人教版九年级数学上册24章圆24.1.2垂直于弦的直径教案

合集下载

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计一. 教材分析人教版数学九年级上册24.1.2《垂直于弦的直径》是圆的一部分性质的教学内容。

本节课主要让学生了解并掌握垂直于弦的直径的性质,能灵活运用这一性质解决相关问题。

教材通过实例引导学生探究,培养学生的观察、思考和动手能力,为后续圆的弦和圆弧的学习打下基础。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和定理有一定的理解。

但垂直于弦的直径这一性质较为抽象,学生可能难以理解。

因此,在教学过程中,要注重引导学生通过观察、操作、思考、讨论等方式,逐步掌握性质,提高学生的空间想象和逻辑思维能力。

三. 教学目标1.了解垂直于弦的直径的性质,能证明并运用这一性质解决相关问题。

2.培养学生的观察、思考、动手和合作能力。

3.提高学生对圆的一部分性质的兴趣,为后续圆的学习打下基础。

四. 教学重难点1.垂直于弦的直径的性质及其证明。

2.灵活运用垂直于弦的直径的性质解决实际问题。

五. 教学方法1.情境教学法:通过实例引导学生观察、思考,激发学生的学习兴趣。

2.问题驱动法:提出问题,引导学生探究,培养学生的解决问题能力。

3.合作学习法:分组讨论,共同完成任务,提高学生的团队协作能力。

4.实践操作法:让学生动手操作,加深对性质的理解。

六. 教学准备1.教学课件:制作课件,展示实例和动画,辅助教学。

2.教学素材:准备相关的几何图形,便于学生观察和操作。

3.教学设备:投影仪、计算机、黑板、粉笔等。

七. 教学过程1.导入(5分钟)利用实例引入课题,展示垂直于弦的直径的性质,激发学生的兴趣。

2.呈现(10分钟)展示垂直于弦的直径的性质,引导学生观察、思考,并提出问题。

3.操练(10分钟)分组讨论,让学生动手操作,证明垂直于弦的直径的性质。

4.巩固(10分钟)出示练习题,让学生独立解答,巩固所学知识。

5.拓展(10分钟)出示一些实际问题,让学生运用垂直于弦的直径的性质解决,提高学生的应用能力。

人教版数学九年级上册24.1 第2课时 垂直于弦的直径 教案

人教版数学九年级上册24.1 第2课时 垂直于弦的直径 教案

24.1.2 垂直于弦的直径一、教学目标1.通过探究圆的轴对称性,掌握垂径定理及有关的结论;2.引导学生对图形的观察,激发学生的好奇心,并在运用数学知识解答问题的活动中获取成功的体验;3.掌握并能应用垂径定理解决有关弦的计算和证明问题。

二、教学重难点1.重点:“垂径定理”及其应用;2.难点:明确垂径定理的题设和结论。

三、教学过程 (一)自主学习1.连结圆上任意两点的线段叫圆的________,圆上两点间的部分叫做_____________,在同圆或等圆中,能够互相重合的弧叫做______________。

2.你知道赵州桥吗?它跨度为37.4m ,拱高为7.2m ,你能求出它的主桥拱的半径吗?(二)课堂点拨1、探究:用纸剪一个圆,沿着圆的任意一条直径所在的直线对折,重复做几次,你发现了什么?由此你能得到什么结论?可以发现:。

2、思考:(1)图1是 对称图形,对称轴是 ,相等的线段有 ,相等的弧有 . (3)如图2,也是 对称图形,对称轴是 . 相等的线段有 ,相等的弧有 . 想想这是因为 。

这样我们可以得到:垂径定理:垂直于弦的直径 弦,并且 的两条弧.(图2)(图1)定理的数学语言:如图2 CD 是直径(或CD 经过圆心),且CD AB ⊥ ____________,____________,_____________∴ 进一步,我们还可以得到结论:3、实练:解决赵州桥桥拱半径的问题。

解:如图3,用弧长AB 表示主桥拱,设弧长AB 所在圆的圆心是点O ,半径为R .归纳:(1)如图4,半弦、半径、弦心距构成直角三角形,根据勾股定理可得 .(2)在弦长a 、弦心距d 、半径r 、弓形高h 中,知道其中任意两个,可求出其它两个. (三)当堂训练1.如图5,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )A .4B .6C .7D .8RBAO(图3)2.如图6,已知⊙O的半径为5mm,弦长AB=8mm,则圆心O到AB的距离是() A.1mm B.2mm C.3mm D.4mm3.P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;最长弦长为.4.如图7,OE⊥AB、OF⊥CD,如果OE=OF,那么(只需写一个正确的结论)5、如图8所示,点O是∠EPF的平分线上的一点,以O为圆心的圆和角的两边分别交于点A、B和C、D。

