正阳门历史遥感影像

正阳门历史遥感影像
正阳门历史遥感影像

京华遗韵-目前仅存的北京城门

通过1944年和1966年两期珍贵的历史遥感影像资料介绍了北京已经消失的民国时期城墙与城门。我们继续利用历史遥感影像对目前仅存的北京城门进行介绍。通过历史时代节点,借助遥感对比手段,充分还原北京城门该时期的真实面貌。

德胜门:始建于明正统二年(1437年),明清北京城内城九门之一,元代为健德门,为出兵征战之门而寄语于“德胜”二字。1915年德胜门瓮城和闸楼被拆除;1921年德胜门城楼被拆除;1951年国家拨款修缮;1982年设立文保所,并对外开放;2006年德胜门箭楼被国务院公布为全国重点文物保护单位。

德胜门原貌-城楼

德胜门原貌-箭楼

德胜门-1944年解密遥感影像

德胜门-1966年解密遥感影像

从1944年解密航飞影像中可以看到,德胜门箭楼以及城墙和出入城的城门洞均很完整。1915年,德胜门瓮城因修建环城铁路,开始陆续拆除。环城铁路的位置在临近城墙以北,

并在城门洞和箭楼之间设有铁路道口;1921年,德胜门城楼因拆除瓮城,导致结构损毁严

重被彻底拆除。

从1966年解密遥感影像中可以看到,城墙和环城铁路已经拆除(北京环城铁路于

1954年开始拆除,1971年拆除完毕)。德胜门的箭楼与城楼之间的距离要比其他的城门多

出50米左右,这是德胜门箭楼能得以保留下来的一个主要原因,1965年起修建北京地铁2

号线时,因箭楼距离城墙较远,不影响施工,而没有被立即拆除。1978年起修建北京二环路时,文保意识不断加强,各界提倡和呼吁,德胜门箭楼最终得以保留。

正阳门:始建于明永乐十七年(公元1419年),俗称前门,原名丽正门。是北京所有城门中最高大的一座,被看成是老北京的象征。严格意义上来说,前门泛指一个区域,范围是正阳门和珠宝市、大栅栏等区域。而正阳门是指正阳门城楼和箭楼的统称。正阳门城楼、箭楼1900年被损毁,1906年重建并延续至今。1901年正阳门东车站和正阳门西车站开建后,前门地区交通状况堪忧,1915年拆除瓮城并改造箭楼。

正阳门原貌-城楼

正阳门原貌-箭楼

正阳门-1944年解密遥感影像

从1944年解密航飞影像可以看到,城墙完好,瓮城已被拆除。在正阳门城楼的东西两侧各修建了卷洞,人车出入不必再通过以往的瓮城闸门,北京内外城的往来交通状况得到大大改善。在城楼北侧东西两侧各有一座庙宇,东为关帝庙,西为观音庙,清代,皇帝天坛祭天回来时,都要到关帝庙拈香。两座庙宇于1966年一并拆除。

在正阳门正东面是京奉铁路正阳门火车站,正阳门城楼东侧的卷洞距离火车站广场非常近,在车站出站口整齐的停放着洋车(人力车)。正阳门东站对面是正阳门西车站,1938年改为北京西站,1940年之后改为货运车站,1957年拆除。

正阳门-1966年解密遥感影像

从1966年解密遥感影像可以看到,城墙、箭楼、城楼依旧完好,城楼两侧的卷洞顶部被拆除,城楼与城墙彻底打断。由于1959年新北京东站的建成,正阳门火车站已经停用,原车站广场已被改为公交车站。和1944年影像相同,钟楼部分仍在车站主体的南侧,说明此时车站主体还没有被拆除。由于修建地铁,1970年正阳门火车站主体拆除,仅保留钟楼部分,在钟楼南侧重新修建了车站主体,进行了所谓的“镜像对称平移”。

正阳门东车站原貌

天安门:始建于明永乐十五年(公元1417年),最初名叫“承天门”,寓“承天启运”、“受命于天”之意,是紫禁城的正门。经过1465年和1651年的多次重修,才大体成为今天的样式,并改名为“天安门”。新中国成立后,成为中华人民共和国的象征。

而位于今日长安街天安门两侧的长安左门和长安右门,则没有幸运的保留下来。长安左门,又称“龙门”。取长治久安之意,长安街因门而得名。长安右门,又称“虎门”。两门距御路桥东西各不到两百米的位置,建筑格局一模一样。由于两门的存在阻碍了交通的发展和车辆通行,特别是阅兵游行等活动,1952年被拆除。

天安门-1944年解密遥感影像

从1944年解密航飞影像中,长安左门和长安右门可以清晰看到,长安右门的南侧位置有一辆有轨电车。1915年正阳门改造时,一并拆除了长安左门和右门边的红墙,天安门

广场对外开放,东西长安街得以贯通;1917年长安街修成柏油路面,当时长安街宽度仅15米左右;1924年,长安街西单至东单开通了有轨电车。

当时的北京郁郁葱葱,不管是紫禁城还是胡同街巷,都栽有大量树木,绿色曾是北京的主色调。东面的长安左门,北边的天安门、西边的长安右门,以及南边的大清门(中华门)组成了一个密闭空间。

长安左门原貌

天安门-1966年解密遥感影像

从1966年解密遥感影像中可以看到,长安街已基本完成了道路的打通和拓宽的阶段。东起建国门、西至复兴门的长安街全部拓宽至35-80米。长安街开始进入以两侧建筑物的建设为主的发展阶段。

遥感卫星影像镶嵌的基本原则

北京揽宇方圆信息技术有限公司 遥感卫星影像镶嵌的基本原则 遥感卫星影像镶嵌是指对一幅或若干幅图像通过几何镶嵌、色调调整、去重叠等处理,镶嵌到一幅大的背景图像中的影像处理方法。 基本原则 镶嵌时应对多景影像数据的重叠带进行严格配准,镶嵌误差不低于配准误差,镶嵌区应保证有10-15个像素的重叠带。影像镶嵌时除了要满足在镶嵌线上相邻影像几何特征一致性,还要求相邻影像的色调保持一致。镶嵌影像应保证色调均匀、反差适中,如果两幅或多幅相邻影像时相不同使得影像光谱特征反差较大时,应在保证影像上地物不失真的前提下进行匀色,尽量保证镶嵌区域相关影像色彩过渡自然平滑。 1、原则上,镶嵌只针对采样间隔相同影像。需在相邻数据重叠区域进行如下处理:首先,在相邻数据重叠区勾绘镶嵌线,镶嵌线勾绘尽量靠近采样间隔较小影像的外边缘,以保证其数据使用率最大化。然后对镶嵌线两侧影像进行裁切,裁掉重叠区域影像,为避免因坐标系转换导致接边处出现漏缝,对于采样间隔小的影像严格沿镶嵌线裁切,采样间隔大的影像应适当外扩一定范围,原则上不超过10个像素进行裁切。 2、镶嵌前进行重叠检查。景与景间重叠限差应符合要求。重叠误差超限时应立即查明原因,并进行必要的返工,使其符合规定的接边要求。采用

