专题09+三角函数与解三角形-2019年新课标全国卷(1、2、3卷)理科数学备考宝典+Word版含解析
2019年全国统一高考数学试卷(理科)(新课标Ⅰ)-含详细答案

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)含详细答案一、选择题(本大题共12小题,共60.0分)1.已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=()A. {x|−4<x<3}B. {x|−4<x<−2}C. {x|−2<x<2}D. {x|2<x<3}2.设复数z满足|z−i|=1,z在复平面内对应的点为(x,y),则()A. (x+1)2+y2=1B. (x−1)2+y2=1C. x2+(y−1)2=1D. x2+(y+1)2=13.已知a=log20.2,b=20.2,c=0.20.3,则()A. a<b<cB. a<c<bC. c<a<bD. b<c<a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A. 165cmB. 175cmC. 185cmD. 190cm5.函数f(x)=sinx+xcosx+x2在[−π,π]的图象大致为()A. B.C. D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. 516B. 1132C. 2132D.11167.已知非零向量a⃗,b⃗ 满足|a⃗|=2|b⃗ |,且(a⃗−b⃗ )⊥b⃗ ,则a⃗与b⃗ 的夹角为()A. π6B. π3C. 2π3D. 5π68.下图是求12+12+12的程序框图,图中空白框中应填入()A. A=12+AB. A=2+1AC. A=11+2AD. A=1+12A9.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A. a n=2n−5B. a n=3n−10C. S n=2n2−8nD. S n=12n2−2n 10.已知椭圆C的焦点为F1(−1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A. x22+y2=1 B. x23+y22=1 C. x24+y23=1 D. x25+y24=111.关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数②f(x)在区间(π2,π)单调递增③f(x)在[−π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A. ①②④B. ②④C. ①④D. ①③12.已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A. 8√6πB. 4√6πC. 2√6πD. √6π二、填空题(本大题共4小题,共20.0分)13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.14. 记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.15. 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .16. 已知双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为三、解答题(本大题共7小题,共82.0分)17. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.设(sinB −sinC)2=sin 2A −sinBsinC . (1)求A ;(2)若√2a +b =2c ,求sin C .18. 如图,直四棱柱ABCD −A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN//平面C 1DE ;(2)求二面角A −MA 1−N 的正弦值.19. 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x轴的交点为P .(1)若|AF|+|BF|=4,求l 的方程;(2)若AP⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB|.20.已知函数f(x)=sinx−ln(1+x),f′(x)为f(x)的导数.证明:)存在唯一极大值点;(1)f′(x)在区间(−1,π2(2)f(x)有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得−1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得−1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i−1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=−1),b=P(X=0),c= P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1−p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.22.在直角坐标系xOy中,曲线C的参数方程为{x=1−t21+t2y=4t1+t2(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+√3ρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.23.已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.答案和解析1.【答案】C【解析】【分析】本题考查了一元二次不等式的解法和交集的运算,属基础题.利用一元二次不等式的解法和交集的运算即可得出.【解答】解:∵M={x|−4<x<2},N={x|x2−x−6<0}={x|−2<x<3},∴M∩N={x|−2<x<2}.故选C.2.【答案】C【解析】【分析】本题考查复数的模、复数的几何意义,属基础题.由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z−i|=1即可得解.【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z−i=x+(y−1)i,∴|z−i|=√x2+(y−1)2=1,∴x2+(y−1)2=1,故选C.3.【答案】B【解析】【分析】本题考查了指数函数和对数函数的单调性运用,属基础题.由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选B.4.【答案】B【解析】【分析】本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.充分运用黄金分割比例,计算可估计身高.【解答】解:头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm,,由头顶至咽喉的长度与咽喉至肚脐的长度之比是√5−12可得咽喉至肚脐的长度小于√5−12=√5−1≈42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是√5−12,可得肚脐至足底的长度小于26+52√5−1√5−12≈110,即有该人的身高小于110+68=178cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×√5−12≈65cm,即该人的身高大于65+105=170cm,故选B.5.【答案】D【解析】【分析】本题考查了函数图象的作法及函数的奇偶性,解题关键是奇偶性和特殊值,属基础题.由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C,从而可得结果.【解答】解:∵f(x)=sinx+xcosx+x2,x∈[−π,π],∴f(−x)=−sinx−xcos(−x)+x2=−sinx+xcosx+x2=−f(x),∴f(x)为[−π,π]上的奇函数,因此排除A;又f(π)=sinπ+πcosπ+π2=π−1+π2>0,因此排除B,C,故选D.6.【答案】A【解析】【分析】本题主要考查概率的求法,考查古典概型、组合的应用,考查运算求解能力,属于基础题.基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,由此能求出该重卦恰有3个阳爻的概率.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,则该重卦恰有3个阳爻的概率p=mn =2064=516.故选A.7.【答案】B【解析】【分析】本题考查了平面向量的数量积和向量的夹角,属基础题.由(a⃗−b⃗ )⊥b⃗ ,可得(a⃗−b⃗ )⋅b⃗ =0,进一步得到|a⃗||b⃗ |cos<a⃗,b⃗ >−b⃗ 2=0,然后求出夹角即可. 【解答】 解:∵(a ⃗ −b ⃗ )⊥b ⃗ ,∴(a ⃗ −b ⃗ )⋅b ⃗ =a ⃗ ⋅b ⃗ −b ⃗ 2=|a ⃗ ||b ⃗ |cos <a ⃗ ,b ⃗ >−b ⃗ 2=0, ∴cos <a ⃗ ,b ⃗ >=|b⃗ |2|a ⃗ ||b⃗ |=12,∵<a ⃗ ,b ⃗ >∈[0,π],∴<a ⃗ ,b ⃗ >=π3,故选B . 8.【答案】A【解析】【分析】本题考查了程序框图的应用问题,是基础题.模拟程序的运行,由题意,依次写出每次得到的A 的值,观察规律即可得解. 