人教版九年级上册24.1.2垂直于弦的直径24.1.2垂直于弦的直径教学设计

人教版九年级上册24.1.2垂直于弦的直径24.1.2垂直于弦的直径教学设计

人教版九年级上册24.1.2垂直于弦的直径教学设计一、教学目标1.理解垂线、垂足、垂直平分线、相交于垂足的两条线段互为垂直。

2.掌握垂直平分线的性质和应用。

3.学会用垂直平分线求直径。

二、教学重难点1.理解垂线、垂足、垂直平分线的定义和性质。

2.通过垂直平分线求直径,需要掌握数学计算方法。

三、教学过程1. 导入让学生在纸上画一个圆并标记圆心、半径,引出“弦”的概念。

通过学生们的互动,让他们理解弦是圆上任意两点之间的线段。

2. 自主学习让学生自己研究什么是垂直平分线,特别是24.1.2题目中所述的垂直于弦的直径是如何求得的。

学生可以结合自己的理解和常识,得出一些初步的结论。

3. 合作探究将学生分成若干小组,每组成员之间相互讨论,举一反三,尝试解决一些类似的问题。

为了使学生更好地理解,可以在板书上示意图,或在黑板上画出一幅图形,引导学生进行讨论。

4. 指导讲解在学生讨论之后,老师进行正式的讲解,着重讲解垂足、垂线和垂直平分线的性质,并解释直径是如何通过垂直平分线来求得的。

5. 练习巩固让学生进行巩固训练,可以把一些类似的题目给学生进行练习,根据不同程度的学生做出相应的安排和调整,以及针对学生的问题进行讲解和指导;也可以让学生在课堂上完成这些题目,检验学生的掌握程度。

例如:已知圆O的直径AB,通过直线CD(平行于AB)构造两条弦EF、GH,其中EF=9cm,GH=7.5cm,请问EF和GH的中垂线上的某点到圆心的距离是多少?6. 总结归纳在巩固训练之后,对项目进行总结归纳,在课堂上梳理本课内容,使学生对本课内容有一个深入的理解。

此外,还要通过本教学的方式来告诉学生,数学并不是枯燥无味的,也充满了趣味和乐趣。

四、教学评价教学方法:•通过讨论和示例引导学生,促进他们的思维和创造力。

•通过现代媒介如电子白板和计算机等来优化整个教学流程。

教学效果:•从学生的态度和反应来看,这种教学方式能够轻松使学生更好地理解课程内容。

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计一. 教材分析《24.1.2垂直于弦的直径》是人教版数学九年级上册第24章《圆》的第二个知识点。

本节课主要学习了圆中一条特殊的直径——垂直于弦的直径,并探究了它的性质。

教材通过实例引导学生发现垂直于弦的直径的性质,并运用这一性质解决一些与圆有关的问题。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的周长和面积计算、圆的性质等知识。

他们具备了一定的观察、分析和解决问题的能力。

但对于垂直于弦的直径的性质及其应用,可能还比较陌生。

因此,在教学过程中,需要注重引导学生发现和总结垂直于弦的直径的性质,并通过实例让学生体会其在解决实际问题中的应用。

三. 教学目标1.理解垂直于弦的直径的性质。

2.学会运用垂直于弦的直径的性质解决与圆有关的问题。

3.培养学生的观察能力、分析能力和解决问题的能力。

四. 教学重难点1.垂直于弦的直径的性质。

2.运用垂直于弦的直径的性质解决实际问题。

五. 教学方法1.引导发现法:通过实例引导学生发现垂直于弦的直径的性质。

2.实践操作法:让学生动手画图,加深对垂直于弦的直径性质的理解。

3.问题驱动法:设置问题,引导学生运用垂直于弦的直径的性质解决问题。

六. 教学准备1.课件:制作课件,展示相关实例和问题。

2.练习题:准备一些与垂直于弦的直径性质有关的练习题。

3.圆规、直尺等画图工具:为学生提供画图所需的工具。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:在一个圆形池塘中,怎样找到一个点,使得从该点到池塘边缘的距离最远?引导学生思考,并提出解决问题的方法。

