AN130006_伺服驱动器电子凸轮曲线自学习使用方法

AN130006_伺服驱动器电子凸轮曲线自学习使用方法
AN130006_伺服驱动器电子凸轮曲线自学习使用方法

能的

1>自 2(定

2>下线速本文档说明的基础上阅读自学习相关参Pn[438]:全Pn[838]:主定位指令)

Pn[858]:凸Pn[859]:目Pn[887]:凸设定凸Pn[888]:凸设定凸Pn[889]‐Pn[设定曲设定为Pn[891]:凸0到1下图为典型电速度需要稳定伺服明如何使用电读本文档。

参数

全闭环口脉冲主轴来源选择凸轮表数量,目标目标凸轮凸轮曲线学习凸轮曲线学习凸轮曲线学习凸轮曲线学习[890]:凸轮曲曲线学习时凸为负值时凸轮凸轮曲线学习跳变是启动凸电池卷绕结构定。

服驱动器电子电子凸轮型驱冲逻辑方向,择,在凸轮曲必须为2

轮表数量,必习输出力矩

过程中凸轮习旋转速度

过程中凸轮曲线学习凸轮轮轴的脉冲轮电机输出反习启动控制

凸轮曲线学习

构,运行时,卷子凸轮曲线自动器中的曲线0‐正 1‐负,曲线学习过程必须为0或1

轴输出的转矩轴输出的速度轮轴脉冲量

量,设定为正向转矩

习过程,学习

卷绕轴旋转,自学习使用方线自学习功能重新上电生中置1(全闭矩 0‐100%

度限制 1‐10正值时学习过习完成后自动

为了达到较方法

能。应在充分效

环口),在凸000RPM

过程中凸轮电动清0

较好的张力控

分理解电子凸凸轮运行过程电机输出正向控制效果,物轮功程中置转矩,

料的

主轴编码器为AB相增量编码器,其AB相信号接入驱动器CN6接口,信号连接关系为:

驱动器CN6 全闭环编码器

PIN2 A+

PIN3 A‐

PIN4 B+

PIN5 B‐

PIN12 +5V

PIN11 GND

3>自学习过程

启动自学习前,驱动器必须处于凸轮模式,卷绕轴处于卷绕开始位置,设定卷绕轴在学习过程中的旋转速度Pn[888],转矩限制Pn[887],根据实际工艺的需要设定学习过程中凸轮轴的运行距离Pn[889]‐Pn[890](根据卷绕圈数计算)。

以上参数设定完成后,将Pn[891]置1,卷绕轴会根据设定参数旋转,学习过程结束后,Pn[891]恢复为0,整个卷绕过程主轴运行的距离会保存到Pn[856]‐Pn[857],凸轮曲线保存到ROM中,可以在后台软件中上载确认:

4>曲线的使用

将主轴来源选择Pn[838]更改为2(定位指令),定义一条第一速度定位指令,运行的目标

地址的转

速度址1为主轴周转速。

下图就是一度

周期脉冲量Pn

一个简单的例n[856]‐Pn[85例子,

黄色曲线57]中保存的值

线为卷绕轴的值,目标速度

的运行速度,度1设定曲线

绿色曲线为线运行过程中

为主轴对应的主轴运行

基于MATLAB软件的凸轮轮廓曲线设计_

基于MATLAB软件的凸轮轮廓曲线设 计 摘要:以偏置移动从动件盘形凸轮为例,基于MATLAB软件对凸轮轮廓曲线进行了解析法设计.绘制出轮廓曲线。运行结果表明:在从动件运动规律确定的情况下,利用MATLAB软件以很方便、快捷地得到凸轮的轮廓曲线。 关键词:凸轮机构;凸轮轮廓曲线;MATLAB;解析法 前言 凸轮轮廓曲线的设计,一般可分为图解法和解析法.利用图解法能比较方便地绘制出各种平面凸轮的轮廓曲线.但这种方法仅适用于比较简单的结构,用它对复杂结构进行设计则比较困难,而且利用图解法进行结构设计,作图误差较大,对一些精度要求高的结构不能满足设计要求。解析法可以根据设计要求,通过推导机构中各部分之间的几何关系,建立相应的方程,精确地计算出轮廓线上各点的坐标,然后把凸轮的轮廓曲线精确地绘制出来.但是,当从动件运动规律比较复杂时,利用解析法获得凸轮的轮廓曲线的工作量比较大.而MATLAB软件提供了强大的矩阵处理和绘图功能,具有核心函数和工具箱.其编程代码接近数学推导公式,简洁直观,操作简易,人机交互性能好,且可以方便迅速地用三维图形、图像、声音、动画等表达计算结果、拓展思路[1]。因此,基于MATLAB软件进行凸轮机构的解析法设计,可以解决设计工作量大的问题。 本文基于MATLAB软件进行凸轮轮廓曲线的解析法设计,利用《机械原理》课程的计算机辅助教学,及常用机构的计算机辅助设计.其具体方法为首先精确地计算出轮廓线上各点的坐标,然后运用MATLAB绘制比较精确的凸轮轮廓曲线。

1 设计的意义与已知条件 1.1意义 凸轮机构是由具有曲线轮廓或凹槽的构件,通过高副接触带动从动件实现预期运动规律的一种高副机构,它广泛地应用于各种机械,特别是自动机械、自动控制装置和装配生产线中,是工程实际中用于实现机械化和自动化的一种常用机构。所以,在凸轮的加工中,精确的确定凸轮的轮廓,这对于保证凸轮所带动从动件的运动规律是尤为重要的。 1.2已知条件 偏置移动从动件盘形凸轮设计已知条件(图1): 凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边 从动件在推程作等加速/等减速运动,在回程作余弦加速度运动 基圆半径rb = 40 mm,滚子半径rt = 10mm,推杆偏距e = 15 mm, 推程升程h = 50 mm,推程运动角ft = 100度,远休止角fs = 60度 回程运动角fh = 90度,推程许用压力角alp = 35度。