【解答】解:模拟程序的运行,可得: A =12,k =1;满足条件k ≤2,执行循环体,A =12+12,k =2;满足条件k ≤2,执行循环体,A =12+12+12,k =3;此时,不满足条件k ≤2,退出循环,输出A 的值为12+12+12,观察A 的取值规律可知图中空白框中应填入A =12+A . 故选A . 9.【答案】A【解析】【分析】本题考查等差数列的通项公式以及前n 项和公式,关键是求出等差数列的公差以及首项,属于基础题.根据题意,设等差数列{a n }的公差为d ,则有{4a 1+6d =0a 1+4d =5,求出首项和公差,然后求出通项公式和前n 项和即可. 【解答】解:设等差数列{a n }的公差为d , 由S 4=0,a 5=5,得 {4a 1+6d =0a 1+4d =5,∴{a 1=−3d =2, ∴a n =2n −5,S n =n (−3+2n−5)2=n 2−4n ,故选:A .10.【答案】B【解析】【分析】本题考查了椭圆的定义以及方程、余弦定理,属中档题.根据椭圆的定义以及余弦定理列方程可解得a=√3,b=√2,可得椭圆的方程.【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|=a2,∴|AF2|=a,|BF1|=32a,则|AF2|=|AF1|=a,所以A为椭圆短轴端点,在Rt△AF2O中,cos∠AF2O=1a,在△BF1F2中,由余弦定理可得cos∠BF2F1=4+(a2)2−(32a)22×2×a2=4−2a22a,根据cos∠AF2O+cos∠BF2F1=0,可得1a +4−2a22a=0,解得a2=3,∴a=√3,b2=a2−c2=3−1=2.所以椭圆C的方程为:x23+y22=1,故选B.11.【答案】C【解析】【分析】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.根据绝对值的应用,结合三角函数的性质分别进行判断即可.【解答】解:f(−x)=sin|−x|+|sin(−x)|=sin|x|+|sinx|=f(x),且f(x)的定义域为R,则函数f(x)是偶函数,故①正确;当x∈(π2,π)时,sin|x|=sinx,|sinx|=sinx,则f(x)=sinx+sinx=2sinx为减函数,故②错误;当0≤x≤π时,f(x)=sin|x|+|sinx|=sinx+sinx=2sinx,由f(x)=0,得2sinx=0,即x=0或x=π,由f(x)是偶函数,得在[−π,0)上还有一个零点x=−π,即函数f(x)在[−π,π]有3个零点,故③错误;当sin|x|=1,|sinx|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选C.12.【答案】D【解析】【分析】本题考查多面体外接球体积的求法,是中档题.设∠PAC=θ,PA=PB=PC=2x,EC=y,根据余弦定理以及勾股定理证明三条侧棱两两互相垂直,即可求外接球O的体积.【解答】解:设∠PAC=θ,PA=PB=PC=2x,EC=y,因为E,F分别是PA,AB的中点,所以EF=12PB=x,AE=x,在△PAC中,cosθ=4x2+4−4x22×2x×2=12x,在△EAC中,cosθ=x2+4−y22×2x,整理得x2−y2=−2,①因为△ABC是边长为2的正三角形,所以CF=√3,又∠CEF=90°,则x2+y2=3,②,由①②得x=√22,所以PA=PB=PC=√2,所以PA2+PB2=4=AB2,即PA⊥PB,同理可得PA⊥PC,PB⊥PC,则PA、PB、PC两两垂直,则球O是以PA为棱的正方体的外接球,则外接球的直径为√2+2+2=√6,所以球O的体积为.故选D.13.【答案】y=3x【解析】【分析】本题考查了利用导数研究曲线上某点的切线方程,属基础题.对y=3(x2+x)e x求导,可将x=0代入导函数,求得斜率,即可得到切线方程.【解答】解:∵y=3(x2+x)e x,∴y′=3(2x+1)e x+3(x2+x)e x=3e x(x2+3x+1),∴当x=0时,y′=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为y=3x.14.【答案】1213【解析】【分析】本题主要考查等比数列前n项和的计算,属于基础题.根据等比数列的通项公式,建立方程求出q的值,结合等比数列的前n项和公式进行计算即可.【解答】解:设等比数列{a n}的公比为q,由a42=a6,得(a1q3)2=a1q5,即q6a12=q5a1,解得q=3,则S5=13(1−35)1−3=1213,故答案为1213.15.【答案】0.18【解析】【分析】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.【解答】解:甲队的主客场安排依次为“主主客客主客主”.甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,第六场一定是甲胜,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p 1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p 2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p 3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p 4=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p =p 1+p 2+p 3+p 4=0.036+0.036+0.054+0.054=0.18. 故答案为:0.18. 16.【答案】2【解析】【分析】本题考查双曲线的简单性质,是中档题.由题意画出图形,结合已知可得F 1B ⊥OA ,可得一条渐近线方程的倾斜角为,从而可得,进而求出离心率.【解答】 解:如图,∵F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,且F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0, ∴F 1B ⊥F 2B,F 1A =AB , ∴OA ⊥F 1B ,则△AOF 1≌△AOB , 则,所以一条渐近线的斜率为,所以e =c a =√1+b 2a 2=2,故答案为:2.17.【答案】解:(1)∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sinB −sinC)2=sin 2A −sinBsinC .则sin 2B +sin 2C −2sinBsinC =sin 2A −sinBsinC , ∴由正弦定理得:b 2+c 2−a 2=bc , ∴cosA =b 2+c 2−a 22bc=bc 2bc =12,∵0<A <π,∴A =π3.(2)∵√2a +b =2c ,A =π3,∴由正弦定理得√2sinA +sinB =2sinC , ∴√62+sin(2π3−C)=2sinC ,即√62+√32cosC +12sinC =2sinC ,即√62+√32cosC −32sinC =0, 即sin(C −π6)=√22,,则,∴C −π6=π4,C =π4+π6, ∴sinC =sin(π4+π6)=sin π4cos π6+cos π4sin π6=√22×√32+√22×12=√6+√24.【解析】本题考查了正弦定理、余弦定理,属于中档题. (1)由正弦定理得:b 2+c 2−a 2=bc ,再由余弦定理求出A .(2)由已知及正弦定理可得:sin(C −π6)=√22,可解得C 的值,由两角和的正弦函数公式即可得解.18.【答案】(1)证明:如图,过N 作NH ⊥AD ,连接BH ,则NH//AA 1,H 是AD 中点,且NH =12AA 1, 又MB//AA 1,MB =12AA 1,∴四边形NMBH 为平行四边形,则NM//BH ,由H 为AD 中点,而E 为BC 中点,∴BE//DH ,BE =DH ,则四边形BEDH 为平行四边形,则BH//DE , ∴NM//DE ,∵NM ⊄平面C 1DE ,DE ⊂平面C 1DE , ∴MN//平面C 1DE ;(2)解:以D 为坐标原点,以平面ABCD 内垂直于DC 的直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴建立空间直角坐标系,则N(√32,−12,2),M(√3,1,2),A 1(√3,−1,4),NM ⃗⃗⃗⃗⃗⃗⃗ =(√32,32,0),NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,−12,2), 设平面A 1MN 的一个法向量为m⃗⃗⃗ =(x,y,z),由{m ⃗⃗⃗ ⋅NM ⃗⃗⃗⃗⃗⃗⃗ =√32x +32y =0m⃗⃗⃗ ⋅NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x −12y +2z =0,取x =√3,得m ⃗⃗⃗ =(√3,−1,−1), 又平面MAA 1的一个法向量为n ⃗ =(1,0,0), ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=√3√5=√155. ∴二面角A −MA 1−N 的正弦值为√105.【解析】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.(1)过N 作NH ⊥AD ,证明NM//BH ,再证明BH//DE ,可得NM//DE ,再由线面平行的判定可得MN//平面C 1DE ;(2)以D 为坐标原点建立空间直角坐标系,分别求出平面A 1MN 与平面MAA 1的一个法向量,由两法向量所成角的余弦值可得二面角A −MA 1−N 的正弦值.19.