2.呈现(10分钟)展示几个与垂直于弦的直径性质相关的实例,引导学生观察和分析这些实例,发现垂直于弦的直径的性质。

3.操练(10分钟)让学生动手画图,验证垂直于弦的直径的性质。

在这个过程中,引导学生运用圆规、直尺等画图工具,提高他们的动手能力。

人教版九年级数学上册《24.1.2 垂直于弦的直径》 教案

人教版九年级数学上册《24.1.2 垂直于弦的直径》 教案

第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标1.理解圆的对称性;掌握垂径定理.2.利用垂直于弦的直径的性质解决相关实际问题.二、教学重点及难点重点:垂直于弦的直径所具有的性质以及证明.难点:利用垂直于弦的直径的性质解决实际问题.三、教学用具多媒体课件,三角板、直尺、圆规。

四、相关资源《赵州桥》图片.五、教学过程【合作探究,形成知识】探究圆的对称性1.学生动手操作问:大家把事先准备好的一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?师生活动:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在的直线都是它的对称轴.教师在学生归纳的过程中注意学生语言的准确性和简洁性.2.探索得出圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴.师生活动:学生总结操作结论,教师强调圆的对称轴是直径所在的直线.3.问:圆有几条对称轴?师生活动:学生回答,教师强调圆有无数条对称轴.4.你能证明这个结论吗?师生活动:四人一小组,小组合作交流,尝试证明.让学生注意要证明圆是轴对称图形,只需证明圆上任意一点关于对称轴的对称点也在圆上.教师板书分析及证明过程.设计意图:在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,掌握证明轴对称图形的方法.探究垂径定理按下面的步骤做一做,回答问题:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作折痕CD的垂线,垂足为点M;第四步,将纸打开,设AM的延长线与圆交于另一点B,如图1.图1 图2问题1在上述操作过程中,你发现了哪些相等的线段和相等的弧?为什么?师生活动:学生动手操作,观察操作结果,得出结论,看哪个小组做得又快、又好,记入今天的英雄榜.最后师生共同演示、验证猜想的正确性,从而解决本节课的又一难点——垂径定理的证明,此时再板书垂径定理及其推理的过程.证明:如上图2所示,连接OA,OB,得到等腰△OAB,即OA=OB.因为CD⊥AB,所以△OAM与△OBM都是直角三角形.又因为OM为公共边,所以这两个直角三角形全等.所以AM=BM.又因为⊙O关于直径CD所在的直线对称,所以A点和B点关于直线CD对称.所以当圆沿着直径CD对折时,点A与点B重合,AC与BC重合.因此AM=BM,AC=BC.同 .理可得AD BD垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.问题2 你能用符号语言表达这个结论吗?师生活动:学生尝试将文字转变为符号语言,用数学符号表达定理的逻辑关系.教师更正并板书.符号语言表达:AM MB CD O AC BC CD AB M AD BD=⎧⎪⎫⇒=⎬⎨⊥⎭⎪=⎩,是圆的直径,,于点⇒ 设计意图:增加学生的兴趣,使学生通过探索发现、思维碰撞,获得对数学知识最深刻的感受,体会成功的乐趣,发展思维能力.【例题应用 提高能力】例1 如图,AB 所在圆的圆心是点O ,过点O 作OC ⊥AB 于点D .若CD =4 m ,弦AB = 16 m ,求此圆的半径.师生活动:学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC ⊥AB ,则有AD =BD ,且△ADO 是直角三角形.在直角三角形中可以利用勾股定理构造方程.教师在学生解决问题的基础上引导学生进行归纳:弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来.解:设圆的半径为R ,由题意可得OD =R -4,AD =8 m .在Rt △ADO 中,222AO OD AD =+,即222(4)8R R =-+.解得R =10(m ).答:此圆的半径是10 m .设计意图:增加一道引例,是基础应用题,为课本例题的实际应用作铺垫,有过渡作用,不但让学生掌握了知识,又增加了学习数学的兴趣,更体会到成功的喜悦.例2如图,赵州桥是我国隋代建造的石拱桥,距今约有1 400年的历史,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37 m,拱高(弧的中点到弦的距离)为7.23 m,求赵州桥主桥拱的半径(结果保留小数点后一位).【教学图片】《二次函数》图片6赵州桥的图片,用于教学过程。

人教版(2012)九年级数学上册 24.1.2垂直于弦的直径 教案

人教版(2012)九年级数学上册 24.1.2垂直于弦的直径 教案

24.1.2 垂直于弦的直径③你能用一句话概括这些结论吗?垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