“拉窗帘”方式目视检查相邻影像间重叠区域的精度,若同名地物出现“抖动”或“错位”现象,则量测该处同名点误差,两者接边精度不超过1个像素。 3、镶嵌时应尽可能保留分辨率高、时相新、云雾量少、质量好的影像。 4、选取镶嵌线对DOM进行镶嵌,镶嵌处无地物错位、模糊、重影和晕边现象。 5、时相相同或相近的镶嵌影像纹理、色彩自然过渡;时相差距较大、地物特征差异明显的镶嵌影像,允许存在光谱差异,但同一地块内光谱特征尽量一致。 重叠精度检查 叠加相邻纠正单元,采用“拉窗帘”方式逐屏幕目视检查相邻纠正单元间重叠区域的精度,若同名地物出现“抖动”或“错位”现象,则量测该处同名点误差,两者相对精度应满足下表要求。 相邻影像采样间隔≤1米时,其相对误差限差满足表中规定。 相对误差限差表 地形类别 平地、丘陵(采样间 隔) 山地、高山地(采样间 隔) 相对误 差 2.0倍8.0倍 基础底图采样间隔>1米时,其相对误差限差满足表中规定。 相对误差限差表 地形类别 平地、丘陵(采 样间隔) 山地、高山地(采 样间隔) 相对误差 2.0倍 4.0倍 注:相对误差因侧视角超限、基础底图和高程数据等控制资料精度不足引起,且无法改正的特殊地区除外,但该区域周边不超限。 镶嵌步骤 1、镶嵌线选取

遥感数据特征

常用遥感数据特征总结 按照遥感平台类型,遥感技术可以分为航宇遥感、航天遥感、航空遥感、地面遥感四类。其中航天遥感平台发展最快,应用最广。很据航天遥感平台的服务内容,可以将其分为气象卫星系列、陆地卫星系列和海洋卫星系列。不同的卫星系列所获得的遥感数据有着不同的特征,常常应用于不同的应用领域,在进行检测研究时,常常根据不同的卫星资料特点,选择不同的遥感数据。下文简单总结了几种常用的航天遥感数据特征。 1 气象卫星系列 气象卫星是最早发张起来的环境卫星。从1960年美国发射第一颗实验性气象卫星(TIROS)以来,已经有多种实验性或者业务性气象卫星进入不同轨道。气象卫星资料已经在气象预报、气象研究、资源调查海洋研究等方面显示出了强大的生命力。 气象卫星主要有以下几种系列:60年代——TIROS系列、ESSA系列、Nimus 系列;70年代——ITOS系列、NOAA系列、SMS系列、GOES系列、MeteopII、GMS、Meteosat;80年代后,主要以NOAA系列为代表。我国的气象卫星发展比较晚,FY-1是我国发射的第一颗1988年9月7日发射成功。气象卫星主要有以下特征。 (1)轨道。气象卫星轨道可以分为两种,低轨和高轨。低轨是近极低太阳同步轨道,简称极地轨道,轨道高度800~1600km,南北向绕地球运转。对东西宽约2800km的带状地域进行观测,由于与太阳同步,使卫星每天在固定的时间经过每个地方的上空,资料获得时具有相同的照明条件。高轨是指地球同步轨道,轨道高度36000km左右,相对于地球静止,能够观测地球1/4的面积,有3—4颗卫星形成观测网,对某一固定地区,每隔20~30min获取一次资料,由于它相对于地球静止,可以作为通讯中继站,用于传送各种天气资料。 (2)短周期重复观测。地球同步卫星观测周期为0.5小时一次,极轨卫星为约为0.5~1天/次,时间分辨率较高。有助于对地面快速变化的动态检测。 (3)成像面积大,有助于获得宏观同步信息,减少数据处理容量。 (4)资源来源连续、实时性强、成本低 NOAA系列。 NOAA-11卫星:发射日期1988年9月24日,正式运行日期1988年11月8日,轨道高度841公里,轨道倾角98.9度,轨道周期:101.8分。 NOAA-12卫星:发射日期1991年5月14日,正式运行日期1991年9月17日轨道高度804公里,轨道倾角98.6度,轨道周期101.1分。 NOAA-14卫星:发射日期1994年12月30日,正式运行日期1985年4月10日,轨道高度845公里,轨道倾角99.1度,轨道周期101.9分。 NOAA-15卫星:发射日期1998年5月13日,正式运行日期1998年12月15日轨道高度808公里,轨道倾角98.6度,轨道周期101.2分。 NOAA-16卫星:发射日期2000年9月12日,正式运行日期2001年3月20日,轨道高度850公里,轨道倾角98.9度,轨道周期102.1分。