【答案】解:(1)设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2),由题意可得F (34,0),故|AF |+|BF |=x 1+x 2+32, 因为|AF|+|BF|=4, 所以x 1+x 2=52, 联立{y =32x +t y 2=3x,整理得9x 2+12(t −1)x +4t 2=0,由韦达定理可知,x 1+x 2=−12(t−1)9,从而−12(t−1)9=52,解得t =−78,所以直线l 的方程为y =32x −78.(2)设直线l :y =32x +m ,A (x 1,y 1),B (x 2,y 2), 由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2, 联立{y =32x +m y 2=3x,整理得y 2−2y +2m =0,由韦达定理可知,y 1+y 2=2,又y 1=−3y 2,解得y 1=3,y 2=−1, 代入抛物线C 方程得,x 1=3,x 2=13, 即A (3,3),B (13,−1),故|AB |=√(3−13)2+(3+1)2=4√133.【解析】本题考查了抛物线的定义,考查直线与抛物线的位置关系,属于中档题.(1)根据韦达定理以及抛物线的定义可得.(2)由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2,由韦达定理可得y 1+y 2=2,从而解出A 、B 两点坐标,使用弦长公式计算即可.20.【答案】证明:(1)f(x)的定义域为(−1,+∞), 令f′(x )=ℎ(x)=cosx −11+x , ℎ′(x )=−sinx +1(1+x)2,令g(x)=−sinx +1(1+x)2,则g′(x)=−cosx −2(1+x)3<0在(−1,π2)恒成立, ∴ℎ′(x )在(−1,π2)上为减函数,又ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x )在(−1,π2)上存在唯一的零点x 0,结合单调性可得,f′(x )在(−1,x 0)上单调递增,在(x 0,π2)上单调递减, 可得f′(x )在区间(−1,π2)存在唯一极大值点; (2)由(1)知,当x ∈(−1,0)时,f′(x )单调递增, 则f′(x )<f′(0)=0,则f(x)单调递减; 当x ∈(0,x 0)时,f′(x )单调递增, 则f′(x )>f′(0)=0,f(x)单调递增; 由于f′(x )在(x 0,π2)上单调递减, 且f′(x 0)>0,,由零点存在定理可知,函数f′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f′(x )单调递减,则f′(x )>f′(x 1)=0,故f(x)单调递增; 当x ∈(x 1,π2)时,f′(x )单调递减, 则f′(x )<f′(x 1)=0,f(x)单调递减. 当x ∈(π2,π)时,cosx <0,−11+x <0, 于是f′(x )=cosx −11+x <0,f(x)单调递减, 其中f(π2)=1−ln(1+π2)>1−ln(1+3.22)=1−ln2.6>1−lne =0,f(π)=−ln(1+π)<−ln3<0. 于是可得下表:结合单调性可知,函数f(x)在(−1,π2]上有且只有一个零点0,由函数零点存在性定理可知,f(x)在(π2,π)上有且只有一个零点x2,当x∈[π,+∞)时,f(x)=sinx−ln(1+x)<1−ln(1+π)<1−ln3<0,因此函数f(x)在[π,+∞)上无零点.综上,f(x)有且仅有2个零点.【解析】本题考查利用导数求函数的极值,考查函数零点的判定,考查数学转化思想方法,考查逻辑思维能力,难度较大.(1)f(x)的定义域为(−1,+∞),求出原函数的导函数,令f′(x)=ℎ(x)=cosx−11+x,进一步求导,得到ℎ′(x)在(−1,π2)上为减函数,结合ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x)在(−1,π2)上存在唯一得零点x0,结合单调性可得,f′(x)在(−1,x0)上单调递增,在(x0,π2)上单调递减,可得f′(x)在区间(−1,π2)存在唯一极大值点;(2)由(1)知,当x∈(−1,0)时,f′(x)<0,f(x)单调递减;当x∈(0,x0)时,f′(x)> 0,f(x)单调递增;由于f′(x)在(x0,π2)上单调递减,且f′(x0)>0,,可得函数f′(x)在(x0,π2)上存在唯一零点x1,结合单调性可知,当x∈(x0,x1)时,f(x)单调递增;当x∈(x1,π2)时,f(x)单调递减.当x∈(π2,π)时,f(x)单调递减,再由f(π2)>0,f(π)<0.然后列x、f′(x)与f(x)的变化情况表得答案.21.【答案】(1)解:X的所有可能取值为−1,0,1.P(X=−1)=(1−α)β,P(X=0)=αβ+(1−α)(1−β),P(X=1)=α(1−β),(2)(i)证明:∵α=0.5,β=0.8,∴由(1)得,a=0.4,b=0.5,c=0.1.因此p i=0.4p i−1+0.5p i+0.1p i+1(i=1,2,…,7),故0.1(p i+1−p i)=0.4(p i−p i−1),即p i+1−p i=4(p i−p i−1),又∵p1−p0=p1≠0,∴{p i+1−p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列;(ii)解:由(i)可得,p8=(p8−p7)+(p7−p6)+⋯+(p1−p0)+p0=p1(1−48)1−4=48−13p1,∵p 8=1,∴p 1=348−1,∴p 4=(p 4−p 3)+(p 3−p 2)+(p 2−p 1)+(p 1−p 0)+p 0=44−13p 1=1257.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理.【解析】本题主要考查数列的应用,考查离散型随机变量的分布列,属于难题. (1)由题意可得X 的所有可能取值为−1,0,1,再由相互独立试验的概率求P(X =−1),P(X =0),P(X =1)的值,则X 的分布列可求;(2)(i)由α=0.5,β=0.8结合(1)求得a ,b ,c 的值,代入p i =ap i−1+bp i +cp i+1,得到(p i+1−p i )=4(p i −p i−1),由p 1−p 0=p 1≠0,可得{p i+1−p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列;(ii)由(i)可得,p 8=(p 8−p 7)+(p 7−p 6)+⋯+(p 1−p 0)+p 0,利用等比数列的前n 项和与p 8=1,得p 1=348−1,进一步求得p 4=1257,即可求解. 22.【答案】解:(1)由{x =1−t 21+t 2y =4t 1+t 2(t 为参数),得{x =1−t 21+t 2y 2=2t1+t2, 两式平方相加,得x 2+y 24=1(x ≠−1),∴C 的直角坐标方程为x 2+y 24=1(x ≠−1),由2ρcosθ+√3ρsinθ+11=0,得2x +√3y +11=0,即直线l 的直角坐标方程为2x +√3y +11=0.(2)设与直线2x +√3y +11=0平行的直线方程为2x +√3y +m =0,联立{2x +√3y +m =04x 2+y 2−4=0,得16x 2+4mx +m 2−12=0. 由Δ=16m 2−64(m 2−12)=0, 得m =±4,∴当m =4时,直线2x +√3y +4=0与曲线C 的切点到直线2x +√3y +11=0的距离最小, 即为直线2x +√3y +4=0与直线2x +√3y +11=0之间的距离√22+3=√7.【解析】本题考查简单曲线的极坐标方程,考查参数方程化为普通方程,考查直线与椭圆位置关系的应用,训练了两平行线间的距离公式的应用,是中档题.(1)把曲线C 的参数方程变形,平方相加可得普通方程,把x =ρcosθ,y =ρsinθ代入2ρcosθ+√3ρsinθ+11=0,可得直线l 的直角坐标方程.(2)写出与直线l 平行的直线方程为2x +√3y +m =0,与曲线C 联立,化为关于x 的一元二次方程,利用判别式等于0求得m ,转化为两平行线间的距离求C 上的点到l 距离的最小值.23.【答案】证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1.要证1a +1b+1c≤a2+b2+c2;因为abc=1.即证:abca +abcb+abcc≤a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即证:2bc+2ac+2ab≤2a2+2b2+2c2;即证:2a2+2b2+2c2−2bc−2ac−2ab≥0,即证(a−b)2+(a−c)2+(b−c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a−b)2≥0;(a−c)2≥0;(b−c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a−b)2+(a−c)2+(b−c)2≥0得证.故1a +1b+1c≤a2+b2+c2得证.(2)已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.a+b≥2√ab;b+c≥2√bc;c+a≥2√ac;当且仅当a=b,b=c,c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a)≥3×8√ab⋅√bc⋅√ac=24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.【解析】本题考查基本不等式的运用,分析法和综合法的证明方法,属于中档题.(1)利用基本不等式和“1”的运用可证;(2)利用综合法可证.。