④你能用几何方法证明这些结论吗?⑤你能用符号语言表达这个结论吗?3.火眼金睛:判断下列图形,能否使用垂径定理。

归纳:定理中的径可以是直径、半径、弦心距等过圆心的直线或线段。

练习:如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径。

3.垂径定理推论①把条件和结论中的CD⊥AB,AE=BE互换,结论成立吗?平分弦(非直径)的直径垂直于弦并且平分弦所对的两条弧;②你能证明这个推论吗?③条件中的非直径可以去掉吗?能不能举个例子说明④你能用符号语言表达这个结论吗?4.“知二推三”并进行练习。

(1)若CD⊥A B, CD是直径,________,_________._______(2)若 CD是直径,AE=BE,则________,_________._______(3)若CD⊥AB,AE=BE,则________,_________._______(4)若CD是直径,弧AC=弧BC,则________,_________._______灵活应用提高能力简单应用例1:如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.反思:从此题的解决过程中,你得到什么启示?归纳:1、两条辅助线:连半径、作弦心距2、一个Rt△:半径、半弦、弦心距3、两个定理:垂径定理、勾股定理此题由学生独立思考,并讲解思路,教师可让学生自己进行评判.并让学生板演。

此题属于基本应用,让学生了解弦心距、半弦、半径组成的直角三角形是圆中常用的直角三角形,更深入的研究在下节课中研究。

本节课的应用是基础应用,在下节课中再进行灵活运用和深入应用。

小结升华与达标训练 小结升华(1)本节课你学到了哪些数学知识?(2)在利用垂径定理解决问题时,你掌握了哪些数学方法?(3)这些方法中你又用到了哪些数学思想?达标测试:1、如图,AB是⊙O的直径,CD为弦,CD⊙AB于E,则下列结论中不成立的是()A、⊙COE=⊙DOEB、CE=DEC、OE=AED、弧BD=弧BC第1题第2题2、如图,OE⊙AB于E,若⊙O的半径为10cm,OE=6cm,则AB=_____cm。

人教版数学九年级上册教学设计24.1.2《垂直于弦的直径》

人教版数学九年级上册教学设计24.1.2《垂直于弦的直径》一. 教材分析《垂直于弦的直径》是人教版数学九年级上册第24章《圆》的一部分。

本节课主要内容是让学生掌握垂径定理,理解并证明圆中的一些特殊性质。

通过学习,学生能够运用垂径定理解决实际问题,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的性质、圆的周长和面积等知识。

但部分学生对圆的性质理解不够深入,对圆中特殊位置关系的判断和证明能力较弱。

因此,在教学过程中,要注重引导学生发现圆中的垂直关系,培养学生动手操作和解决问题的能力。

三. 教学目标1.知识与技能:让学生掌握垂径定理,学会运用垂径定理解决圆中的问题。

2.过程与方法:培养学生观察、分析、归纳、推理的能力,提高动手操作和解决问题的能力。

3.情感态度与价值观:激发学生学习圆的性质的兴趣,培养学生团队协作和积极参与的精神。

四. 教学重难点1.重点:垂径定理的理解和运用。

2.难点:圆中特殊位置关系的判断和证明。

五. 教学方法1.情境教学法:通过实物演示、图形展示等手段,引导学生发现圆中的垂直关系。

2.问题驱动法:设计一系列问题,引导学生思考和探究,激发学生的学习兴趣。

3.合作学习法:学生进行小组讨论和探究,培养学生的团队协作能力。

4.讲授法:教师讲解垂径定理及相关性质,引导学生理解和掌握。

六. 教学准备1.准备相关图形和实物,如圆、弦、直径等。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备练习题和测试题,用于巩固和检验学生的学习效果。