凸轮轮廓线绘制程序

凸轮轮廓线绘制程序 j=0:1:360; s=rand(1,361); v=rand(1,361); a=rand(1,361); jj=31; w=1; j1=80; j2=20; j3=80; j4=180; j5=360; t=pi/180; for i=1:361 if j(i)<=j1 %升程,余弦加速度运动规律,转过的角度是j1。 s(i)=jj*[1-cos(pi*j(i)/j1)]/2; v(i)=36*(pi*jj*w*sin(pi*j(i)/j1)/(2*j1)); a(i)=36*pi^2*jj*t*w^2*cos(pi*j(i)/j1)/(2*(j1*t)^2); elseif j(i)<=j1+j2 %远休。 s(i)=31; v(i)=0; a(i)=0; elseif j(i)<=j1+j2+j3 %回程,余弦加速度运动规律,转过的角度是j3。 s(i)=jj-jj*[1-cos(pi*(j(i)-90)/j3)]/2; v(i)=-36*(pi*jj*w*sin(pi*(j(i)-90)/j3)/(2*j3)); a(i)=-36*pi^2*jj*t*w^2*cos(pi*(j(i)-90)/j3)/(2*(j3*t)^2); else %推程,余弦加速度运动规律,转过的角度是45。 s(i)=0; v(i)=0; a(i)=0; end end %绘制凸轮理论廓线、实际廓线 r0=39; rr=9; l=36; loa=70;

jj0=23; X=rand(1,361); Y=rand(1,361); Xa=rand(1,361); Ya=rand(1,361); Xaa=rand(1,361); Yaa=rand(1,361); dr=rand(1,361); A=rand(1,361); B=rand(1,361); for i=1:361 %if j(i)<=j1 X(i)=-l*sin((j(i)+s(i)+jj0)*t)+loa *sin(j(i)*t); Y(i)=-l*cos((j(i)+s(i)+jj0)*t)+loa*cos(j(i)*t); dx=loa*cos(j(i)*t)-l*(1+v(i)/10)*cos((j(i)+s(i)+jj0)*t); dy=-loa*sin(j(i)*t)+l*(1+v(i)/10)*sin((j(i)+s(i)+jj0)*t); st=dx/sqrt(dy^2+dx^2); ct=-dy/sqrt(dy^2+dx^2); Xa(i)=X(i)+rr*ct; Ya(i)=Y(i)+rr*st; Xaa(i)=X(i)-rr*ct; Yaa(i)=Y(i)-rr*st; %X(i)=l*sin((j(i)-s(i)-jj0)*t)-loa*sin(j(i)*t); %Y(i)=-l*cos((j(i)-s(i)+jj0)*t)+loa*cos(j(i)*t); %dx=-loa*cos(j(i)*t)-l*(-1+v(i)/10)*cos((-j(i)+s(i)+jj0)*t); %dy=-loa*sin(j(i)*t)+l*(-1+v(i)/10)*sin((-j(i)+s(i)+jj0)*t); %st=dx/sqrt(dy^2+dx^2); %ct=-dy/sqrt(dy^2+dx^2); %Xa(i)=X(i)+rr*ct; %Ya(i)=Y(i)+rr*st; %Xaa(i)=X(i)-rr*ct; %Yaa(i)=Y(i)-rr*st; % else %X(i)=l*sin((j(i)-s(i)-jj0)*t)-loa*sin(j(i)*t); %Y(i)=-l*cos((j(i)-s(i)+jj0)*t)+loa*cos(j(i)*t); %dx=-loa*cos(j(i)*t)-l*(-1-v(i)/10)*cos((-j(i)-s(i)-jj0)*t); %dy=-loa*sin(j(i)*t)+l*(-1-v(i)/10)*sin((-j(i)-s(i)-jj0)*t); %st=dx/sqrt(dy^2+dx^2); %ct=-dy/sqrt(dy^2+dx^2); %Xa(i)=X(i)+rr*ct; %Ya(i)=Y(i)+rr*st; %Xaa(i)=X(i)-rr*ct;

凸轮曲线设计

凸轮曲线设计 当根据使用要求确定了凸轮机构的类型、基本参数以及从动件运动规律后,即可进行凸轮轮廓曲线的设计。设计方法有几何法和解析法,两者所依据的设计原理基本相同。几何法简便、直观,但作图误差较大,难以获得凸轮轮廓曲线上各点的精确坐标,所以按几何法所得轮廓数据加工的凸轮只能应用于低速或不重要的场合。对于高速凸轮或精确度要求较高的凸轮,必须建立凸轮理论轮廓曲线、实际轮廓曲线以及加工刀具中心轨迹的坐标方程,并精确地计算出凸轮轮廓曲线或刀具运动轨迹上各点的坐标值,以适合在数控机床上加工。 圆柱凸轮的廓线虽属空间曲线,但由于圆柱面可展成平面,所以也可以借用平面盘形凸轮轮廓曲线的设计方法设计圆柱凸轮的展开轮廓。本节分别介绍用几何法和解析法设计凸轮轮廓曲线的原理和步骤。 1 几何法 反转法设计原理: 以尖底偏置直动从动件盘形凸轮机构为例: 凸轮机构工作时,凸轮和从动件都在运动。为了在图纸上画出凸轮轮廓曲线,应当使凸轮与图纸平面相对静止,为此,可采用如下的反转法:使整个机构以角速度(-w)绕O转动,其结果是从动件与凸轮的相对运动并不改变,但凸轮固定不动,机架和从动件一方面以角速度(-w)绕O转动,同时从动件又以原有运动规律相对机架往复运动。根据这种关系,不难求出一系列从动件尖底的位置。由于尖底始终与凸轮轮廓接触,所以反转后尖底的运动轨迹就是凸轮轮廓曲线。 1). 直动从动件盘形凸轮机构 尖底偏置直动从动件盘形凸轮机构: 已知从动件位移线图,凸轮以等角速w顺时针回转,其基圆半径为r0,从动件导路偏距为e,要求绘出此凸轮的轮廓曲线。 运用反转法绘制尖底直动从动件盘形凸轮机构凸轮轮廓曲线的方法和步骤如下: 1) 以r0为半径作基圆,以e为半径作偏距圆,点K为从动件导路线与偏距圆的切点,导路线与基圆的交点B0(C0)便是从动件尖底的初始位置。 2) 将位移线图s-f的推程运动角和回程运动角分别作若干等分(图中各为四等分)。 3) 自OC0开始,沿w的相反方向取推程运动角(1800)、远休止角(300)、回程运动角(1900)、近休止角(600),在基圆上得C4、C5、C9诸点。将推程运动角和回程运动角分成与从动件位移线图对应的等分,得C1、C2、C3