遥感影像元数据管理服务系统

3.6.3遥感影像元数据管理服务系统 遥感影像元数据管理系统在定位为在国家监管中心实现遥感影像元数据管理和对外服务的 基础设施,建成一套持续化、业务化运行系统。该系统的建设目标是:一方面满足海量持续增加的遥感影像数据有序管理的问题,同时面向海洋监测应用部门提供强大的影像服务功能。在保证数据安全的前提下,提供高效快捷的遥感影像网络服务支撑保障和数据持续有效集成能力。 主要工作及系统功能包括: (1)遥感影像元数据库规范 遥感影像元数据库是存放遥感影像数据元数据的空间数据库,以方便用户或者其他程序查询和使用特定的影像数据。遥感影像元数据库规范包括两个部分,一是空间数据模型规范,即如何根据遥感影像数据涉及的数据类型创建空间数据模型;一是元数据信息组织规范,即如何依据影像数据的元数据规范将影像数据的元数据信息有效组织到数据库中,利用ArcSDE 空间数据库进行一体化管理。 (2)影像数据管理子系统 系统采用C/S模式,面向业务人员。提供的具体功能包括:1)批量自动化灵活直接入库和快速浏览影像库支持的各类数据及其元数据;2)高效多条件检索影像库管理的数据并显示;3)直接读取影像库外多种格式影像并自动叠加显示、便捷注册和发布影像与地图服务等;4)管理员可以对不同类型用户和影像数据进行授权和分级管理。 影像数据管理子系统主要功能指标详细如下: *支持常用国外卫星影像数据:WorldView 1/2/3, GeoEye-1/2, RapidEye, IKONOS, QuickBird, Spot5, Spot6, Landsat-5 TM, Landsat-7 ETM+和Landsat-8 ALI等和国内主要卫星影像数据:HJ-A/B CCD, ZY-02-C, ZY-3、CBERS-3/4、天绘系列、高分系列、资源系列等; 影像实时动态镶嵌(自动计算金字塔、覆盖区域和显示比例以及处理分辨率); 影像元数据自动识别和解析,交互式元数据灵活更新和扩展; 读取和叠加GeoTIFF, ERDAS Image, eYaImage, ECW和JPEG等格式影像; 影像服务和地图服务的编辑,发布,和管理。 (3)影像共享服务子系统 基于B/S结构,面向管理和业务用户提供影像数据服务,包括影像数据检索服务、数据下载服务、影像展示服务等。系统包含以下四个功能模块:几何查询、属性条件过滤、查询结果浏览、对外影像和地图服务等。 系统结构为四层结构,客户浏览层、Web服务层、GIS中间件层以及影像数据存储层。其中,Web服务层基于SOA架构,为客户端提供业务服务;客户浏览器层则基于ArcGIS API for Flex;GIS中间件层提供遵循OGC规范的GIS服务,将遥感影像地理信息库和文件存储库中的数据提供给Web服务层 (4)影像动态处理和镶嵌融合模块 该模块是利用服务器端发布的Image Service服务,为用户提供影像数据进动态镶嵌融合处

历史卫星影像图购买选择-1960年至今

购买卫星影像-选择北京揽宇方圆北京揽宇方圆信息技术有限公司,随着遥感卫星技术的普及与开放,各种遥感影像在城市和区域研究中得到了越来越广泛的应用。北京揽宇方圆国家遥感行业的高新技术企业,帮助我们低成本获取高质量卫星影像图提供了一条捷径。 选择卫星数据源 一、卫星类型 (1)光学卫星:worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、ikonos、pleiades、deimos、spot1、kompsat系例、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm)、Sentinel-卫星、landsat(etm)、rapideye、alos、kompsat系例卫星、planet卫星、北京二号、高景一号、资源三号、高分一号、高分二号、高分六号、环境卫星。 (2)雷达卫星:terrasar-x、radarsat-2、alos雷达卫星、高分三号卫星、哨兵卫星 (3)侦查卫星:美国锁眼卫星全系例(1960-1980) (4)高光谱类卫星:高分五号、环境小卫星、ASTER卫星、EO-1卫星 二、卫星分辨率 (1)0.3米:worldview3、worldview4 (2)0.4米:worldview3、worldview2、geoeye、kompsat-3A

(3)0.5米:worldview3、worldview2、geoeye、worldview1、pleiades、高景一号 (4)0.6米:quickbird、锁眼卫星 (5)1米:ikonos、高分二号、kompsat、deimos、北京二号 (6)1.5米:spot6、spot7、锁眼卫星 (7)2.5米:spot5、alos、资源三号、高分一号(4颗)、高分六号、锁眼卫星 (8)5米:spot5、rapideye、锁眼卫星、planet卫星4米 (9)10米:spot5、spot4、spot3、spot2、spot1、Sentinel-卫星 (10)15米:landsat5(tm)、landsat(etm)、landsat8、高分一号16米 三、卫星国籍 (1)美国:worldview1、worldview2、worldview3、quickbird、geoeye、ikonos、landsat5(tm)、landsat(etm)、锁眼卫星、planet卫星 (2)法国:pleiades、spot1、spot2、spot3、spot4、spot5、spot6 (3)中国:资源三号、高分一号、高分二号、高分六号、高景卫星、北京二号等 (4)德国:terrasar-x、rapideye (5)加拿大:radarsat-2 四、卫星发射年份 (1)1960-1980年:锁眼卫星(0.6米分辨率至10米) (2)1980-1990年:landsat5(tm)、spot1

遥感影像变化检测在地形图更新维护中的应用初探

遥感影像变化检测在地形图更新维护中的应用初探 付树林,吴正鹏 (天津市测绘院,天津 300381) 摘要:城市建设的飞速发展使测绘资料现势性差、地形图更新手段落后的问题变得日益突出。本文首先概略介绍了遥感影像变化检测技术,然后结合天津市测绘院组织的滨海新区1:2000地形图变化检测项目,从技术流程、作业周期及变化检测效率影响因素等几个方面对遥感影像变化检测技术在地形图更新维护中的应用进行了分析、展望。 关键词:遥感地形图变化检测 SPOT5 1.引言 随着城市建设的飞速发展,城市变化日新月异,基础比例尺地形图的更新成为困扰城市测绘部门和规划管理部门的重要问题之一。由于资金缺乏、更新机制不健全等因素,致使基本比例尺地形图的更新速度和周期远远满足不了城市规划、管理工作需要,给规划、管理决策造成困难。因此,如何快速、有效、准确地获取地形、地物变化信息,并及时准确地反映在基础比例尺地形图上就成为我们当前思考的一个重要问题。 为了给国民经济建设各部门做好测绘保障和服务工作,及时提供测绘技术支持,解决测绘资料现势性差、地形图更新手段落后的问题,天津市测绘院于2007年专门组建课题组对遥感影像变化检测在地形图更新维护中的应用展开研究。2007年底,第一版遥感影像变化检测程序开发工作完成,2008年天津市测绘院遥感工程院利用该程序先后完成了天津市区、环外环及滨海新区1:2000地形图变化检测工作,经过外业核实,该程序在准确率等方面还存在问题。因此,2009年初遥感工程院开始实施该程序的升级工作,于2009年11月完成。 2.遥感影像变化检测概述 遥感图像变化检测是一门根据遥感图像和参考数据不同时相的观测来提取、描述感兴趣物体或现象随时间变化的特征,并定量分析、确定其变化的理论和方法。 遥感影像变化检测的基本原理是依据地物在遥感影像中所反映出的灰度信息和边缘特征的个性差异,给定同一地区的多个时相的单波段或多波段遥感图像(在条件可能的情况下,可以配备一定的辅助数据以提高检测精度),采用图像处理和分析的方法,检测出该地区的地物或目标有无变化,并对变化做出定性或定量的分析。随着地球信息科学的发展和应用需求的多样化,遥感影像变化检测的研究内容得到了极大的丰富,参考数据不再局限于遥感图像,也可以是GIS 数据、地形图以及其它地球空间信息产品。 变化检测技术的特点具体体现在:参考数据必须要能够表现、描述待研究地物或现象的时态特征,也就是说参考数据的信息约束着变化检测结果;地物或现象的时态特征的变化必须能够从其他干扰因素中分离出来。这些干扰因素包括:大气、物候、日照以及传感器等变化引起的图像灰度值的变化。 根据变化检测技术的原理、特点将其应用于地形图更新维护中以计算机视觉代替人眼观测,自动判读出地物地貌发生变化的区域,减少人工判读工作量,是值得研究的一种新的地形图更新维护方法。