七. 教学过程1.导入(5分钟)利用实物或图形,展示圆中的垂直关系,引导学生关注垂直于弦的直径。

提问:你们发现了吗?垂直于弦的直径有什么特殊的性质吗?2.呈现(10分钟)介绍垂径定理的内容,并用多媒体展示垂径定理的证明过程。

让学生理解并掌握垂径定理。

3.操练(10分钟)设计一系列练习题,让学生运用垂径定理解决问题。

教师引导学生思考和探究,解答学生的疑问。

2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案)24.1.2 垂直于弦的直径教案

24.1圆的有关性质24.1.2垂直于弦的直径一、教学目标【知识与技能】1.通过观察实验,使学生理解圆的轴对称性.2.掌握垂径定理及其推论.理解其证明,并会用它解决有关的证明与计算问题.【过程与方法】通过探索垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.【情感态度与价值观】1.结合本课特点,向学生进行爱国主义教育和美育渗透.2.激发学生探究、发现数学问题的兴趣和欲望.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】垂径定理及其推论,会运用垂径定理等结论解决一些有关证明,计算和作图问题.【教学难点】垂径定理及其推论.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?(出示课件2)(二)探索新知探究一圆的轴对称性教师问:把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(出示课件4)学生通过自己动手操作,归纳出结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.出示课件5:教师问:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?学生答:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.思考:如何来证明圆是轴对称图形呢?出示课件6:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.教师问:此图是轴对称图形吗?学生答:是轴对称图形.教师问:满足什么条件才能证明圆是轴对称图形呢?师生共同解答如下:(出示课件7)证明:连结OA、OB.则OA=OB.又∵CD⊥AB,∴直径CD所在的直线是AB的垂直平分线.∴对于圆上任意一点,在圆上都有关于直线CD的对称点,即⊙O关于直线CD对称.师生进一步认知:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.探究二垂径定理及其推论出示课件8:如图,AB是⊙O的一条弦,直径CD⊥AB,垂足为E.你能发现图中有哪些相等的线段和劣弧?为什么?学生独立思考后口答:线段:AE=BE弧:AC⌒=BC⌒,AD⌒=BD⌒学生简述理由:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A 与点B重合,AE与BE重合,重合.教师总结归纳:(出示课件9)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推导格式:∵CD是直径,CD⊥AB,∴AE=BE,AC⌒=BC⌒,AD⌒=BD⌒教师强调:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?(出示课件10)学生独立思考后口答:1图是;2图不是,因为没有垂直;3图是;4图不是,因为CD没有过圆心.教师强调:垂径定理的几个基本图形:(出示课件11)出示课件12:如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?学生思考后教师总结:深化认知:(出示课件13)如图,①CD是直径;②CD⊥AB,垂足为E;③AE=BE;④AC⌒=BC⌒;⑤AD⌒=BD⌒.举例证明其中一种组合方法.学生思考后独立解决,并加以交流,教师加以指导,并举例.(出示课件14)如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1)CD⊥AB吗?为什么?⑵AC⌒与BC⌒相等吗?AD⌒与BD⌒相等吗?为什么?证明:⑴连接AO,BO,则AO=BO,又AE=BE,OE=OE∴△AOE≌△BOE(SSS),∴∠AEO=∠BEO=90°,∴CD⊥AB.(2)由垂径定理可得AC⌒=BC⌒,AD⌒=BD⌒教师归纳总结:(出示课件15)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.思考:“不是直径”这个条件能去掉吗?如不能,请举出反例.教师强调:圆的两条直径是互相平分的.出示课件16:例1如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm.学生思考后师生共同解答:连接OA,∵OE⊥AB,巩固练习:(出示课件17)如图,⊙O 的弦AB=8cm,直径CE⊥AB 于D,DC=2cm,求半径OC 的长.学生自主思考后,独立解答如下:解:连接OA,∵CE⊥AB 于D,,∴设OC=xcm,则OD=x-2,根据勾股定理,得x 2=42+(x-2)2,∴8AE ===cm.1184(cm)22AD AB ==⨯=解得x=5,即半径OC的长为5cm.出示课件18:例2已知:⊙O中弦AB∥CD,求证:学生思考后师生共同解答.证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则(垂直于弦的直径平分弦所对的弧)教师强调:平行弦夹的弧相等.师生共同归纳总结:(出示课件19)解决有关弦的问题,经常是过圆心作弦的弦心距(垂线段),或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.巩固练习:(出示课件20)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证:四边形ADOE是正方形.学生独立解答,一生板演.证明:∵OE⊥AC,OD⊥AB,AB⊥AC,∴∠OEA=∠EAD=∠ODA=90°.∴四边形ADOE为矩形,AE=12AC,AD=12AB.又∵AC=AB,∴AE=AD.∴四边形ADOE为正方形.出示课件21:例3根据刚刚所学,你能利用垂径定理求出导入中赵州桥主桥拱半径的问题吗?教师引导学生分析题意,先把实际问题转化为数学问题,然后画出图形进行解答.解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C 是弧AB的中点,CD就是拱高.∴AB=37m,CD=7.23m.∴AD=12AB=18.5m,OD=OC-CD=R-7.23.OA2=AD2+OD2,R2=18.52+(R-7.23)2,解得R≈27.3.即主桥拱半径约为27.3m.巩固练习:(出示课件23)如图a、b,一弓形弦长为cm,弓形所在的圆的半径为7cm,则弓形的高为_______.学生独立思考后解答:如图,分两种情况,弓形的高为5cm或12cm.教师归纳:1.涉及垂径定理时辅助线的添加方法(出示课件24)在圆中有关弦长a,半径r,弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.2.弓形中重要数量关系弦a,弦心距d,弓形高h,半径r之间有以下关系:⑴d+h=r;⑵2 222a r d⎛⎫=+ ⎪⎝⎭.(三)课堂练习(出示课件25-29)1.2.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.3.⊙O的直径AB=20cm,∠BAC=30°则弦AC=.4.(分类讨论题)已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.你认为AC和BD有什么关系?为什么?6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.参考答案:1.C2.5cm3.1034.14cm或2cm5.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.6.解:连接OC.设这段弯路的半径为Rm,则OF=(R-90)m.,OE CD ⊥ 11600300(m)22CF CD ∴==⨯=,根据勾股定理,得222,O C C F O F =+()22230090.R R =+-解得R=545.∴这段弯路的半径约为545m.(四)课堂小结通过这节课的学习,你有哪些收获和体会?(五)课前预习预习下节课(24.1.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.这节课的教学从利用垂径定理来解决赵州桥桥拱半径问题开始,引入课题从实验入手,得到圆的轴对称性,进而推出垂径定理及推论.教学设计中,从具体、简单、特殊到抽象、复杂、一般,层层递进,以利于提高学生的数学思维能力,同时,注意加强对学生的启发和引导,培养学生们大胆猜想,小心求证的科学研究素质.2.本课的教学方法是将垂径定理和勾股定理有机结合,将圆的问题转化为直角三角形,常作的辅助线是半径或垂直于弦的直径.。

