理想布雷顿循环的效率。
布雷顿循环的效率对于燃气轮机系统的设计和性能评估非常重要。
通过优化压缩比和高温燃气温度比等参数,可以提高布雷顿循环的效率,并提高燃气轮机的能量转换效率。
燃气轮机热力计算方法

燃气轮机热力计算方法燃气轮机是一种常见的热力动力装置,其基本原理是通过燃烧燃料产生高温高压气体,然后利用这些气体的能量驱动轴上的涡轮旋转,最终将能量转化为机械功。
燃气轮机的热力计算方法主要包括燃烧过程的热力分析和性能参数的计算。
下面将从这两个方面进行详细介绍。
1.燃烧过程的热力分析:燃烧过程是燃气轮机中最重要的能量转换过程之一、其基本步骤包括燃料的混合、燃烧和燃气的膨胀。
热力分析主要涉及燃料的供给、燃烧温度和燃料消耗等方面的计算。
1.1燃料供给计算:燃烧过程中,需要按照一定的比例和速度供给燃料。
燃料供给的计算主要涉及燃烧室内的燃料流量和燃烧温度的特点。
根据燃烧室的结构和燃烧运行参数,可以通过质量守恒和能量守恒等原理计算燃料供给的量。
1.2燃料燃烧计算:燃料在燃烧室内与空气发生化学反应,产生燃烧产物和燃烧热。
燃料燃烧的计算主要涉及燃烧反应的热力学性质和燃烧室内的热量传递过程。
可以通过热力学平衡和改良热力学循环等方法,计算燃料的燃烧温度和热量释放。
1.3燃气膨胀计算:在燃烧过程后,高温高压燃气需要经过涡轮的膨胀工作,将能量转化为机械功。
燃气膨胀计算主要涉及涡轮的热力学特性和流体力学特性。
可以通过欧拉方程和涡轮参数的试验数据,计算燃气的温度降和功率输出。
2.性能参数的计算:燃气轮机的性能参数主要包括热效率、功率输出和燃料消耗等。
这些参数的计算可以根据燃气轮机的热力特性和工作参数进行估算。
2.1热效率计算:热效率是燃气轮机性能评价的重要指标之一、可以通过热力分析的结果,计算燃料的燃烧热和输入热量的比值,即可得到燃气轮机的热效率。
2.2功率输出计算:功率输出是燃气轮机性能的直接体现。
可以通过膨胀过程的分析,计算涡轮的工作参数,如转速和压力比等,然后再结合涡轮的机械效率,得到燃气轮机的功率输出。
2.3燃料消耗计算:燃料消耗是燃气轮机运行成本的重要因素。
根据燃料供给和燃烧过程的计算结果,可以得到燃烧室内的燃料消耗量。
计算热机效率的四种公式

计算热机效率的四种公式热机效率是热机工作时所转化的热能与输入的热能的比值,常用于研究热机的性能。
下面介绍四种常见的计算热机效率的公式。
1. 卡诺循环效率卡诺循环效率是热机效率的理论上限,它是指在绝热过程和等温过程中,热机从高温热源吸收热量,向低温热源释放热量的能量转化效率。
卡诺循环效率公式为:η = 1 - T2/T1其中,η表示卡诺循环的效率,T2表示低温热源的温度,T1表示高温热源的温度。
该公式表明,卡诺循环效率只与热源的温度有关,与具体的工作物质无关。
2. 热力循环效率热力循环效率是指热机在不同温度下工作时的效率,常用于评估汽车发动机和其他燃烧热机的性能。
热力循环效率公式为:η = (W_net / Q_in)× 100%其中,η表示热力循环的效率,W_net表示净功输出,Q_in 表示输入的热量。
该公式表示,热力循环效率等于净功输出与输入的热量之比。
3. 燃气轮机效率燃气轮机是一种常见的高效率热机,用于发电、动力等领域。
燃气轮机效率公式为:η = (W_turbine / Q_in)× 100%其中,η表示燃气轮机的效率,W_turbine表示涡轮机输出的功率,Q_in表示输入的热量。
该公式表示,燃气轮机效率等于涡轮机输出的功率与输入的热量之比。
4. 蒸汽轮机效率蒸汽轮机是一种常见的能源转换设备,常用于发电厂。
蒸汽轮机效率公式为:η = (W_turbine / Q_in)× 100%其中,η表示蒸汽轮机的效率,W_turbine表示涡轮机输出的功率,Q_in表示输入的热量。
该公式与燃气轮机效率公式相同,表示蒸汽轮机效率等于涡轮机输出的功率与输入的热量之比。
综上所述,热机效率可以通过卡诺循环效率、热力循环效率、燃气轮机效率和蒸汽轮机效率等四种公式进行计算。
这些公式可以帮助我们评估和比较不同热机的性能,并指导改进和优化热机的设计与运行。
热力学循环效率