常见国产卫星遥感影像数据的简介

北京揽宇方圆信息技术有限公司 常见国产卫星遥感影像数据的简介 本文介绍了常见国产卫星数据的简介、数据时间、传感器类型、分辨率等情况。 中国资源卫星应用中心产品级别说明 ◆1A级和1C级产品均为相对辐射校正产品,只是不同卫星选用的生产参数不同。 ◆2级,2A级和2C级产品均为系统几何校正产品,只是不同卫星选用的生产参数不同。 其中: ■GF-1卫星和ZY3卫星归档产品为1A级,ZY1-02C卫星数据归档产品级别为1C级,其他卫星归档级别为2级! ◆归档产品是指:该类产品已经存在于系统中,仅需要从存储系统中迁移出来.即可供用户下载的数据。 ◆生产产品是指:该类产品不是已经存在的产品,需要对原始数据产品进行生产,然后再提供给用户下载的数据。

■当用户需要的产品级别是上述归档的级别,直接选择相应的产品级别,然后查询即可! ■当用户需要的产品级别不是上述归档的级别,就需要进行生产.本系统提供GF-1卫星和ZY3卫星2A级的生产产品,ZY1-02C卫星2C级的生产产品,在选择需要的级别查询后,无论有没有数据,在查询结果页上方有一个“查询0级景”按钮,点击此按钮后,进行数据查询,如果有数据,选择需要的产品直接订购,即可选择需要的产品级别。 国产卫星 一、GF-3(高分3号) 1.简介 2016年8月10日6时55分,高分三号卫星在太原卫星发射中心用长征四号丙运载火箭成功发射升空。 高分三号卫星是中国高分专项工程的一颗遥感卫星,为1米分辨率雷达遥感卫星,也是中国首颗分辨率达到1米的C频段多极化合成孔径雷达(SAR)成像卫星,由中国航天科技集团公司研制。 2.数据时间 2016年8月10日-现在 3.传感器 SAR:1米 二、ZY3-02(资源三号02星) 1.简介 资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。这将是我国首次实现自主民用立体测绘双星组网运行,形成业务观测星座,

6-遥感图像特征和解译标志

上次课主要内容 4.4简单自然地物可识别性分析 4.5复杂地物识别概率(重点理解) ①要素t 的价值②要素总和(t 1,t 2,…,t m )t 的价值 K -K E ∑ = ③复杂地物识别概率的计算理解p70~71例子

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 5.2 遥感图像特征与解译标志的关系 5.3 遥感图像的时空特性 5.4 遥感图像中的独立变量 5.5 地物统计特征的构造

第五章遥感图像特征和解译标志 地物特征 电磁波特性 影像特征 遥感图像记录过程 n 图像解译就是建立在研究地物性质、电磁波性质 及影像特征三者的关系之上 n 图像要素或特征,分“色”和“形”两大类:?色:色调、颜色、阴影、反差; ?形:形状、大小、空间分布、纹理等。“形”只有依靠“色”来解译才有意义。

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n两个定义: ?解译标志定义:遥感图像光谱、辐射、空间和时间特征决定 图像的视觉效果、表现形式和计算特点,并导致物体在图像上 的差别。 l给出了区分遥感图像中物体或现象的可能性; l解译标志包括:色调与色彩、形状、尺寸、阴影、细部(图 案)、以及结构(纹理)等; l解译标志是以遥感图像的形式传递的揭示标志; ?揭示标志定义:在目视观察时借以将物体彼此分开的被感知 对象的典型特征。 l揭示标志包括:形状、尺寸、细部、光谱辐射特性、物体的阴 影、位置、相互关系和人类活动的痕迹; l揭示标志的等级决定于物体的性质、他们的相对位置及与周围 环境的相互作用等;

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n解译标志和揭示标志的关系: ?解译标志是以遥感图像的形式传递的揭示标志; ?虽然我们是通过遥感图像识别地物目标的,但是大多数情况 下,基于遥感图像识别地物并作出决定时,似乎并不是利用解 译标志,而是利用揭示标志。 例如,很多解译人员刚看到图像就差不多在脑海中形成地物的形象, 然后仅仅分析这个形象就能作出一定的决定。实际上,有经验的解译人 员,在研究图像的解译标志并估计到传递信息的传感系统的影响以后, 思想中就建立起地物的揭示标志,并在这些标志的基础上识别被感知物 体。解译人员在实地或图像上都没见过的地物或现象是例外。 n解译标志和揭示标志可以按两种方式进行划分:?直接标志和间接标志; ?永久标志和临时标志;