初中数学人教版九年级上册 24.1.2 垂直于弦的直径 教学设计(表格式)

垂直于弦的直径教学设计【观察思考】赵州桥是我国隋代建造的石拱桥,距今约有1400年的历史,是我国古代人民勤劳与智慧的结晶. 的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m你能求出州桥主桥拱的半径吗?教师PPT展示赵州桥的图片,并提出问题,引导学生思考.注意:这里只提出问题,学生暂时还不解答.【证明】教师引导学生发现,要证明圆是轴对称图形,只需要证明圆上任意一点关于直径所在的直线(对称的对称点也在圆上即可.如图,设CD是⊙O的任意一条直径,A为⊙O上点C,D以外的任意一点.证明点A关于直线CD的对称点仍在⊙O上.证明:过点A作AA'⊥CD,交⊙O于点A',垂足为M,连接OA,OA'在△OAA'中,∵OA=OA'∴△OAA'是等腰三角形又∵AA'⊥CD∴AM=MA',即CD是AA'的垂直平分线.教师可在圆上任取若干个点进行说明,进一步验证前面得到的结论.在刚刚的证明过程中,你能发现图中有哪些相等的线段、弧吗?预设答案:AM=A'M,AC A C'=,AD A D'=教师再次动态展示折纸的过程,让学生观察,并在此基础上得出结论.并尝试让学生用语言描述所到的结论,教师引导并补充完善.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.教师带领学生分析垂径定理的题设,结论.并试着结合图形把文字语言转化为数学语言.【想一想】下列图形是否具备垂径定理的条件?预设答案:(1)(3)满足;(2)(4)不满足.教师提出问题,学生抢答.对于不具备垂径定理条件的图形,引导学生说出原因,并追问:怎样修改图(2)、(4)能够满足垂径定理的条件?预设答案:教师带领学生观察修改后的图片,引导学生总结:垂直于弦的直径平分弦,并且平分弦所对的两弧.其中,直径并不是必要条件,只要满足过圆心即可.当直径CD平分一条弦AB(不是直径)时,能否得出CD⊥AB?教师提出问题,引导学生仿照前面的证明方法证明.并用文字语言描述所得结论,得出垂径定理的推论:垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.教师追问:为什么强调“不是直径”呢?预设答案:圆的任意两条直径都互相平分,但它们不一定互相垂直.【想一想】【典型例题】通过这节课的学习,现在你能解决课程一开始的问题了吗?教师提出问题,学生先独立思考,解答.然后再小组交流探讨,教师巡视,如遇到有困难的学生适点拨,最终教师展示答题过程.例1:赵州桥是我国隋代建造的石拱桥,距今约有1400年的历史,是我国古代人民勤劳与智慧的晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,求州桥主桥拱的半径(结果保留小数点后一位).解:如图AB表示主桥拱,设AB所在的圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC,D为足,OC与AB相交于点C,连接OA,根据垂径定理,D是AB的中点,C是AB的中点,CD就是拱高.由题设可知:AB=37,CD=7.23,∴AD=12AB=12⨯37=18.5,OD=OC-CD=R-7.23,在Rt△OAD中,由勾股定理得:OA2=AD2+OD2,即:R2=18.52+(R-7.23)2解得:R≈27.3.因此,赵州桥的主桥拱半径约为27.3m.教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解1.在⊙O中,若CD⊥AB于M,AB为直径,则下列结论不正确的是( )A.AC AD=B.BC BD=C. AM=OMD. CM=DM答:C2.已知⊙O的直径AB=10,弦CD⊥AB于M,OM=3,则CD=.答:8.3.在⊙O中,弦CD⊥AB于M,AB为直径,若CD=10,AM=1,则⊙O的半径为.答:13.4.⊙O的半径为13cm,AB、CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm,求AB和CD之间的距离.解:过点O向AB,CD作垂线,垂足分别为M,N,连接OB,OD.由垂径定理可得:BM=12AB=12cm,DN=12CD=5cm又∵OB=OD=13cm在Rt△OBM,Rt△ODN中,由勾股定理得:OM=5cm,ON=12cm∴AB和CD之间的距离MN=OM-ON=7cm 或MN=OM+ON=17cm思维导图的形式呈现本节课的主要内容:教科书第83页练习第1、2题.。