第九章凸轮机构及其设计

第九章凸轮机构及其设计 第一节凸轮机构的应用、特点及分类 1.凸轮机构的应用 在各种机械,特别是自动机械和自动控制装置中,广泛地应用着各种形式的凸轮机构。 例1内燃机的配气机构 当凸轮回转时,其轮廓将迫使推杆作往复摆动,从而使气阀开启或关闭(关闭是借弹簧的作用),以控制可燃物质在适当的时间进入气缸或排出废气。至于气阀开启和关闭时间的长短及其速度和加速度的变化规律,则取决于凸轮轮廓曲线的形状。 例2自动机床的进刀机构 当具有凹槽的圆柱凸轮回转时,其凹槽的侧面通过嵌于凹槽中的滚子迫使推杆绕其轴作往复摆动,从而控制刀架的进刀和退刀运动。至于进刀和退刀的运动规律如何,则决定于凹槽曲线的形状。 2.凸轮机构及其特点 (1)凸轮机构的组成 凸轮是一个具有曲线轮廓或凹槽的构件。凸轮通常作等速转动,但也有作往复摆动或移动的。推杆是被凸轮直接推动的构件。因为在凸轮机构中推杆多是从动件,故又常称其为从动件。凸轮机构就是由凸轮、推杆和机架三个主要构件所组成的高副机构。 (2)凸轮机构的特点

1)优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。 2)缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 3.凸轮机构的分类 凸轮机构的类型很多,常就凸轮和推杆的形状及其运动形式的不同来分类。 (1)按凸轮的形状分 1)盘形凸轮(移动凸轮) 2)圆柱凸轮 盘形凸轮是一个具有变化向径的盘形构件绕固定轴线回转。移动 凸轮可看作是转轴在无穷远处的盘形凸轮的一部分,它作往复直线移动。圆柱凸轮是一个在圆柱面上开有曲线凹槽,或是在圆柱端面上作 出曲线轮廓的构件,它可看作是将移动凸轮卷于圆柱体上形成的。盘形凸轮机构和移动凸轮机构为平面凸轮机构,而圆柱凸轮机构是一种 空间凸轮机构。盘形凸轮机构的结构比较简单,应用也最广泛,但其推杆的行程不能太大,否则将使凸轮的尺寸过大。 (2)按推杆的形状分 1)尖顶推杆。这种推杆的构造最简单,但易磨损,所以只适用于作用力不大和速度较低的场合(如用于仪表等机构中)。 2)滚子推杆。滚子推杆由于滚子与凸轮轮廓之间为滚动摩擦,所以磨损较小,故可用来传递较大的动力,因而应用较广。

十二工位凸轮曲线设计研究

十二工位凸轮曲线设计研究 叶何文 (中国航天科工集团公司八O一厂,545012) [摘要]介绍一种间隙运动分度定位机构中定位凸轮曲线分析设计方案及其应用特点。 关键词:凸轮曲线;槽轮;研究;设计;计算机仿真 Abstract:This paper introduces a scheme how to analyses and design an actuating cam used in a kind of intermittent movement, illustrates its application characteristic. Keywords:cam curve;Geneva mechanism;research;design;microcomputer emulation O 引言 全自动胶囊充填机是国内医药包装行业中应用广泛的一种高效率设备,是我厂主导产品之一。其中,十二工位凸轮用于槽轮的驱动及定位,这是全自动胶囊充填机上使用的一种目前最理想的分度定位机构,它是药机传动部分的核心,如果设计不好,凸轮和槽轮便分别与滚轮轴承、槽轮驱动轴承产生较大的冲击,影响产品的使用寿命及产生较大的噪音,不利于改善工作环境。能否探索出一种模拟该机构运动的数学模型,以便进行计算机仿真,求出理想的设计参数?下面就这个问题我们做一些研究和探讨工作。 1 凸轮升程段曲线研究 凸轮升程段曲线的设计包含两个问题:①升程段曲线占多大范围升程角Q o;②升程曲线始点和拨槽轴承(以下称拨轮)中心点分别与凸轮中心连线的夹角δ,我们称δ为超前角,即拨轮中心刚进槽时,定位杆上定位轴承(以下简称定位轮)已被凸轮曲线超前作用了δ度。两者是相互联系的,后者是关键,是我们要分析研究的重点。 拨轮进槽驱动十二工位槽轮(槽轮上有均分的十二个槽)转动前,定位轮先解除定位,即要完全摆出槽轮外,不与槽轮的槽面产生干涉。这一过程的理想状态是拨轮进槽拨动槽轮的同时,定位轮也逐渐摆出槽外,不妨碍槽轮的运动。但是,如果所设计的凸轮曲线先将定位轮推出槽外,拨轮再进槽驱动槽轮转动,此时失去定位约束的槽轮在振动、重力或回弹力等影响下,可能出现轻微的转动,这样拨轮和槽面将产生较大的硬冲击,影响轴承及槽轮使用寿命,噪音也较大。故此,要对工作凸轮升程曲线进行研究、探讨,设计一个合理的超前角δ来解决这一关键性问题。 在十二工位间歇运动机构中,凸轮在药机主轴驱动下作匀速转动,定位杆上定位轮随凸轮曲线作相应运动规律的摆动。当凸轮最小半径作用于定位杆上的滚子时,定位轮在槽轮的槽里不动,执行定位功能,其中心位于O24(见图1);当凸轮升程段曲线进入工作时(此时拨轮还差δ度未进槽),定位杆开始外摆。假设外摆出Z度时,定位轮外圆与槽轮外圆交于两点A、C。因槽轮作逆时针转动,所以出现干涉的只能是A点所在的侧面。现在对A点和左侧槽面线与槽轮外圆交点A1的运动规律进行研究和分析。 在研究A点运动之前,必须先预定定位杆运动规律,即预定凸轮升程段曲线形状。因正弦运动规律比余弦运动规律更适合无冲击运动,故选正弦运动规律,即 式中 Z4—凸轮摆幅,rad; ) 2 2 1 ( 4 θ π π θ Q Sin Q Z Z-=