遥感发展史

遥感发展史 遥感作为一种空间探测技术,至今已经经历了地面用感、航空遥感和航天遥感三个阶段。广义的讲,遥感技术是从19世纪初期(1839年)出现摄影术开始的。19世纪中叶(1858年),就有人使用气球从空中对地面进行摄影。1903年飞机问世以后,便开始了可称为航空遥感受的第一次试验,从空中对地面进行摄影,并将航空像应用于地形和地图制图等方面。可以说这揭开了当今遥感技术的序幕。 随着窨技术、无线电电子技术、光学技术和计算机技术的发展,20世纪中期,遥感技术有了很在发展。遥感器从第一代的航空摄影机,第二代的多光谱摄影机、扫描仪,很快发展到第三代固体扫描仪(CCD);遥感器的运载工具,从收音机很快发展到卫星、宇宙飞船和航天飞机,遥感谱从可风炮发展中国家到红外和微波,遥感信息的记录和传输从图像的直接传发展到非图像的无线电传输;而图像元也从地面80m*80m,30m*30m,20*20m,10m *10m,6m*6m。 在这期间,我国遥感技术的发展也十分迅速,我们不仅可以直接接收、处理和提供和卫星的遥感信息,而且具有航空航天遥感信息采集的能力,能够自行设计制造像航空摄影机、全景摄影机、红外线扫描仪、多炮谱扫描仪、合成孔径侧视雷达等多种用途的航空航天遥感受仪器和用于地物波谱测定的仪器。而且,进行过多次规模较大的航空遥感受试验。 近十几年来,我国还自行设计制造了多种遥感信息处理系统。如假彩色合成仪,密度分割仪,TJ-82图像计算机处理系统,微机图像处理系统等。 1 卫星遥感技术的发展 1.1 信息获取技术的发展 信息获取技术的发展十分迅速,主要表现在以下几个方面: (1)各种类型遥感平台和传感器的出现 现已发展起来的遥感平台有地球同步轨道卫星(3500km)和太阳同步卫星(600~1000km)。传感器有框幅式光学仪器,缝隙,全景相机,光机扫描仪,光电扫描仪,CCD线阵,面阵扫描仪,微波散射计,雷达测高仪,激光扫描仪和合成孔径雷达等。它们几乎覆盖了可透过大气窗口的所有电磁波段,而且有些遥感平台还可以多角度成像,如三行CCD阵列可以同时得到3个角度的扫描成像;EOS Terra卫星上的MISR可同时从9个角度对地成像。 (2)空间分辨率、光谱分辨率、时间分辨率不断提高 仅从陆地卫星系列来看,20世纪70年代初美国发射的陆地卫星有4个波段(MSS),其平均光谱分辨率为150nm,空间分辨率为80米,重复覆盖周期为16-18天;80年代的T M增加到7个波段,在可见光到近红外范围的平均光谱分辨率为137nm,空间分辨率增加到30米;2000年后,出现增强型TM(ETM),其全色波段空间分辨率可达15米。法国S POT4卫星多光谱波段的平均光谱分辨率为87nm,空间分辨率为20米,重复周期为26天;SPOT5空间分辨率最高可达2.5米,重复覆盖周期提高到1-5天。1999年发射的中巴资源卫

SPOT卫星遥感影像数据基本参数

SPOT5遥感卫星基本参数 北京揽宇方圆信息技术有限公司 前言: 遥感传感器是获取遥感数据的关键设备,由于设计和获取数据的特点不同,传感器的种类也就繁多,就其基本结构原理来看,目前遥感中使用的传感器大体上可分为如下一些类型:(1)摄影类型的传感器; (2)扫描成像类型的传感器; (3)雷达成像类型的传感器; (4)非图像类型的传感器。 无论哪种类型遥感传感器,它们都由如下图所示的基本部分组成: 1、收集器:收集地物辐射来的能量。具体的元件如透镜组、反射镜组、天线等。 2、探测器:将收集的辐射能转变成化学能或电能。具体的无器件如感光胶片、光电管、光敏和热敏探测元件、共振腔谐振器等。 3、处理器:对收集的信号进行处理。如显影、定影、信号放大、变换、校正和编码等。具体的处理器类型有摄影处理装置和电子处理装置。 4、输出器:输出获取的数据。输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带记录仪、XY彩色喷笔记录仪等等。 虽然不同卫星的基本组成部分是相同的,但是由于,各个组成部分的具体构造的精细度又是不同的,的,所以不同的卫星具有不同的分辨率。 一、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 轨道周期:101.469分/圈 重复周期:369圈/26天 降交点时间:上午10:30分 扫描带宽度:60 公里 两侧侧视:+/-27o 扫描带宽:950公里 波谱范围: 多光谱XI B1 0.50 – 0.59um 20米分辨率B2 0.61 – 0.68um B3 0.78 – 0.89um SWIR 1.58 – 1.75um

高分辨率遥感影像数据一体化测图系统PixelGrid

高分辨率遥感影像数据一体化测图系统PixelGrid 北京四维空间数码科技有限公司 一、概况介绍 高分辨率遥感影像数据一体化测图系统PixelGrid(以下简称“PixelGrid”)是由中国测绘科学研究院自主研发的“十一五”重大科技成果,获得2009年度国家测绘科技进步一等奖。 为将这一重大科技成果实现产业化,2008年开始,由中国测绘科学研究院参股单位北京四维空间数码科技有限公司进行成果转化和产品化,并开展销售。 该软件是我国西部1:5万地形图空白区测图工程以及第二次全国土地调查工程的主力软件, 被誉为国产的“像素工厂”。 PixelGrid以其先进的摄影测量算法、集群分布式并行处理技术、强大的自动化业务化处理能力、高效可靠的作业调度管理方法、友好灵活的用户界面和操作方式,全面实现了对卫星影像数据、航空影像数据以及低空无人机影像数据的快速自动处理,可以完成遥感影像从空中三角测量到各种比例尺的DEM/DSM、DOM等测绘产品的生产任务。 PixelGrid软件主界面。 二、主要特点 PixelGrid系统以现代摄影测量与遥感科学技术理论为基础,融合计算机技术和网络通讯技术,采用基于RFM通用成像模型的大范围遥感影像稀少或无控制区域网平差、基于旋转/缩放不变性特征多影像匹配的高精度航空影像自动空三、基于多基线/多重特征的高精度DEM/DSM自动提取、等高线数据半自动采集及网络分布式编辑、基于地理信息数据库等多源控制信息的高效影像地图制作、基于松散耦合并行服务中间件的集群分布式并行计算等一系列核心关键技术,是中国测绘科学研究院研制的一款类似“像素工厂”(ISTAR PixelFactoryTM)的新一代多源航空航 天遥感数据一体化高效能处理系统。