人教版数学九年级上册24.1.2垂直于弦的直径优秀教学案例

(二)问题导向
1.提出引导性问题,引导学生观察、思考、讨论垂直于弦的直径的性质。
2.引导学生提出假设,进行推理和验证,如“垂直于弦的直径是否一定通过弦的中点?”
3.设计具有挑战性的问题,如“你能证明垂直于弦的直径平分弦吗?”,激发学生的创新思维。
(三)小组合作
1.将学生分成小组,鼓励学生进行讨论、交流、分享,培养学生的团队合作意识。
人教版数学九年级上册24.1.2垂直于弦的直径优秀教学案例
一、案例背景
本节课为人教版数学九年级上册第24章第1节中的内容,主要讲解圆中的一条特殊性质——垂直于弦的直径。在此之前,学生已经学习了圆的基本概念、圆的周长和面积等知识,对圆有了初步的认识。本节课的内容是在此基础上,进一步引导学生发现并证明垂直于弦的直径的性质,培养学生观察、思考、推理的能力。
三、教学策略
(一)情景创设
1.利用实物模型,如圆形的桌面、圆规等工具,为学生提供直观的视觉感受,引发学生对垂直于弦的直径性质的兴趣。
2.通过引入生活中的实例,如圆形桌面上的直径与垂线的关系,让学生感受到数学与生活的紧密联系。
3.设计有趣的问题情境,如“在圆形操场上,如何找到一条垂线穿过弦的中点”,激发学生的思考欲望。
五、教学评价
1.评价学生对垂直于弦的直径性质的理解程度,观察学生能否灵活运用这一性质解决实际问题。
2.评价学生在观察、思考、推理、实践等方面的能力,培养学生独立解决问题的能力。
3.评价学生的团队合作意识,关注学生在讨论、交流、分享等方面的表现。
4.关注学生的情感态度,激发学生对数学的兴趣,培养学生积极的数学学习情感。
4.反思与评价:教师引导学生进行自我反思和评价,培养学生自我监控和自我评价的能力。同时,教师进行课堂观察和评价,关注学生在观察、思考、推理、实践等方面的表现,为学生提供及时的反馈和指导。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