凸轮轮廓线的绘制(MATLAB)

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程名称:精密机械学基础 设计题目:直动从动件盘形凸轮的设计 院系:航天学院控制科学与工程系 班级: 0904102班 设计者:陈学坤 学号: 1090410229 设计时间: 2011年10月

直动从动件盘形凸轮机构的计算机辅助设计 说明: 凸轮轮阔曲线的设计,一般可分为图解法和解析法,尽管应用图解法比较简便,能简单地绘制出各种平面凸轮的轮廓曲线,但由于作图误差比较大,故对一些精度要求高的凸轮已不能满足设计要求。此次应用MATLAB 软件结合轮廓线方程用计算机辅助设计。首先,精确地计算出轮廓线上各点的坐标,然后运用MATLAB 绘制 比较精确的凸轮轮廓曲线以及其S-α曲线、v-t 曲线、a-t 曲线。 。 1 凸轮轮廓方程 *()()*() ()*()*() X OE EF E Cos J So S Sin J Y BD FD So S Cos J E Sin J =+=++=-=+- (X,Y):凸轮轮廓线上的任意一点的坐标。 E :从动件的偏心距,OC 。 R :凸轮的基园半径,OA 。 J :凸轮的转角。 S :S=f(J)为从动件的方程。 So :22O S R E =-。 H 为从动件的最大位移(mm )。 J1、J2、J3、J4为从动件的四个转角的区域。 S1、S2、S3、S4为与J1、J2、J3、J4对应的从动件的运动规律。 2 实例 R=40,E=10,H=50,J1=J2=J3=J4=900。 3 MATLAB 程序设计 用角度值计算,对于给定的J1、J2、J3、J4,把相应的公式代入其中,求出位移S 和轮廓线上的各点的坐标X 、Y ,最终求出描述凸轮的数组: J=[J1,J2,J3,J4]; S=[S1,S2,S3,S4]; X=[X1,X2,X3,X4]; Y=[Y1,Y2,Y3,Y4]; 用函数plot (X,,Y )画出凸轮的轮廓曲线; 用plot (J,S )函数位移S 的曲线; 对于速度曲线V-t 和加速度曲线a-t ,

基于MAAB软件的凸轮轮廓曲线设计

基于M A A B软件的凸 轮轮廓曲线设计 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

基于MATLAB软件的凸轮轮廓曲线设计 摘要:以偏置移动从动件盘形凸轮为例,基于MATLAB软件对凸轮轮廓曲线进行了解析法设计.绘制出轮廓曲线。运行结果表明:在从动件运动规律确定的情况下,利用MATLAB软件以很方便、快捷地得到凸轮的轮廓曲线。 关键词:凸轮机构;凸轮轮廓曲线;MATLAB;解析法 前言 凸轮轮廓曲线的设计,一般可分为图解法和解析法.利用图解法能比较方便地绘制出各种平面凸轮的轮廓曲线.但这种方法仅适用于比较简单的结构,用它对复杂结构进行设计则比较困难,而且利用图解法进行结构设计,作图误差较大,对一些精度要求高的结构不能满足设计要求。解析法可以根据设计要求,通过推导机构中各部分之间的几何关系,建立相应的方程,精确地计算出轮廓线上各点的坐标,然后把凸轮的轮廓曲线精确地绘制出来.但是,当从动件运动规律比较复杂时,利用解析法获得凸轮的轮廓曲线的工作量比较大.而MATLAB软件提供了强大的矩阵处理和绘图功能,具有核心函数和工具箱.其编程代码接近数学推导公式,简洁直观,操作简易,人机交互性能好,且可以方便迅速地用三维图形、图像、声音、动画等表达计算结果、拓展思路[1]。因此,基于MATLAB软件进行凸轮机构的解析法设计,可以解决设计工作量大的问题。 本文基于MATLAB软件进行凸轮轮廓曲线的解析法设计,利用《机械原理》课程的计算机辅助教学,及常用机构的计算机辅助设计.其具体方法为首先精确地计算出轮廓线上各点的坐标,然后运用MATLAB绘制比较精确的凸轮轮廓曲线。

基于SolidWorks二次开发的凸轮廓线精确设计说明

基于SolidWorks二次开发的凸轮廓线精确设计 本文介绍了以直动滚子从动件盘形凸轮机构为例,先用SolidWorks自带的Visual Bisic编辑宏,精确绘制凸轮的轮廓曲线,并拉伸成型,然后用SolidWorks插件COSMOSMotion对凸轮机构进行运动仿真,生成推杆的位移和速度曲线 引言 凸轮机构是由凸轮、从动件和机架组成的高副机构,凸轮具有曲线轮廓或凹槽,通常作连续等速转动,从动件则按预定运动规律作间歇(或连续)直线往复移动或摆动。凸轮机构的特点是结构简单、紧凑、工作可靠,只要凸轮廓线设计合理,便可使从动件按任意给定的规律运动。在精密机械特别是在自动控制装置和仪器中,应用非常广泛。 当从动件的运动规律和凸轮的基圆半径确定后,凸轮廓线的设计方法通常有作图法和解析法。作图法简便、直观,但作图误差较大,难以获得凸轮廓线上各点的精确坐标,只能用于低速或不重要的场合;对于高速凸轮或精确度要求较高的凸轮,需用解析法设计,并借助于计算机编程软件精确地计算出凸轮廓线上各点的坐标值,以适合在数控机床上精确加工。 1 问题的提出 已知推杆的运动规律为:当凸轮转过60°时,推杆等加速等减速上升l0mm;凸轮继续转过120°时,推杆停止不动;凸轮再继续转过60°时,推杆等加速等减速下降l0mm;最后,凸轮转过所余的120°时,推杆又停止不动。设凸轮逆时针方向等速转动,凸轮理论廓线圆半径r0=50mm,推杆滚子半径rg=l0mm,设计满足该运动要求的凸轮廓线。 2 对心直动滚子从动件盘形凸轮机构数学模型的建立 图1 凸轮机构运动简图 在如图l所示的对心直动滚子从动件盘形凸轮机构中,选取如图1所示的极坐标系,B0点为凸轮理论廓线的起始点。当凸轮转过角δ时,推杆相应地产生位移s。根据反转法原理,此时滚子中心应处于B点,则轮理论廓线的直角坐标参数方程为