遥感影像数据下载

1.MODIS L1B 1km: https://www.360docs.net/doc/b512325043.html,/data/d ... _Level_1/index.html 免费注册,免费下载,daily data 2.https://www.360docs.net/doc/b512325043.html,/pub/imswelcome/ 3. https://www.360docs.net/doc/b512325043.html,/ https://www.360docs.net/doc/b512325043.html,ndsat etm+ and tm images for free https://www.360docs.net/doc/b512325043.html,/ortho/index.htm 5.EarthEtc ER MAPPER公司示范网站 https://www.360docs.net/doc/b512325043.html,/imagery.aspx该网站上可以欣赏世界各地的高清晰度卫星照片,以及覆盖全球的1990年版LANDSAT卫星拼图(NASA命名为Circa 1990)。该网站不提供文件下载,只能通过浏览器观看。 6.NASA已经将中国地区的卫星图像发表在其网站上,免费供公众下载。 https://https://www.360docs.net/doc/b512325043.html,/mrsid/mrsid.pl 7.ENVISAT ASAR数据 https://www.360docs.net/doc/b512325043.html,或者https://www.360docs.net/doc/b512325043.html, ENVISAT卫星是欧空局迄今为止研制的最大的环境监测卫星,其高级合成孔径雷达(ASAR)在C波段具有多极化、可变观测角度、宽幅成像等特性。其数据可以广泛应用于自然灾害监测、资源环境调查、雷达遥感教学与科研等领域。 8.美国航天飞机SRTM 高程数据 SRTM高程数据由NASA航天飞机上的雷达在2000年2月搜集,覆盖南纬56度到北纬60度之间的陆地区域。该数据分辨率为30米,但NASA出于“安全性”考虑将美国以外的地区缩减为90米分辨率。数据格式为HGT格式,采用ZIP压缩,文件名以经纬度网格的左上角点命名。该系列数据是“未完成”数据,里面有很多地方有数据空洞存在。 ftp://https://www.360docs.net/doc/b512325043.html,/srtm/Eurasia/ https://www.360docs.net/doc/b512325043.html,gs,gov/data/obtainingdata.html(“unfinished”Grade) https://www.360docs.net/doc/b512325043.html,gs,gov/products/elevation.html(“finished”Grade) Easy Download Site—GLCF ftp://https://www.360docs.net/doc/b512325043.html,/gl ... 0/SRTM_u03_n040e116 上述数据覆盖范围1*1度n040—北纬40度e116—东经116度 9.国家基础地理信息系统全国1:400万数据库

遥感卫星影像数据采购知识要素

北京揽宇方圆信息技术有限公司 (一)遥感卫星数据类型有哪些? 北京揽宇方圆卫星公司可提供多种遥感数据类型供用户选择,目前来说是国内遥感数据最多的遥感数据中心,分辨率从0.3米到30米的光学卫星影像,还有各种极化方式的雷达卫星影像,高光谱卫星影像,还有解密的1960年至1980年的锁眼卫星影像,根据自己的情况来定,也可以把自己的卫星数据需求告诉我们,给您推荐合适的卫星数据类型。如果您想获取高程信息DEM、DLG等信息,需要购买的就是卫星影像立体像对数据,并不是所有卫星都有立体像对哦。 (二)遥感卫星数据影像有哪些级别? 卫星公司北京揽宇方圆销售的都是1A级别原始卫星影像,光学卫星影像原始数据都是以全色+多光谱捆绑形式提供,卫星影像一般可以经过一定的处理,形成各级别的影像数据,不同的级别可以针对不同的用户需求,在订购时需特别注意。 *名词(全色就是黑白数据,多光谱是指红绿蓝近红外) (三)遥感卫星数据影有没有最小数量起订的说法? 北京揽宇方圆提醒您在购买卫星影像时,都要确认购买面积大小或景数。对于高分辨率影像来说,一般是按面积大小来计算,单位为平方公里。但是往往有个最小购买面积,例如,WorldView影像的存档数据最低起购面积为25平方公里,且需要满足四边形两边相距大于等于5公里;而中低分辨率影像则往往按景数来计算,景是一幅卫星影像的通俗讲法,例如,一景高分一号卫星影像,范围大小为32.5×32.5公里。 (四)遥感卫星存档数据是指什么? 北京揽宇方圆详解遥感卫星存档数据:是指先前卫星已经拍摄过的某区域的影像数据,已存档在数据库中,是现成品。该种影像的购买价格相对较低,订购时间较快。但是订购前需要对既定需求区域做出确认,即确认所需区域是否有卫星影像数据存档、卫星影像存档数据的拍摄时间、拍摄质量(包含了云量、拍摄倾角等因素)等。 (五)遥感卫星编程数据是什么意思? 北京揽宇方圆遥感公司对遥感卫星编程数据的解释是指地面编程控制卫星对需求区域拍摄最新的影像,可以让用户得到需求区域最新的影像。但是编程影像的拍摄周期通常较长,订购初期需要先向卫星运营公司申请拍摄区域的拍摄周期,然后由卫星公司反馈计划拍摄周期。在这个拍摄周期中,并不能够保证拍摄成功,这与所拍摄地的天气情况、拍摄数据的优先级权重以及需求数据范围有关。 (六)遥感卫星影像数据价格如何一般是多少? 目前市面上的商业遥感卫星数量较多,北京揽宇方圆是国内遥感数据资源最多的公司,不同的行业根据自己的遥感项目业务要求,对各卫星影像的分辨率、波段数量、质量以及影像拍摄的时间要求各异,而卫星

AGRS遥感影像数据管理系统的设计与实现

AGRS遥感影像数据管理系统的设计与 实现

AGRS遥感影像数据管理系统的设计与实现 摘要:遥感影像数据的特点是其数据量庞大,种类繁多,结构复杂。利用成熟的关系数据库和 GIS 平台,搭建一个方便实用的遥感影像数据库是提高影像管理效率的有效手段。文章介绍了AGRS遥感影像数据库系统的设计与实现,详细描述了系统结构、影像数据元数据、影像数据安全策略、以及影像数据库管理系统和网络查询服务系统的功能实现。 关键词:影像数据库;元数据;网络查询服务 1 引言 中国国土资源航空物探遥感中心在利用遥感技术进行地质找矿及其它相关领域的应用研究已有二十多年历史。先后完成数百个涉及地质找矿、地质灾害、环境监测、土地利用、城市规划等方面的项目,积累了大量的 MSS、TM、Spot、RadarSat、中巴资源卫星、Quickbird、Ikonos 等航天数据及其成果图像,同时完成了全国约数百万平方公里的不同比例尺、不同片种的航空摄影。这些成果大多以硬拷贝或数字光盘形式存储,数据量达到近100TB,而且在逐年增加。如此庞大的数据采用人工管理存在着效率低、安全性差的缺点。引入信息化管理手段,建立一个航天、