垂径定理的进一步推广 赵州桥问题
教学过程设计
教 学 程 序 及 教 学 内 容 师生行为 设 计 意 图 一、导语:直径是圆中特殊的弦,研究直径是研究圆的重要突破口, 教师从直径引出课题,引 起学生思考 这节课我们就从对直径的研究开始来研究圆的性质. 二、探究新知 (一)圆的对称性 沿着圆的任意一条直径所在直线对折,重复做几次,看看你能发 现什么结论? 得到:把圆沿着它的任意一条直径所在直线对折,直径两旁的两个半 圆就会重合在一起,因此,圆是轴对称图形,任何一条直径所在的直 线都是圆的对称轴. (二) 、垂径定理 完成课本思考 分析:1.如何说明图 24.1-7 是轴对称图形? 2.你能用不同方法说明图中的线段相等, 弧相 等吗? 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧. 即:直径 CD 垂直于弦 AB 则 CD 平分弦 AB,并且平分弦 AB 所对的两 条弧. 推理验证:可以连结 OA、•OB,证其与 AE、BE 构成的两个全等三角 形,进一步得到不同的等量关系. 分析:垂径定理是由哪几个已知条件得到哪几条结论? 即一条直线若满足过圆心、垂直于弦、则可以推出平分弦、平分弦所 对的优弧,平分弦所对的劣弧. 垂径定理推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 思考:1.这条推论是由哪几个已知条件得到哪几条结论? 2.为什么要求“弦不是直径”?否则会出现什么情况? 垂径定理的进一步推广 思考: 类似推论的结论还有吗?若有, 有几个?分别用语言叙述出来. 学生根据问题进行思考, 更好的理解定理和推论, 全面的理解和掌 握垂径定理和它 的推论,并进行 教师引导学生类比定理独 立用类似的方法进行探 究,得到推论 培养学生解决问 题的意识和能力 师生分析,进一步理解定理, 析出定理的题设和结论. 为继续探究其推论 奠定基础 学生观察图形,结合圆的 对称性和相关知识进行思 考,尝试得出垂径定理, 并从不同 角度加 以解释 . 再进行严格的几何证明. . 通过该问题引起 学生思考,进行 探究,发现垂径 定理,初步感知 培养学生的分析 能力, 解题能力. 学生用纸剪一个圆,按教 通过学生亲自动 师要求操作,观察,思考, 手操作发现圆的 交流,尝试发现结论. 对称性,为后续 探究打下基础
作 课 类 别 教 学 媒 体 知 识 教 学 目 标 技 能 过 程 方 法 情 感 态 度 教学重点 教学难点
课 题
24.1.2 垂直于弦的直径 多媒体
课 型
新授
1.通过观察实验,使学生理解圆的对称性. 2.掌握垂径定理及其推论,理解其证明,并会用它解决有关的证明与计算问题. 1.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴. 2.经历探索垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法. 激发学生观察、探究、发现数学问题的兴趣和欲望. 垂径定理及其运用. 发现并证明垂径定理
归纳:只要已知一条直线满足“垂直于弦、过圆心、平分弦、平分弦 所对的优弧,平分弦所对的劣弧.”中的两个条件,就可以得到另外 三个结论. (三) 、垂径定理、推论的应用 完成课本赵州桥问题
并弄明白它们的区别与联 系
推广,得到其他 几个定理,完整 的把握所学知 识.
学生审题,尝试自己画图, 理清题中的数量关系,并 分析:1.根据桥的实物图画出的几何图形应是怎样的? 思考解决方法,由本节课 体会转化思想,化 2.结合所画图形思考:圆的半径 r、弦心距 d、弦长 a,弓形高 知识想到作辅助线办法, 未知为已知,从而 解决本题,同时把 h 有怎样的数量关系? 握一类题型的解题 3.在圆中解决有关弦的问题时,常常需要作垂直于弦的直径, 方法,作辅助线方 作为辅助线,这样就可以把垂径定理和勾股定理结合起来,得到圆的 法. 半径 r、弦心距 d、弦长 a 的一半之间的关系式: r 2 d 2 a 2 三、课堂训练 完成课本 88 页练习 教师组织学生进行练习, 教师巡回检查,集体交流 1. 如图, 一条公路的转弯处是一段圆弧, 点 O 是圆心, •其中 CD=600m, 评价,教师指导学生写出 E 为圆 O 上一点,OE⊥CD,垂足为 F,EF=90m,求这段弯路的半径. 解答过圆 弧形 , 如 图所 示 ,正 常 水位 下水 面 宽 结规律. 补充: AB=•60m,水面到拱顶距离 CD=18m,当洪水泛滥时,水面宽 MN=32m 时是否需要采取紧急措施?请说明理由. (当水面距拱顶 3 米以内时 需要采取紧急措施)
C E F O D
2
运用所学知识进 行应用,巩固知 识,形成做题技 巧
引导学生分析:要求当洪 水到来时, 水面宽 MN=32m• 是否需要采取紧急措施,• 只要求出 DE 的长,因此只 要求半径 R, 然后运用几何 代数解求 R. 让学生通过练习 进一步理解,培 养学生的应用意 识和能力
四、小结归纳 1. 垂径定理和推论及它们的应用 2. 垂径定理和勾股定理相结合, 将圆的问题转化为直角三角形问题. 3.圆中常作辅助线:半径、过圆心的弦的垂线段 五、作业设计 作业:课本 94 页 1,95 页 9,12 补充:已知:在半径为 5 ㎝的⊙O 中, 两条平行弦 AB,CD 分别长 8 ㎝, 6 ㎝.求两条平行弦间的距离. 板 课题 垂径定理 教 学 反 思 书 设 计 归纳 巩固深化提高 让学生尝试归纳,总结, 发言,体会,反思,教师 点评汇总 归纳提升,加强 学习反思,帮助 学生养成系统整 理知识的习惯
相关文档
最新文档