热力学循环效率热力学循环效率是评估热能转换过程中能量利用率的重要指标。
在能源领域中,热力学循环效率的提高对于节能减排和可持续发展至关重要。
本文将介绍热力学循环效率的概念、计算方法以及影响因素,并探讨提高热力学循环效率的途径。
1. 热力学循环效率的概念和计算方法热力学循环效率是指在热能转换过程中输出的有效功与输入的热能之比。
它描述了能量在循环过程中的损失情况,是衡量能源利用效率的重要参数。
热力学循环效率的计算公式如下:热力学循环效率 = 输出的有效功 / 输入的热能其中,输出的有效功是指循环中转换成机械功的能量,输入的热能是指供给系统的热量。
2. 影响热力学循环效率的因素热力学循环效率受到多种因素的影响,包括工质的性质、工作流程以及设备的设计等。
以下是一些常见的影响因素:2.1 工质的性质工质的性质对热力学循环效率有重要影响。
一般来说,理想的工质应具有较高的临界温度、较小的黏度和导热系数。
临界温度较高可以提高循环效率,而黏度和导热系数的减小可以减少能量损失。
2.2 循环的工作流程热力学循环的工作流程也会影响其效率。
不同的工作流程具有不同的效率表现。
例如,理想的卡诺循环在给定的温度下具有最高的效率,而实际循环则受到多种因素的制约,效率较低。
2.3 设备的设计设备的设计对热力学循环效率有着重要的影响。
优化的设备设计可以提高能量转换效率,减少能量损失。
例如,在燃气轮机中,采用先进的叶片设计和冷却技术可以提高效率。
3. 提高热力学循环效率的途径为了提高热力学循环效率,可以采取一些措施和技术手段。
以下是一些常见的途径:3.1 使用高效工质选择合适的工质对于提高热力学循环效率至关重要。
一些高效的工质,如超临界流体和二氧化碳等,具有较高的临界温度和较小的黏度,可以提高能量转换效率。
3.2 优化工作流程通过优化热力学循环的工作流程,可以降低循环过程中的能量损失。
例如,改进朗肯循环的工作流程,采用多级膨胀等技术,可以提高效率。
燃气轮机基本热力计算方法分析

燃气轮机基本热力计算方法分析燃气轮机是一种广泛应用于发电、动力和空气动力等领域的高效能设备。
作为现代热能转换技术的代表之一,燃气轮机在能源领域的应用中,由于其高效、节能、环保等优点得到广泛认可。
本文将对燃气轮机的基本热力计算方法进行分析和解释。
一、燃气轮机的基本构成燃气轮机的基本构成由压气机、燃烧室、涡轮机和排气系统等部分组成。
其中,压气机和涡轮机是燃气轮机最为重要的两个部分。
压气机通常分为几个级别,每一级都会将气体压缩到更高的压力水平。
涡轮机与之呼应,它的每一级都能够将气体膨胀到更低的压力水平,以产生输出功率。
二、燃气轮机的基本热力计算方法(一)燃气轮机理论计算1. 暴力循环理论计算燃气轮机的第一种基本热力计算方法是按照暴力化循环进行的理论计算方法。
该方法建立在暴力化循环理论基础上,其计算的核心为焓(enthalpy)和熵(entropy)的变化。
以焓为主要参量,根据质量平衡、热平衡和动量平衡等方程组建立理论计算模型,可以计算燃气轮机每个工作过程的热力参量、效率、功率输出等参数。
但该方法的计算结果与实际情况存在较大误差,其适用范围受到较大限制。
2. 热力循环理论计算燃气轮机的第二种基本热力计算方法是按照热力化循环进行的理论计算方法。
该方法基于热力化循环理论,利用每一环节的能量平衡方程,分别计算每一环节的焓值、熵值和热工参数等,进而计算燃气轮机的热力性能和功率输出。
这种方法可以很好的解释燃气轮机的实际工作流程,并对其实际工作流程进行优化和设计。
(二) 燃气轮机实际计算燃气轮机的实际计算主要是根据燃气轮机实际运行过程中的数据和参数值进行计算。
其中,关键参数包括气压、气温、机械转速、燃气流量、压气机和涡轮机出口压力、温度和流量等。
根据燃气轮机的数学模型和各参量关系式进行数值计算,获得燃气轮机工作的各项参数和物理指标,如热效率、机械效率、相对输出功率、热负荷和压缩比等。
(三) 燃气轮机性能的评估和设计评估燃气轮机性能的指标有很多,其中主要指标包括功率输出、热效率、机械效率和可靠性等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。