2019年高考数学试题分项版——三角函数(解析版)

2019年高考数学试题分项版——三角函数(解析版)1、(2019年高考新课标Ⅰ卷文)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a ,2c ,2cos 3A,则b=(A )2(B )3(C )2 (D )3【答案】D 【解析】试题分析:由由余弦定理得3222452b b,解得3b(31b舍去),选 D.2、(2019年高考新课标Ⅰ卷文)若将函数y=2sin (2x+π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y=2sin(2x+π4) (B )y=2sin(2x+π3) (C )y=2sin(2x –π4) (D )y=2sin(2x –π3)【答案】D 【解析】试题分析:函数y2sin(2x)6的周期为,将函数y2sin(2x)6的图像向右平移14个周期即4个单位,所得函数为y2sin[2(x))]2sin(2x)463,故选 D.3、(2019年高考新课标Ⅰ卷文)若函数1()sin 2sin 3f x x -x a x 在,单调递增,则a 的取值范围是(A )1,1(B )11,3(C )11,33(D )11,3【答案】C 【解析】试题分析:用特殊值法:取1a ,1sin 2sin 3f x xx x,21cos 2cos 3f x x x,但2201133f ,不具备在,单调递增,排除A ,B ,D .故选C .4、(2019年高考新课标Ⅰ卷理)已知函数()sin()(0),24f x x+x,为()f x 的零点,4x为()y f x 图像的对称轴,且()f x 在51836,单调,则的最大值为(A )11 (B )9 (C )7 (D )5 【答案】B 【解析】试题分析:因为4x为()f x 的零点,4x为()f x 图像的对称轴,所以()444T kT ,即41412244k k T,所以41(*)k kN ,又因为()f x 在5,1836单调,所以5236181222T,即12,由此的最大值为9.故选B.5、(2019年高考新课标Ⅱ卷文)函数=sin()y A x 的部分图像如图所示,则(A )2sin(2)6y x(B )2sin(2)3yx(C )2sin(2+)6yx (D )2sin(2+)3yx 【答案】A6、(2019年高考新课标Ⅱ卷理)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为(A )ππ26k x k Z (B )ππ26k x k Z (C )ππ212Zk xk(D )ππ212Zk xk【答案】B考点:三角函数的图象变换与对称性.【名师点睛】平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx加减多少值.7、(2019年高考新课标Ⅱ卷理)若π3cos45,则sin 2= (A )725(B )15(C )15(D )725【答案】D 【解析】试题分析:2237cos 22cos12144525,且cos 2cos2sin 242,故选 D.8、(2019年高考新课标Ⅲ卷文)若,则()(A )(B )(C )(D )【答案】D考点:1、同角三角函数间的基本关系;2、二倍角.9、(2019年高考新课标Ⅲ卷文理)在中,,BC 边上的高等于,则tan13cos 245151545ABC △π4B =13BC sin A =(A )(B )(C )(D )【答案】D 【解析】试题分析:设边上的高线为,则,所以.由正弦定理,知,即,解得,故选D .[来源:学科网ZXXK]10、(2019年高考新课标Ⅲ卷理)若,则(A)(B)(C) 1 (D)【答案】A 【解析】试题分析:由,得或,所以,故选A .考点:1、同角三角函数间的基本关系;2、倍角公式.11、(2019年高考北京卷理) 将函数图象上的点向左平移()个单位长度得到点,若位于函数的图象上,则()A.,的最小值为B.,的最小值为[来源:Z 。
2019年高考数学(文):专题09-三角恒等变换与解三角形(命题猜想)(含答案和解析)

【考向解读】正弦定理和余弦定理以及解三角形问题是高考的必考内容,1.和差角公式、二倍角公式是高考的热点,常与三角函数式的求值、化简交汇命题.既有选择题、填空题,又有解答题,难度适中,主要考查公式的灵活运用及三角恒等变换能力.2.预测高考仍将以和差角公式及二倍角公式为主要考点,复习时应引起足够的重视.3.边和角的计算;4.三角形形状的判断;5.面积的计算;6.有关的范围问题.【命题热点突破一】三角恒等变换 例1、(2018年全国III 卷)若,则A.B.C.D.【答案】B【解析】,故答案为B.【变式探究】【2017山东,文7】函数最小正周期为A.π2 B. 2π3C.πD. 2π 【答案】C【变式探究】(1)已知θ是第四象限角,且sin ⎝⎛⎭⎫θ+π4=35,则tan ⎝⎛⎭⎫θ-π4=________.【解析】基本法:将θ-π4转化为⎝⎛⎭⎫θ+π4-π2.由题意知sin ⎝⎛⎭⎫θ+π4=35,θ是第四象限角,所以 cos ⎝⎛⎭⎫θ+π4>0,所以cos ⎝⎛⎭⎫θ+π4=1-sin 2⎝⎛⎭⎫θ+π4=45.tan ⎝⎛⎭⎫θ-π4=tan ⎝⎛⎭⎫θ+π4-π2=-1tan ⎝⎛⎭⎫θ+π4=-cos ⎝⎛⎭⎫θ+π4sin ⎝⎛⎭⎫θ+π4=-4535=-43.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知(Ⅰ)证明:a +b =2c ; (Ⅱ)求cos C 的最小值. 【答案】(Ⅰ)见解析;(Ⅱ)12【解析】 (Ⅰ)由题意知,化简得,即.因为,所以.从而.由正弦定理得2a b c +=.【感悟提升】 关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.求三角形中的角,关键是利用正弦定理或余弦定理求出某角的正弦值或余弦值,再根据角的范围求出对应的角的大小.解题时要注意利用三角形内角和定理,即A +B +C =π.【答案】 23π【解析】 ∵cos B cos C +2a c +bc =0,∴ccos B +2acos C +bcos C =0,由正弦定理得sin Ccos B +2sin Acos C +sin Bcos C =0, ∴sin (B +C )+2si n Acos C =sin A +2sin Acos C =0, ∵sin A≠0,∴cos C =-12,∴C =23π.【变式探究】在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且csin B =bcos C =3. (1)求b ;(2)若△ABC 的面积为212,求c. 【解析】【感悟提升】 求解三角形的边和面积的关键是利用正、余弦定理求出相关角度和边长.正弦定理揭示了三角形三边和其对角的正弦的比例关系,余弦定理揭示了三角形的三边和其中一个内角的余弦之间的关系.正弦定理可以使各边的比值和各个内角的正弦的比值相互转化.只要知道了三角形三边之间的比例关系即可利用余弦定理求出三角形的内角.【命题热点突破三】 正、余弦定理的应用例3、(2018年天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a,b,c .已知b sin A =a cos(B –). (Ⅰ)求角B 的大小;(Ⅱ)设a =2,c =3,求b 和sin(2A –B )的值. 【答案】(Ⅰ)B =;(Ⅱ)b =,【解析】(Ⅰ)在△ABC 中,由正弦定理,可得,又由,得,即,可得.又因为,可得B =.(Ⅱ)在△ABC 中,由余弦定理及a =2,c =3,B =,有,故b =.由,可得.因为a <c ,故.因此,所以,【变式探究】【2017课标1,文11】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
高考理数专题09 三角函数-三年 高考数学真题(理)分类汇编(学生版)

专题09 三角函数1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B5C.3D.55.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点2sin cos ++x xx x③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③D .①③④6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B .CD .27.【2018年高考全国Ⅲ卷理数】若1sin 3α=,则cos2α=A .89B .79 C .79-D .89-8.【2018年高考全国卷II 理数】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是 A .π4 B .π2C .3π4D .π9.【2018年高考天津理数】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 A .在区间35[,]44ππ上单调递增 B .在区间3[,]4ππ上单调递减 C .在区间53[,]42ππ上单调递增 D .在区间3[,2]2ππ上单调递减 10.【2018年高考浙江卷】函数y =2xsin2x 的图象可能是A .B .C .D .11.【2017年高考全国Ⅰ理数】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 212.【2017年高考全国Ⅲ理数】设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x = D .()f x 在(π2,π)单调递减 13.