自动车床凸轮设计教程

1.自动车床主要靠凸轮来控制加工过程,能否设计出一套好的凸轮,是体现自动车床师傅的技术高低的一个标准。凸轮设计计算的资料不多,在此,我将一些基本的凸轮计算方法送给大家。凸轮是由一组或多组螺旋线组成的,这是一种端面螺旋线,又称阿基米德螺线。其形成的主要原理是:由A点作等速旋转运动,同时又使A点沿半径作等速移动,形成了一条复合运动轨迹的端面螺线。这就是等速凸轮的曲线。 凸轮的计算有几个专用名称: 1、上升曲线——凸轮上升的起点到最高点的弧线称为上升曲线 2、下降曲线——凸轮下降的最高点到最低点的弧线称为下降曲线 3、升角——从凸轮的上升起点到最高点的角度,即上升曲线的角度。我们定个代号为φ。 4、降角——从凸轮的最高点到最低点的角度,即下降曲线的角度。代号为φ1。 5、升距——凸轮上升曲线的最大半径与最小半径之差。我们给定代号为h,单位是毫米。 6、降距——凸轮下降曲线的最大半径与最小半径之差。代号为h1。 7、导程——即凸轮的曲线导程,就是假定凸轮曲线的升角(或降角)为360°时凸轮的升距(或降距)。代号为L,单位是毫米。 8、常数——是凸轮计算的一个常数,它是通过计算得来的。代号为K。 凸轮的升角与降角是给定的数值,根据加工零件尺寸计算得来的。 凸轮的常数等于凸轮的升距除以凸轮的升角,即K=h/φ。由此得h=Kφ。 凸轮的导程等于360°乘以常数,即L=360°K。由此得L=360°h/φ。 举个例子:

一个凸轮曲线的升距为10毫米,升角为180°,求凸轮的曲线导程。(见下图) - 解:L=360°h/φ=360°×10÷180°=20毫米 升角(或降角)是360°的凸轮,其升距(或降距)即等于导程。 这只是一般的凸轮基本计算方法,比较简单,而自动车床上的凸轮,有些比较简单,有些则比较复杂。在实际运用中,许多人只是靠经验来设计,用手工制作,不需要计算,而要用机床加工凸轮,特别是用数控机床加工凸轮,却是需要先计算出凸轮的导程,才能进行电脑程序设计。 要设计凸轮有几点在开始前就要了解的. 在我们拿到产品图纸的时候,看好材料,根据材料大小和材质将这款产品的 主轴转速先计算出来. 计算主轴转速公式是[切削速度乘1000]除以材料直径. 切削速度是根据材质得来的,在购买材料时供应商提供.单位是米/分钟. 材料硬度越大,切削速度就越小,切的太快的话热量太大会导致材料变形, 所以切削速度已知的. 切削速度乘1000就是把米/分钟换算成毫米/分钟,在除以材料直径就是主 轴每分钟的转速了.材料直径是每转的长度,切削速度是刀尖每分钟可以移动 的 距离. 主轴转速求出来了,就要将一个产品需要多少转可以做出来,这个转的圈数

按给定运动轨迹反求凸轮轮廓机构

第7章 按给定运动轨迹反求凸轮轮廓机构 按给定运动轨迹反求零件模型,是机构设计的一种常用方法,采用SolidWorks 完成设计,相对于传统计算方法,简单实用,并且可以模拟再现轨迹的实现。本章以应用广泛的凸轮连杆组合机构为例,根据连杆一端点预定轨迹,利用反求法得到凸轮的理论廓线及实际轮廓,并通过运动仿真验证了凸轮连杆组合机构的实际运动轨迹与预定轨迹相符。 7.1工作原理 凸轮连杆组合机构简图如图7.1所示,凸轮1固定,原动件曲柄2匀速转动,带动连杆3运动,此时固定凸轮约束着与连杆端点B 通过铰链结合的滚子4,使连杆的端点C 沿着给定的运动轨迹5运动,从而达到该机构的工作要求。 设计参数: 预定轨迹:长为400mm ,宽为300mm 的长方形,经半径R=100mm 的边角倒圆;各杆长度:OA l =150mm, AB l =80mm, AC l =150mm ;∠BAC=120°,滚子半径Rg =10mm ,曲柄OA 转速n=60r/min 。 图 7.1 凸轮连杆组合机构简图 7.2 零件造型 启动SolidWorks2012,选择【文件】/【新建】/【零件】命令,创建新的零件文件。选择【插入】/【草图绘制】命令,选择一基准面为草绘平面。 根据图7.2~7.5所示,分别绘制机架、曲柄、连杆和滚子的轮廓草图。然后选择【插入】

/【凸台/基体】/【拉伸】命令,分别以距离10mm拉伸机架、曲柄和连杆轮廓草图分别得到其实体零件。选择【插入】/【凸台/基体】/【旋转】命令,以滚子轴线为旋转轴,以360°为旋转角度,旋转后得到滚子实体零件。零件的材质均设置为“普通碳钢”,分别以文件名“机架”、“曲柄”、“连杆”和“滚子”保存。 图7.2 机架草图图7.3 曲柄草图 图7.4 连杆草图图7.5 滚子草图 为了满足装配时的“路径配合”要求,在连杆零件图中,选择【插入】/【参考几何体】/【点】命令,在图7.1所示连杆中的端点C处创建一个参考点。如图7.6所示,在弹出的属 性管理器【选择】栏中,点击【圆弧中心】按钮,然后点击【参考实体】按钮,在视图区选择连杆C端的圆孔边线,点击确定按钮,完成连杆参考点的创建。