航空遥感图像的数据库管理系统,将大大提高各类遥感影像的管理和使用效率。 2遥感影像数据库系统的结构 遥感影像数据库依托海量存储设备和高性能的服务器共同组建光纤存储局域网。系统管理员使用工作站经过局域网对系统进行维护管理,遥感影像元数据和图形索引信息经过广域网进行发布。 图 1 遥感影像数据库系统实体结构图 遥感影像数据库系统由影像数据库管理系统、网络检索服务系统、影像数据库、遥感影像元数据库、影像空间索引数据组成。

天津市塘沽区1970年-2010年历史遥感影像海岸线动态监测

天津市塘沽区1970年-2010年海岸线动态监测 1 历史遥感影像 目前,全球高分辨率遥感影像市场被GeoEye、IKONOS、QuickBird、WorldView等主流卫星所占据,在为用户提供丰富空间信息的同时,也不断推动遥感卫星的进步与行业发展。正如大家所了解,IKONOS是第一颗亚米级分辨率的商业卫星,发射时间为1999年。那么在此之前乃至更老的历史时期高分辨率遥感影像应该如何获取呢?直到“锁眼”(KeyHole)、“资源-F”(Resurs-F)、“彗星”(Kometa)等一系列历史解密影像陆续进入中国才填补了高分辨率遥感影像市场的上述空白。经过几年的应用情况来看,目前规划、海洋、科研、国土、环境、考古等行业用户已经充分掌握了如何利用历史解密影像为自己的工作提供帮助。解密影像拥有较高的分辨率,丰富的时相以及波段光谱信息,这意味着可以更好的满足不同传统用户以及更多的非行业用户的需求。 目前“锁眼”(KeyHole)系列(表1)可以提供的是1960-1980年之间的KH-1-4(CORONA)、KH-5 (ARGON)、KH-6 (LANYARD)、KH-7 (GAMBIT)和KH-9 (HEXAGON)共930000张单景图片。 表1 KeyHole系列卫星影像参数

实际中用户主要使用的大多是KH-4A和KH-4B存档影像,时相集中在1966-1972之间。这个阶段Corona系列卫星共发射32次,经过长期调试已经可以把卫星轨道降到166公里的水平上,从而使分辨率达到了1.8米,回访周期1天,并可以提供立体相对。这个期间用户完全可以选择到理想的存档数据。 值得推荐的是KH-7存档影像,时相集中在1963年7月到1967年6月。分辨率最初为1.2米,到1966年提高到0.6米,拍摄的目标主要集中在战略目标、核目标以及导弹防御和弹道导弹系统。除了将近100幅以色列的单景影像仍然处于保密状态之外,KH-7拍摄的19000幅单景影像全部得到了解密。 可以作为重要时相补充的还有KH-9存档影像,被认为是KH-1-4存档影像的替代品。KH-9获取了全球大面积分辨率6米的影像,除以色列领土外,29000幅影像已经解密。 KeyHole 系列在历史解密影像的资源整合中发挥着举足轻重的作用,无论是空间分辨率、时间分辨率以及制图精度等方面都拥有出色的表现,即便这样仍然受时相和波段的约束。而“资源-F”(Resurs-F)的出现得到了国内众多用户的高度关注,Resurs-F卫星大家也许不是很熟悉,但提起同属于Resurs系列至今仍在服役的Resurs-DK1卫星大家应该并不陌生。该计划始于上世纪70年代,资源系列解密的卫星影像包括:F1、F2和F3,解密影像自2007年开始商业化(表2)。 表2 Resurs系列卫星影像参数

常用的遥感卫星影像数据有哪些

北京揽宇方圆信息技术有限公司 常用的遥感卫星影像数据有哪些 公司拥有WorldView、QuickBird、IKONOS、GeoEye、SPOT、高分一号、资源三号等卫星的代理权,与国内多家遥感影像一级代理商长期合作,能够为客户提供全天候、全覆盖、多分辨率、多尺度的影像产品 WorldView,分辨率0.5米 WorldView卫星系统由两颗(WorldView-I和WorldView-II)卫星组成。WorldView-I全色成像系统每天能够拍摄多达50万平方公里的0.5米分辨率图像,并具备现代化的地理定位精度能力和极佳的响应能力,能够快速瞄准要拍摄的目标和有效地进行同轨立体成像。WorldView-II多光谱遥感器具有8个波段,平均重访周期为一天,每天采集能力达到97.5万平方公里。

QuickBird,分辨率0.61米 QuickBird具有较高的地理定位精度,每年能采集7500万平方公里的卫星影像数据,在中国境内每天至少有2至3个过境轨道,有存档数据约500万平方公里,重访周期为1-6天,每天采集能力达到21万平方公里。 IKONOS,分辨率0.8米 IKONOS卫星是世界上第一颗高分辨率卫星,开启了商业高分辨率卫星的新时代,同时也创立了全新的商业化卫星影像标准。全色影像分辨率达到了0.8米,多光谱影像分辨率4米,平均重访周期3天。

Geoeye,分辨率0.41米 GeoEye-1卫星具有分辨率最高、测图能力极强、重返周期极短的特点。全色影像分辨率达到了0.41米,多光谱影像分辨率1.65米,定位精度达到3米,重访周期2-3天,每天采集能力70万平方公里。

古都长安,长治久安-西安1945历史遥感影像

古都长安,长治久安---西安1945(一)西安,名称源于明代,古称长安。陕西省省会,西部地区重要中心城市,古丝绸之路起点,世界历史文化名城。 公元前202年,刘邦取得政权建立西汉王朝,立名“长安”,意即“长治久安”。先后有13个王朝在此建都,有着3100多年的建城史和1100多年的建都史。与雅典、罗马、开罗并称世界四大文明古都。 抗战期间,中国的六大古都五座被日军占领。1938年毛泽东同志发出“为保卫潼关及西安而战”的号召,使得西安幸免于难。 从本期开始我们将借助1945年和1967年两期珍贵的历史遥感影像对这座改写中国近代史,乃至改变中国命运的古都进行介绍。 西安-1967年解密遥感影像 八路军西安办事处旧址 即七贤庄,位于西安市新城区北新街中段东侧,始建于1934年末,1936年初竣工。由十座外观相同,砖木结构的“工”字型庭院组成,布局精巧,结构严谨。