【2017年高考天津卷理数】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 A .23ω=,12ϕπ= B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=14.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 15.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 16.【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________. 17.【2018年高考北京卷理数】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.18.【2018年高考全国Ⅲ理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.19.【2018年高考江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.20.【2017年高考全国Ⅱ理数】函数()23sin 4f x x x =+-(π0,2x ⎡⎤∈⎢⎥⎣⎦)的最大值是 . 21.【2017年高考北京卷理数】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 22.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 23.【2017年高考江苏卷】若π1tan(),46α-=则tan α= ▲ .24.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域.25.【2017年高考浙江卷】已知函数22sin cos cos ()()x x x f x x x =--∈R .(1)求2()3f π的值. (2)求()f x 的最小正周期及单调递增区间.26.【2017年高考江苏卷】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.27.【2018年高考浙江卷】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455-,-).(1)求sin (α+π)的值; (2)若角β满足sin (α+β)=513,求cos β的值.28.【2018年高考江苏卷】已知,αβ为锐角,4tan 3=α,cos()+=αβ.(1)求cos2α的值;(2)求tan()-αβ的值.29.【2017年高考山东卷理数】设函数ππ()sin()sin()62f x x x ωω=-+-,其中.已知π()06f =.(1)求;(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数的图象,求在π3π[,]44-上的最小值. 03ω<<ω()y f x =()y g x =()g x。
2019年全国高考数学(三角部分)试题及解析

2019年全国高考(三角部分)解三角形本质上是三角形内蕴方程(三角形的正弦定理、余弦定理、三角形面积、三角形内角和定理以及三角形两边之和大于第三边)的基础上,把试题设定的条件(方程)与内蕴方程建立联系,从而求得三角形的全部或部分度量关系。
1.(2019全国Ⅰ)ABC ∆的内角A B C ,,的对边分别为a b c ,,,设()22sin sin sin sin sin B C A B C -=-. (1)求A ;(22b c +=,求sin C .解:(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=,由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒<<︒,所以60A =︒.(2)由(1)知120B C =︒-2b c +=()sin 1202sin A C C +︒-=,1+sin 2sin 2C C C +=,可得()cos 602C +︒= 由于0120C ︒<<︒,所以()sin 60C +︒=()()()sin =sin 6060sin 60co (s60cos 60sin 60C C C C +︒-︒=+︒︒-+︒︒解题策略:单角与复合角思想)2.(2019全国Ⅲ)ABC ∆的内角A B C ,,的对边分别为a b c ,,.已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且c 1=,求ABC ∆面积的取值范围. 解:(1)由题设及正弦定理得sin sin sin sin 2A CA B A +=. 因为sin 0A ≠,所以sinsin 2A CB +=. 由180A BC ++=︒,可得sin cos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此60B =︒.(2)由题设及(1)知ABC ∆的面积ABC S ∆. 由正弦定理得()sin 120sin 112sin sin sin 22CC c A a C C C ︒-===+=+(化成一个角的三角函数) 由于ABC ∆为锐角三角形,故090A ︒<<︒,090C ︒<<︒.由(1)知120A C +=︒,所以3090C ︒<<︒,故122a <<ABC S ∆<<因此,ABC ∆面积的取值范围是⎝⎭.3.(2019全国Ⅱ第9题)下列函数中,已2π为周期且在区间,42ππ⎛⎫⎪⎝⎭单调递增的是( ) .()cos 2f x x =Α ()sin 2.f x x =Β ()cos f x x =C. .()sin f x x =D解:对于A ,函数()cos 2f x x =的周期为2π,当,42x ππ⎛⎫∈ ⎪⎝⎭时,2,2x ππ⎛⎫∈ ⎪⎝⎭,函数()f x 单调递增,故A 正确;对于B ,函数()sin 2f x x =的周期为2π,当,42x ππ⎛⎫∈ ⎪⎝⎭时,2,2x ππ⎛⎫∈ ⎪⎝⎭,函数()f x 单调递减,故B 不正确;对于C ,函数()cos cos f x x x ==的周期为2π,故C 不正确;对于D ,函数sin ,0,()sin sin ,0,x x f x x x x ≥⎧==⎨-<⎩,由正弦函数图象知,在0x ≥和0x <时,()f x 均以2π为周期,但是在整个定义域上()f x 不是正确函数,故D 不正确. 综上所述,选A .4.(2019全国Ⅱ第10题)已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin2cos21αα=+,则sin α=( )1.5Α Β D 解:(方法一):2sin2cos21αα=+,得24sin cos 2cos 11ααα=-+,即22sin cos cos ααα=,因为0,2πα⎛⎫∈ ⎪⎝⎭,则1t a n 2α=,所以sin α=.(方法二):由2sin2cos21αα=+,得24sin cos 12sin 1ααα=-+,即22sin cos 1sin ααα=-,因为0,2πα⎛⎫∈ ⎪⎝⎭,所以cos α=22sin 1sin α=-,解得sin α=.故选B .5.(2019全国Ⅱ第15题)在ABC ∆的内角A B C ,,的对边分别为a b c ,,.若6b =,2a c =,3B π=,则ABC∆的面积为 .解:(方法一):因为2a c =,6b =,3B π=,所以由余弦定理2222cos b a c ac B =+-,得()2226222cos3c c c c π=+-⨯⨯,得c =a =ABC ∆的面积11sin sin 223S ac B π==⨯=(方法二):因为2a c =,6b =,3B π=,所以由余弦定理2222cos b a c ac B =+-,得()2226222cos3c c c c π=+-⨯⨯,得c =a =222abc =+,所以2A π=,所以ABC ∆的面积162S =⨯=. 6.(2019全国Ⅰ第11题)关于函数()sin sin f x x x =+有下述四个结论: ①()f x 是偶函数②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增③()f x 在[],ππ-有4个零点 ④()f x 的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④ .D ①③ 考查内容:奇偶性、单调性、零点、最值,即函数的基本性质.解:①显然()f x 是偶函数,因为()sin sin()sin sin f x x x x x -=-+-=+,所以①正确;②因为,2x ππ⎛⎫∈ ⎪⎝⎭,所以()sin sin f x x x =+sin sin 2sin x x x =+=,而sin x 在,2ππ⎛⎫⎪⎝⎭单调递减,所以②错误;③因为()f x 是偶函数,所以只需考虑[]0,x π∈的图象,当[]0,x π∈时,()2sin f x x =,其图象如图所示,所以③错误;④正确.故选C .7.(2019全国Ⅲ12题)设函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭,已知()f x 在[]02π,有且仅有5个零点.下列四个结论: ①()f x 在()0,2π有且仅有3个极大值点 ②()f x 在()0,2π有且仅有2个极小值点 ③()f x 在0,10π⎛⎫⎪⎝⎭单调递增④ω是取值范围是1229,510⎡⎫⎪⎢⎣⎭其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④解:由sin y x =sin 5y x π⎛⎫=+ ⎪⎝⎭ sin 5y x πω⎛⎫=+ ⎪⎝⎭.令05x πω+=,得5x πω=-,周期2T πω=,所以229555x T ππππωωωω=-+=-+=,419255x T ππωω=-+=, 66293555x T ππππωωωω=-+=-+=,51929245525x πππωωω+==,4355210A x πππωωω-+==,15π()向左平移个单位12ω()横坐标伸缩原来的倍对于①:已知()f x 在[]02π,有且仅有5个零点,根据图象可知函数()f x 在(0,2)π有且仅有3个极大值点,所以①是正确;对于②:因为2B x π<或2B x π>,因此可能会出现3个极小值点,有时②是错误; 对于④:依题意,2429255ππωω≤<,即1229510ω≤<,所以④正确; 对于③:因为310A x πω=,因为1229510ω≤<,所以310A x πω=3329291010ππ>=⨯,310A x πω=3128105ππ≤=⨯, 所以3298A x ππ<≤,而31029ππ<,所以函数()f x 在0,10π⎛⎫⎪⎝⎭单调递增,所以③正确. 综上所述,①③④正确,故选D .。