凸轮程序的设计

习题4-1凸轮轮廓曲线的程序设计 10级机制班丁林森201000163021 1、C语言程序 // 各字母含义e偏距、基圆半径ro、滚子半径rt、行程h、推程运动角phi1、远休止角phis、回程、运动角phi_1,近休止角phi_s #include #include #define PI 3.1415926 void main() {double e=10.0,ro=40.0,rt=10.0,h=20.0,phi1=150.0,phis=30.0,phi_1=120.0,phi_s=60; double s, alp[73],x[73],y[73],x1,y1,xr[73],yr[73]; double ic,ic1,ic2,ic3,ic4,so,s1,cop,sip,phi,gam,bel,del=5.0,q,t; int i; gam=phi1+phis; bel=phi1+phis+phi_1; ic=(int)(360.0/del); ic1=(int)(phi1/del); ic2=(int)(gam/del); ic3=(int)((phi1+phis+phi_1/2.0)/del); ic4=(int)(bel/del); so=sqrt(ro*ro-e*e); printf(" No deg x/mm y/mm X/mm Y/mm rad\n"); for(i=0;i<=ic;i++) // { phi=i*del*PI/180.0; cop=cos(phi); sip=sin(phi); if(i<=ic1) { s=h/2.0*(1.0-cos(180.0*phi/phi1)); s1=h*PI*sin(180.0*phi/phi1)/2.0/phi1; x1=-(s+so)*sip+s1*cop-e*cop; y1=(s+so)*cop+s1*sip-e*sip; } else if(i<=ic2) { s=h; s1=0; x1=-(s+so)*sip-e*cop; y1=(so+s)*cop-e*sip; }

cad制作凸轮轮廓曲线

具体作图步骤如下: 1.使用工具栏Circle(圆)命令,绘制直径为200的凸轮基圆。 2.使用工具栏Line(直线)命令,捕捉圆心作凸轮基圆铅垂方向的直线B1B7。注意保持提示直线角度及其前的距离数值(定B1点时应为OB1的长度值,定B7点时应为OB7的长度值)。 3.重复使用Line命令,利用每隔30°呈现的角度提示,保证所绘制直线沿圆周分布每30°一条;利用提示中角度之前的距离数值分别确定样条拟合数据点:OB1、OB2、OB3……、OB11;B0和B12是凸轮轮廓的起讫,也是基圆上的同一点,提示中显示的“交点”即为B0/B12点。 4.使用工具栏中Spline(样条曲线绘制)命令。系统提示输入初始点:用鼠标捕捉B0点;系统要求输入第二点:用鼠标捕捉B1点;如此,系统不停要求输入数据点,用鼠标依次捕捉B2、B3、…、B11、B12(B0)。在完成最后一个数据点的输入时,单击鼠标右键确定即可。 5.使用工具栏中Circle命令,绘制凸轮内小圆,与基圆同心,半径为40。该圆表示凸轮与轴配合的轮廓线。 6.使用工具栏橡皮擦命令,擦除基圆轮廓线和直线段。 7.使用工具栏中ARC(弧线绘制)命令。圆整凸轮轮廓曲线。系统提示弧线起点或中心,即:Specify start point of are or [Center]:c(表示给出圆心)。 Specify center point of are:用鼠标捕捉圆心。 Specify start point of are:鼠标捕捉样条曲线(凸轮轮廓曲线)的起点B0点。 Specify end point of are:鼠标捕捉样条曲线的终点B12点。 8.在下拉菜单中选择Modify→Properties(修改→对象特性)命令。选择所绘制的全部图线,改线宽(Line weight)为0.70mm,打开命令下方开关LWT(打开显示线宽)。 9.凸轮平面绘制完毕。其绘图速度快、图形效果好

机构设计凸轮曲线程序

Cls Dim t(7) as double Dim p(7) as double Dim f(7) as double Dim c(7) as double Dim b(7) as double Dim jsd(7) as double Dim yd(7) as double Dim sd(7) as double Dim wy(7) as double Dim pi as double Dim a1 as double Dim a2 as double Dim m as double Dim i as double Dim j as double Dim mc as double Dim ss as double J=0 Dim tt as double Dim aa as double Star: Pi=3.1415926 ss=”请选择通用间歇体形曲线的名称:”& chr(10)+chr(13)&”1、修正等速“& chr(10)+chr(13)&” 2、修正梯形”& chr(10)+chr(13) &” 3、修正正弦” mc=inputbox(ss) if mc=1 then t(0)=0 t(1)=1/16 t(2)=1/16 t(3)=1/4 t(4)=3/4 t(5)=15/16 t(6)=15/16 t(7)=1 if mc=2 then t(0)=0 t(1)=1/8 t(2)=3/8 t(3)=1/2 t(4)=1/2 t(5)=5/8 t(6)=7/8 t(7)=1