七贤庄(箭头方向)-1945年解密遥感影像 八路军西安办事处纪念馆

八路军办事处是全国所有的八路军、新四军办事处中成立最早、坚持时间最长、影响最大的办事机构。这期间,中国共产党、八路军的主要领导人曾多次留驻办事处并指导工作,为中国人民抗日战争的胜利做出了巨大贡献。党和政府十分重视保护这处革命旧址,于1959年在此建立纪念馆。 新城大院 1369年,明朝攻占奉元路,改为西安府,西安的名字第一次出现在中国历史上。 1378年,秦王府城与西安城几乎同时完工。西安明城区约12平方公里,其中秦王府城占地1.5平方公里,成了西安明城墙城中的"城中之城"。新城大院即是当年的秦王府城所在地。 新城大院(红框区域)-1967年解密遥感影像 1921年冯玉祥督陕,命名此地为“新城”。自此以后,历任的省长、绥靖公署主任、省主席等,都驻此办公。1949年西安解放后,新城先后为陕甘宁边区政府、西北军政委员会、西北行政委员会、陕西省人民委员会、陕西省革命委员会的办公地。 1954年,陕西省人民政府迁驻新城大院。由于归属西安市新城区辖区,故人们习惯称其为"新城大院"。

遥感图像管理组织软件

一、Titan Image V7.0简介 泰坦遥感图像处理软件(Titan Image)是在充分吸收了国内外优秀遥感软件优点的基础上,由北京东方泰坦科技股份有限公司研发的完全自主知识产权的新一代优秀的国产遥感图像处理软件平台,是“国家863商用遥感数据处理专题”的重大科技成果的结晶。Titan Image目前已达到了和国际知名遥感图像处理软件同等技术水平,具有架构先进、全中文交互式操作界面,功能强大、性能稳定、二次开发方便简单等特点。该软件由集成环境、影像工具箱、几何配准、影像镶嵌、影像对象分类、雷达数据处理、高光谱数据处理、三维可视化、流程化定制九大功能模块组成。 Titan Image能够面向测绘、国土、规划、农业、林业、水利、环保、气象、海洋、石油、交通、地震、国防、教育等行业提供涵盖影像处理、信息提取、信息分析、制图输出等一系列功能的遥感信息工程完整解决方案。 经过几年来用户的广泛使用及市场检验,Titan Image已获得广大用户的一致认可,并且已经被很多行业用户选定为本行业的底层支撑软件平台。基于Titan Image软件的优良表现,该软件被国家多部门多次表彰,并被指定为“国家级重点新产品”。 二、Titan Image V7.0特点 1、强大的数据支持能力 1)能够直接操作PCI PIX、TIF、GEOTIFF、BMP、JPEG、RAW主流遥感影像数据格式,并支持Titan GIS 、ArcView SHP、MapInfo MIF、DXF几十种数据格式的读取、转换。 2)采用了独创的海量影像段页式动态存取技术,支持大数据量遥感影像的快无限制级显示、访问处理,同时与Titan影像库实现高效协同工作。 3)支持众多卫星传感器数据,并紧密跟踪最新卫星数据源,快速增加新数据源支持能力。 2、丰富而稳定的图像处理功能 1)具备丰富、稳定、专业的遥感图像处理功能,提供影像增强、滤波、分类、融合、几何校正、镶嵌等常用处理功能,并提供雷达图像处理、面向对象分类、三维等高级功能模块。 2)提供一系列特有图像处理功能,包括:支持6S模型的大气校正以及周期噪声去除;快速、可靠的自动影像匹配,以及基于Delauny三角网小面元微分精确几何校正;支持Ikonos、Cerbers2B、北京小卫星等国内外高分辨遥感数据正射校正;支持PanSharp高分辨率光学遥感数据融合,以及光学数据与雷达数据小波融合;自动、快速的影像镶嵌功能,以及方便的镶嵌线选取、影像匀色等功能;基于专家规则库、面向对象的影像专题信息提取功能。 3、方便、友好的操作方式 1)基于国内用户使用习惯的深入调研和理解,提供贴合用户操作的习惯全中文界面和操作流程,界面友好,操作方便,易学易用; 2)提供流程化处理模块,用户在可视化环境下通过简单点击操作即可创建复杂的处理流程;

重庆朝天门1945历史遥感影像

山城往事,民国记忆---重庆1945 重庆,简称渝或巴,位于中国西南部,以“山城”扬名。在3000余年的历史中,创造了富有鲜明个性的巴渝文化。二战时期,为中华民国战时首都和世界反法西斯战争远东指挥中心。1997年恢复为中华人民共和国直辖市。 本期我们借助1945年7月的解密航飞影像,寻找民国时期重庆这座伟大城市的闪亮记忆和历史篇章。 较场口 较场口的来历,稍对重庆历史有了解的人都知道,“较场口”在古代其实叫“校场”,是明清时期的练兵场,分为“大校场”和“小校场”。嘉庆年间,重庆府正式行文同意将两校场地面出租,用来弥补军饷。小校场迅速变成街市,大校场则成为杂货贩卖集散贸易市场。在清朝晚期,这里曾是重庆城的商贸繁华地带。 较场口(红圈位置)-1945年解密遥感影像 重庆大轰炸惨案遗址 从1938年2月至1944年12月,日军飞机对重庆及其周边地区进行了长期的无差别轰炸。重庆成为遭受日本野蛮轰炸规模最大、次数最多、持续时间最长,损失最为惨重的中国城市,史称“重庆大轰炸”。重庆也因此在国际上享有“英雄之城”和“不屈之城”的盛誉。 在长达六年的轰炸中,“六·五”较场口大隧道窒息惨案死伤人数最多。为纪念1941年6月5日在大隧道惨案中的遇难者,重庆市人民政府于1987年在较场口建立“重庆大轰炸惨案遗址”纪念地,并决定每年6月5日鸣放警报。

“六·五”较场口大隧道窒息惨案(红圈位置)-1945年解密遥感影像唯一大戏院 唯一大戏院前身为德育电影院,位于渝中区磁器街,现保利电影院位置。1937年2月加以改建并正式营业和首映,座席为1060座。1966年更名为“劳动电影院”。 唯一大戏院(红圈位置)-1945年解密遥感影像

相关文档
最新文档