专题09 三角函数与解三角形2019年新课标全国卷(123卷)理科数学备考宝典

2019年新课标全国卷(1、2、3卷)理科数学备考宝典9.三角函数与解三角形一、2018年考试大纲 二、新课标全国卷命题分析 三、典型高考试题讲评2011—2018年新课标全国(1卷、2卷、3卷)理科数学分类汇编——9.三角函数与解三角形 一、考试大纲1.任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化. 2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义. (2)能利用单位圆中的三角函数线推导出2πα±,απ±的正弦、余弦、正切的诱导公式,能画出 y = sin x ,y =cos x ,y = tan x 的图像,了解三角函数的周期性.(3)理解正弦函数、余弦函数在区间[ 0,2π ]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间[,]22ππ-内的单调性.(4)理解同角三角函数的基本关系式:22sin cos 1x x +=,sin tan cos xx x=. (5)了解函数 y =A sin(ωx+φ )的物理意义;能画出 y =A sin(ωx+φ)的图像,了解参数A ,ω,φ对函数图像变化的影响.(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 3.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.4.应用:能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题. 二、新课标全国卷命题分析新课标全国卷对于三角函数的考查比较固定,一般考查三角函数的图象与性质、三角恒等变换、解三角形,一般是1小1大,或者3小题,一般考查考生转化与化归思想和运算求解能力。
三角函数求值、三角恒等变换、三角函数的单调性、奇偶性、周期性、对称性、最值范围、图象变换等都是热门考点。
解三角形问题也是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”. 三、典型高考试题讲评题型1 三角函数的定义、同角三角函数的基本关系 例1 (2016·新课标Ⅲ,理5)若3tan 4α=,则2cos 2sin 2αα+=( ) A.6425 B. 4825 C. 1 D. 1625解析:22222cos 4sin cos 14tan 64cos 2sin 225cos sin 1tan ααααααααα+++===++,故选A. 【解题技巧】本题考查三角恒等变换,齐次化切. 题型2 三角函数的恒等变换例2 (2018·新课标Ⅲ,理4)若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-解析:227cos 212sin 199αα=-=-=.故选B.例3 (2015·新课标Ⅰ,2)sin 20cos10cos160sin10-=( )A .32-B .32C .12-D .12解析:sin 20cos10cos160sin10sin 20cos10cos 20sin10sin30-=+=,选D .. 题型3 三角恒等变换与三角函数的值域例4 (2018·新课标Ⅰ,理16)已知函数x x x f 2sin sin 2)(+=,则)(x f 的最小值是 .【答案】233-解析:方法一:()2sin sin 22sin 2sin cos 2sin (1cos )f x x x x x x x x =+=+=+, 所以222223[()]4sin (1cos )4(1cos )(1cos )4(1cos )(1cos )f x x x x x x x =+=-+=+- 4344(1cos )(1cos )(1cos )(33cos )27(1cos )(33cos )3344x x x x x x ++++++-⎛⎫=+-= ⎪⎝⎭≤, 所以函数()f x 的值域为3333,22⎡⎤-⎢⎥⎣⎦,所以()f x 的最小值为33- 方法二:23()2sin sin 22sin 2sin cos 2sin (1cos )4sin cos 2cos 8sin cos 22222x x x x xf x x x x x x x x ⎛⎫=+=+=+=⋅=⋅ ⎪⎝⎭3222223(sin cos )3sin cos cos cos 222222x x x x x x ⎛⎫=⋅⋅⋅ ⎪⎝⎭4222243sin cos cos cos 3222244x x x x ⎛⎫+++ ⎪⎛⎫= ⎪ ⎪⎝⎭ ⎪⎝⎭≤,33333sin cos ,162216x x ∴-≤≤ 332sin sin 22x x ∴+-≥. 方法三:x x x f 2cos 2cos 2)(+=')1cos 2)(1(cos 2-+=x x0)(>'x f 3232ππππ+<<-⇒k x k ,函数)(x f 在)32,32(ππππ+-k k 单调递增;0)(<'x f 32352ππππ-<<-⇒k x k ,函数)(x f 在)32,352(ππππ--k k 单调递减; ∴32ππ-=k x 时,函数)(x f 有最小值,即)32()(min ππ-=k f x f )32(2sin )32sin(2ππππ-+-=k k 233-=. 题型4 三角函数的图形变换例5 (2017全国1理9)已知曲线1cos C y x =:,22πsin 23C y x ⎛⎫=+⎪⎝⎭:,则下面结论正确的是( ). A.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC.把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD.把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C解析 :首先曲线1C ,2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224C y x y x x ⎛⎫⎛⎫⎛⎫=+−−−−−−−−−−→=+=+→ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭上各坐短到原的倍点横标缩来2ππsin 2sin 233y x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.注意ω的系数,左右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D. 【解题技巧】关于y =Asin (ωx +φ)函数图像由y =sinx 的图像的变换,先将y =sinx 的图像向左(或右)平移|φ|个单位,再将其上的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的1ω倍,再将其纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍,也可先进行伸缩变换,再进行平移变换,此时平移不再是|φ|个单位,而是|φω|个单位,原则是保证x 的系数为1,同时注意变换的方法不能出错. 题型5 三角函数的单调性、奇偶性、周期性、对称性 例6 (2017·新课标Ⅲ,6)设函数()πcos 3f x x ⎛⎫=+⎪⎝⎭,则下列结论错误的是( ). A .()f x 的一个周期为2-πB .()y f x =的图像关于直线83x π=对称 C .()f x +π的一个零点为6x π=D .()f x 在π,2⎛⎫π⎪⎝⎭单调递减 解析: 函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图像可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误.故选D.例7 (2016·新课标Ⅱ,理7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( )A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈解析:平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .题型6 三角函数性质的综合应用例8 (2016全国乙理12)已知函数π()sin()0,2f x x ωϕωϕ⎛⎫=+>≤⎪⎝⎭,π4x =-为()f x 的零点,π4x =为()y f x =图像的对称轴,且()f x 在π5π1836⎛⎫⎪⎝⎭,上单调,则ω的最大值为( ).A.11B.9C.7D.5解析:选B. 