elseif mc=3 then t(0)=0 t(1)=1/8 t(2)=1/8 t(3)=1/2 t(4)=1/2 t(5)=7/8 t(6)=7/8 t(7)=1 else msgbox(“请输入1-3的数”) goto start end if for i= 1 to7 f(i)=2*(t(i)-f(i-1))/pi next i m=(f(1)+f(2)*pi/2+f(3))/(f(5)+f(6)*pi/2+f(7)) a1=(f(3)^2+0.5*((t(2)-t(1))^2)-f(1)^2+f(3)*(1-t(3))+(t(2)-t(1))*(1-t(2))+f(1)-m*(f(7)^2+0.5*((t(6) -t(5))^2)- f(5)^2+f(5)*(1-t(4))+(t(6)-t(5))*(1-t(6))))^(-1) a2=m*a1 c(1)=f(1)*a1 c(2)=-t(1)*a1+c(1) c(3)= t(2)*a1+c(2) c(4)= f(3)*a1+c(3) c(5)=-f(5)*a2+c(4) c(6)=t(5)*a2+c(5) c(7)=- t(6)*a2+c(6) b(1)=0 b(2)=-a1*(f(1)^2+0.5*t(1)^2)+t(1)*(c(1)-c(2))+b(1) b(3)= a1*(f(3)^2+0.5*t(2)^2)+t(2)* (c(2)-c(3))+b(2) b(4)=t(3)*(c(3)-c(4))+b(3) b(5)=t(4)*(c(4)-c(5))+b(4) b(6)=a(2)*(f(5)^2+0.5*t(5)^2)+t(5)*(c(5)-c(6))+b(5) b(7)=-a(2)*(f(7)^2+0.5*t(6)^2)+t(6)*(c(6)-c(7))+b(6) for tt=0 to 1 step 0.01 for i=1 to 7 select case i case 1 and (tt>=t(0) and tt<=t(1)) p(i)=(tt-t(i-1))/f(i)+(i-1)*pi/4 j=j+1 jsd(j)=a1*sin(p(i)) yd(j)=a1*cos(p(i))/pi sd(j)= -a1*f(1)*cos(p(i))+c(i) wy(j)=-a1*(f(i)^2)*sin(p(i))+c(i)*c(i)*tt+b(i)

凸轮轮廓曲线

姓名:雷小舟班级:机制04班学号:1103010411 利用VB绘制凸轮轮廓曲线及计算相关直角坐标和压力角VB程序语言如下: Private Sub Command1_Click() '参数初始化 Dim r0%, r1%, h%, e% Dim a1%, a01%, a2%, a02% r0 = Val(InputBox("请输入基圆半径")) r1 = Val(InputBox("请输入滚子半径")) h = Val(InputBox("请输入升程")) e = Val(InputBox("请输入偏距")) a1 = V al(InputBox("请输入推程运动角")) a01 = Val(InputBox("请输入远休止角")) a2 = V al(InputBox("请输入回程运动角")) a02 = Val(InputBox("请输入近休止角")) Text1.Text = r0 Text2.Text = r1 Text3.Text = h Text4.Text = e Text5.Text = a1 Text6.Text = a01 Text7.Text = a2 Text8.Text = a02 Picture1.Scale (-75, 55)-(75, -55) '建立坐标系 Picture1.Line (0, 50)-(0, -50) Picture1.Line (-55, 0)-(55, 0) '初始化参数 Dim i!, j!, k!, m!, n!, l! Dim a!, b!, c!, d!, f! Const pi = 3.141592653 Dim s#(360), s1#(360) Dim ds#(360), ds1#(360) Dim dx#(360), dy#(360) a = a1 b = a1 + a01 c = a1 + a01 + a2 / 2 d = a1 + a01 + a2 f = 360 j = 0 For i = 0 To a '推程段 s(j) = h * (1 - Cos(pi * i / a1)) / 2

凸轮廓线的MATLAB画法

凸轮廓线的MATLAB 画法 1 凸轮轮廓方程 *()()*()()*()*() X OE EF E Cos J So S Sin J Y BD FD So S Cos J E Sin J =+=++=-=+- (X,Y):凸轮轮廓线上的任意一点的坐标。 E :从动件的偏心距。 R :凸轮的基园半径。 J :凸轮的转角。 S :S=f(J)为从动件的方程。 So :22O S R E =-。 H 为从动件的最大位移(mm )。 J1、J2、J3、J4为从动件的四个转角的区域。 S1、S2、S3、S4为与J1、J2、J3、J4对应的从动件的运动规律。 2 实例 R=40,E=10,H=50,J1=J2=J3=J4=900。

3 MATLAB 程序设计 用角度值计算,对于给定的J1、J2、J3、J4,把相应的公式代入其中,求出位移S 和轮廓线上的各点的坐标X 、Y ,最终求出描述凸轮的数组: J=[J1,J2,J3,J4]; S=[S1,S2,S3,S4]; X=[X1,X2,X3,X4]; Y=[Y1,Y2,Y3,Y4]; 用函数plot (X,,Y )画出凸轮的轮廓曲线; 用plot (J,S )函数位移S 的曲线; 对于速度曲线V-t 和加速度曲线a-t , ds ds ds dt dt V dJ dJ dt ω === 在算例中已假设凸轮匀速转动的角速度为1wad/s ,所以 ds ds ds ds dt dt V dJ dt dJ dt ω==== 速度 同理可得: dJ ds dt dv a 2 2= =加速度 4 程序运行结果 图一:余弦速运动规律下的凸轮轮廓曲线

凸轮程序

凸轮机构的设计源程序 #include #include #include #define PI 3.1415926 #define N 72 void tulun(double [N][2],double [N][2],double [N],double [N],double [N],int ); void max(double [N],double [2]); void min(double [N],double [2]); //定义全局变量 double r0=40,r0t=100,lo4d=125,lo24=125,rt=15,swaymax=15*PI/180,xupreang1=45*PI/180,xupreang2= 65*PI/180,xup=0.3; double ang1=200*PI/180,ang2=60*PI/180,ang3=10*PI/180,ang4=90*PI/180,ang41=10*PI/180,t=0; int fangan; void main() { FILE *fp; for(fangan=0;fangan<4;fangan++) { switch(fangan) { case 0:ang1=200*PI/180;ang2=60*PI/180;ang3=10*PI/180;ang4=90*PI/180; if((fp=fopen("A.xls","w"))==NULL) { printf("Cann't open this file.\n"); exit(0); }break; case 1:ang1=195*PI/180;ang2=90*PI/180;ang3=15*PI/180;ang4=60*PI/180; if((fp=fopen("B.xls","w"))==NULL) { printf("Cann't open this file.\n"); exit(0); }break; case 2:r0=40;ang1=200*PI/180;ang2=60*PI/180;ang3=10*PI/180;ang4=90*PI/180; if((fp=fopen("C.xls","w"))==NULL) { printf("Cann't open this file.\n"); exit(0); }break; case 3:ang1=195*PI/180;ang2=90*PI/180;ang3=15*PI/180;ang4=60*PI/180; if((fp=fopen("D.xls","w"))==NULL)

凸轮设计步骤

用几何法和解析法设计凸轮轮廓曲线的原理和步骤2015-11-9 16:28:40 作者:风雨考验人气:1252次评论(0) 所属标签:产品外观设计 根据使用要求确定了凸轮机构的类型、基本参数以及从动件运动规律后,即可进行凸轮轮廓曲线的设计。设计方法有几何法和解析法,两者所依据的设计原理基本相同。几何法简便、直观,但作图误差较大,难以获得凸轮轮廓曲线上各点的精确坐标,所以按几何法所得轮廓数据加工的凸轮只能应用于低速或不重要的场合。对于高速凸轮或精确度要求较高的凸轮,必须建立凸轮理论轮廓曲线、实际轮廓曲线以及加工刀具中心轨迹的坐标方程,并精确地计算出凸轮轮廓曲线或刀具运动轨迹上各点的坐标值,以适合在数控机床上加工。 圆柱凸轮的廓线虽属空间曲线,但由于圆柱面可展成平面,所以也可以借用平面盘形凸轮轮廓曲线的设计方法设计圆柱凸轮的展开轮廓。下面时间财富网的小编分别介绍用几何法和解析法设计凸轮轮廓曲线的原理和步骤。 1 几何法 反转法设计原理: 以尖底偏置直动从动件盘形凸轮机构为例: 凸轮机构工作时,凸轮和从动件都在运动。为了在图纸上画出凸轮轮廓曲线,应当使凸轮与图纸平面相对静止,为此,可采用如下的反转法:使整个机构以角速度(-w)绕O转动,其结果是从动件与凸轮的相对运动并不改变,但凸轮固定不动,机架和从动件一方面以角速度(-w)绕O转动,同时从动件又以原有运动规律相对机架往复运动。根据这种关系,不难求出一系列从动件尖底的位置。由于尖底始终与凸轮轮廓接触,所以反转后尖底的运动轨迹就是凸轮轮廓曲线。

1). 直动从动件盘形凸轮机构 尖底偏置直动从动件盘形凸轮机构: 已知从动件位移线图,凸轮以等角速w顺时针回转,其基圆半径为r0,从动件导路偏距为e,要求绘出此凸轮的轮廓曲线。 运用反转法绘制尖底直动从动件盘形凸轮机构凸轮轮廓曲线的方法和步骤如下: 1) 以r0为半径作基圆,以e为半径作偏距圆,点K为从动件导路线与偏距圆的切点,导路线与基圆的交点B0(C0)便是从动件尖底的初始位置。 2) 将位移线图s-f的推程运动角和回程运动角分别作若干等分(图中各为四等分)。 3) 自OC 开始,沿w的相反方向取推程运动角(1800)、远休止角(300)、回程运 动角(1900)、近休止角(600),在基圆上得C 4、C 5 、C 9 诸点。将推程运动角和回程 运动角分成与从动件位移线图对应的等分,得C 1、C 2 、C 3 和C 6 、C 7 、C 8 诸点。 4) 过C1、C2、C3、...作偏距圆的一系列切线,它们便是反转后从动件导路的一系列位置。 5) 沿以上各切线自基圆开始量取从动件相应的位移量,即取线段C1B1=11' 、C2B2=22'、...,得反转后尖底的一系列位置B1、B2、...。 6) 将B0、B1、B2、...连成光滑曲线(B4和B5之间以及B9和B0之间均为以O 为圆心的圆弧),便得到所求的凸轮轮廓曲线。

用作图法绘制凸轮靠模的轮廓曲线

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第10Vol.26No.102012年10月Oct.,2012 收稿日期:2012-08-28 作者简介:徐建军(1969—),男,江苏常熟人,一级实习指导教师,研究方向:机械设计与制造.用作图法绘制凸轮靠模的轮廓曲线 徐建军1,包轩庭2 (1.常熟职业教育中心校,江苏常熟215500;2.常熟理工学院机械工程学院,江苏常熟215500) 摘要:提出了一种用作图法来确定凸轮靠模轮廓曲线的方法,比较简便地解决了轮廓为样条曲线的凸轮的磨削问题. 关键词:凸轮;靠模;作图法 中图分类号:TS913文献标识码:B 文章编号:1008-2794(2012)10-0079-03 1引言 某工业缝纫机厂在生产中需要加工一款凸轮,其轮廓形状见图1,该凸轮的 轮廓曲线由样条曲线构成,该曲线是通过三坐标测量仪对凸轮实物采样若干个 点后,用计算机辅助设计软件绘制而成.其加工工艺为:粗加工采用线切割加 工,精加工为磨削加工.由于批量不大,为了降低生产成本,企业没有添置专用 的凸轮磨床,而是对普通的外圆磨床进行改造,采用靠模进行仿形磨削,因此需 要确定该凸轮靠模的轮廓曲线. 2磨削过程分析 凸轮的精加工在外圆磨床上采用仿形磨削完 成.通过靠模控制砂轮架做前后运动,从而控制砂轮 仿形磨削加工出凸轮.靠模导轮安装在砂轮架上,导 轮的中心和砂轮回转中心等高,然后通过强力弹簧将 导轮紧压在靠模上.靠模和凸轮安装在同一芯轴上, 通过电机驱动芯轴回转,从而实现仿形磨削. 由图2可知,假设采用标准形状的凸轮作为靠 模,在磨削凸轮的升程段和降程段时,由于导轮和砂 轮的直径不同,导致导轮与靠模的接触点与砂轮的实 际切削点位置不同.如图2所示,凸轮和靠模的回转 中心是O 1,导轮的回转中心是O 2,砂轮的回转中心是O 3,三点处于同一水平面内 .砂轮与凸轮的接触点是A 点,导轮与靠模 (凸轮标准廓形)的接触点是B 点. 图2凸轮磨削特点分析图图1凸轮外形图

相关文档
最新文档