方法1:因为x =-π4为函数f(x)的零点,x =π4为y =f(x)图像的对称轴,所以π2=kT 2+T4(k ∈Z ,T 为周期),得T =2π2k+1(k ∈Z). 又f(x)在(π18,5π36)上单调,所以T ≥π6,k ≤112,又当k =5时,ω=11,φ=-π4,f(x)在(π18,5π36)上不单调;当k =4时,ω=9,φ=π4,f(x)在(π18,5π36)上单调,满足题意; 故ω=9,即ω的最大值为9.方法2:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤,接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调;若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减.故选B .题型7 解三角形、正余弦定理例9 (2018·新课标Ⅱ,6)在ABC △中,5cos2C =,1BC =,5AC =,则AB =( ) A .2 B 30 C 29 D .5解析:因为2cos 2cos 12CC =-,所以 253cos 215C =-=-⎝⎭, 由余弦定理可知:2222cos AB AC BC AC BC C =+-⋅,222351251325AB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,故42AB =.题型8 三角函数与解三角形的综合应用例10 (2017·新课标Ⅰ,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长解析:(1)∵ABC △面积23sin a S A =.且1sin 2S bc A =,∴21sin 3sin 2a bc A A =,∴223sin 2a bc A =,∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.(2)由(1)得2sin sin 3B C =,1cos cos 6B C =,∵πA B C ++=, ∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=, 又∵()0πA ∈,,∴60A =︒,3sin A ,1cos 2A =,由余弦定理得2229a b c bc =+-= ①由正弦定理得sin sin a b B A =⋅,sin sin a c C A =⋅,∴22sin sin 8sin a bc B C A=⋅= ② 由①②得33b c +=∴333a b c ++=ABC △周长为333+2011年—2018年新课标全国卷理科数学试题分类汇编9.三角函数与解三角形一、选择题(2018·新课标Ⅱ,6)在ABC △中,5cos25C =,1BC =,5AC =,则AB =( ) A .2 B 30 C 29 D .5(2018·新课标Ⅲ,理4)若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-(2018·新课标Ⅲ,理9)ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =( )A .2π B .3π C .4π D .6π (2017·新课标Ⅰ,9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2(2017·新课标Ⅲ,6)设函数()πcos 3f x x ⎛⎫=+⎪⎝⎭,则下列结论错误的是( ). A .()f x 的一个周期为2-πB .()y f x =的图像关于直线83x π=对称 C .()f x +π的一个零点为6x π=D .()f x 在π,2⎛⎫π⎪⎝⎭单调递减(2016·新课标Ⅰ,12)已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5(2016·新课标Ⅱ,7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( ) A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈(2016·新课标Ⅱ,9)若3cos()45πα-=,则sin 2α =( ) A .725B .15C .15-D .725-(2016·新课标Ⅲ,5)若3tan 4α=,则2cos 2sin 2αα+=( ) A.6425 B. 4825 C. 1 D. 1625(2016·新课标Ⅲ,8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( )A.31010 B. 1010 C.1010- D. 31010-(2015·新课标Ⅰ,2)sin 20cos10cos160sin10-=( )A .32-B .32C .12-D .12(2015·新课标Ⅰ,8)函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z ∈z B .13(2,2),44k k k ππ-+∈Z ∈z C .13(,),44k k k -+∈Z D .13(2,2),44k k k -+∈Z(2014·新课标Ⅰ,6)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( ) (2014·新课标Ⅰ,8)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( )A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=(2014·新课标Ⅱ,4)钝角三角形ABC 的面积是12,AB =1,BC 2AC =( )A .5B 5C .2D .1(2012·新课标Ⅰ,9)已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( )A .[12,54] B .[12,34] C .(0,12] D .(0,2](2012·新课标Ⅱ,9)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是( )A. 15[,]24B. 13[,]24C. 1(0,]2D. (0,2](2011·新课标Ⅰ,11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在(0,)2π单调递减 (B )()f x 在3(,)44ππ单调递减(C )()f x 在(0,)2π单调递增(D )()f x 在3(,)44ππ单调递增(2011·新课标Ⅰ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )A .45-B .35-C .35D .45(2011·新课标Ⅱ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( ) A .45-B .35-C .35D .45(2011·新课标Ⅱ,11)设函数()sin()cos()(0,||)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增二、填空题(2018·新课标Ⅰ,理16)已知函数x x x f 2sin sin 2)(+=,则)(x f 的最小值是 .(2018·新课标Ⅲ,理15)函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. (2018·新课标Ⅱ,理15)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________. (2017·新课标Ⅱ,14)函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 . (2016·新课标Ⅱ,13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 45A =,1cos 53C =,a = 1,则b = .(2016·新课标Ⅲ,14)函数sin 3cos y x x =-的图像可由函数sin 3cos y x x =+的图像至少向右平移______个单位长度得到.(2015·新课标Ⅰ,16)在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .(2014·新课标Ⅰ,16)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 . (2014·新课标Ⅱ,14)函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________.(2013·新课标Ⅰ,15)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________.(2013·新课标Ⅱ,15)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=_________.(2011·新课标Ⅰ,16)在ABC 中,60,3B AC ==,则2AB BC +的最大值为 . 三、解答题(2018·新课标Ⅰ,理17)在平面四边形ABCD 中,oADC 90=∠,oA 45=∠,2=AB ,5=BD .(1)求ADB ∠cos ;(2)若22=DC ,求BC .(2017·新课标Ⅰ,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长(2017·新课标Ⅱ,17)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2BA C +=. (1)求cosB ;(2)若6a c += , ABC ∆面积为2,求.b .(2017·新课标Ⅲ,17)ABC △的内角,,A B C 的对边分别为,,a b c ,已知sin 3cos 0A A =,27a =2b =.(1)求c ;(2)设D 为BC 边上一点,且 AD AC ⊥,求ABD △的面积.(2016·新课标Ⅰ,17)ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2.(Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长. (2015·新课标Ⅱ,17)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sin sin B C ∠∠;(Ⅱ) 若AD =1,DC =22,求BD 和AC 的长.(2013·新课标Ⅰ,17)如图,在△ABC 中,∠ABC =90°,AB 3BC =1,P 为△ABC 内一点,∠BPC=90°.(1)若PB =12,求PA ;(2)若∠APB =150°,求tan ∠PBA . (2013·新课标Ⅱ,17)在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB .(Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.(2012·新课标Ⅰ,17)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,cos 3sin 0a C a C b c --=. (1)求A ;(2)若2a =,△ABC 3b ,c .2011年—2018年新课标全国卷理科数学试题分类汇编9.三角函数与解三角形(逐题解析版)一、选择题(2018·新课标Ⅱ,6)在ABC △中,5cos25C =,1BC =,5AC =,则AB =( ) A .42 B .30 C .29 D .25【答案】A 解析:因为2cos 2cos 12CC =-,所以 253cos 215C ⎛⎫=-=- ⎪ ⎪⎝⎭, 由余弦定理可知:2222cos AB AC BC AC BC C =+-⋅,222351251325AB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,故,42AB =.(2018·新课标Ⅲ,理4)若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-【答案】B 解析:227cos 212sin 199αα=-=-=.故选B.(2018·新课标Ⅲ,理9)ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =( )A .2π B .3π C .4π D .6π 【答案】C 解析:2222cos 1cos 442ABCa b c ab C S ab C ∆+-===,又1sin 2ABC S ab C ∆=,故tan 1C =,∴4C π=.故选C.(2017·新课标Ⅰ,9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D 解析:1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x ,首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+−−−−−−−−−→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x . 注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D ; (2017·新课标Ⅲ,6)设函数()πcos 3f x x ⎛⎫=+⎪⎝⎭,则下列结论错误的是( ). A .()f x 的一个周期为2-πB .()y f x =的图像关于直线83x π=对称 C .()f x +π的一个零点为6x π=D .()f x 在π,2⎛⎫π⎪⎝⎭单调递减 【答案】D 解析: 函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图像可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误.故选D.(2016·新课标Ⅰ,12)已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【答案】B 解析:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤,接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调;若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减.故选B .(2016·新课标Ⅱ,7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( ) A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈【答案】B 解析:平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .(2016·新课标Ⅱ,9)若3cos()45πα-=,则sin 2α =( ) A .725 B .15 C .15- D .725-【答案】D 解析:∵3cos()45πα-=,2ππ7sin 2cos(2)cos[2()]2cos ()124425παααα=-=-=--=,故选D .(2016·新课标Ⅲ,5)若3tan 4α=,则2cos 2sin 2αα+=( )A.6425 B. 4825 C. 1 D. 1625【答案】A 解析:22222cos 4sin cos 14tan 64cos 2sin 225cos sin 1tan ααααααααα+++===++,故选A. (2016·新课标Ⅲ,8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( )A.310 B. 10 C.10- D. 310-【答案】C 解析:如图所示,可设1BD AD ==,则2AB =,2DC =,5AC ∴=,由余弦定理知,10cos 225A ==-⨯ (2015·新课标Ⅰ,2)sin 20cos10cos160sin10-=( )A .3-B .3C .12-D .12【答案】D 解析:sin 20cos10cos160sin10sin 20cos10cos 20sin10sin30-=+=,选D .. (2015·新课标Ⅰ,8)函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )DCABA .13(,),44k k k ππ-+∈Z ∈z B .13(2,2),44k k k ππ-+∈Z ∈zC .13(,),44k k k -+∈ZD .13(2,2),44k k k -+∈Z【答案】D 解析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k πππππ<+<+∈Z ,解得124k -<x <324k +,k ∈Z ,故单调减区间为(124k -,324k +),k ∈Z ,故选D . (2014·新课标Ⅰ,6)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )【答案】B 解析:如图:过M 作MD ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x x OM PM OP =cos sin x x =1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B. (2014·新课标Ⅰ,8)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】B 解析:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B(2014·新课标Ⅱ,4)钝角三角形ABC 的面积是12,AB =1,BC 2AC =( )A .5B 5C .2D .1【答案】B 解析:∵1||||sin 2ABC S AB BC B ∆=⋅⋅,即:1112sin 22B =⋅, ∴2sin 2B =,即45B =或135. 又∵222||||||2||||cos AC AB BC AB BC B =+-⋅⋅,∴2||1AC =或5, 又∵ABC ∆为钝角三角形,∴2||5AC =,即:||5AC =.(2012·新课标Ⅰ,9)已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( )A .[12,54] B .[12,34] C .(0,12] D .(0,2]【答案】A 解析:因为0ω>,2x ππ<<,所以2444x ππππωωωπ⋅+<+<⋅+,因为函数()sin()4f x x πω=+在(2π,π)上单调递减,所以242342πππωππωπ⎧⋅+≥⎪⎪⎨⎪⋅+≤⎪⎩,解得1524ω≤≤,故选A. (2012·新课标Ⅱ,9)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是() A. 15[,]24B. 13[,]24C. 1(0,]2D. (0,2]【答案】A 解析:由322,22442k k k ππππππωπωπ+≤+<+≤+∈Z 得,1542,24k k k ω+≤≤+∈Z ,15024∵,∴ωω>≤≤.(2011·新课标Ⅰ,11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增【答案】A 解析:()2)4f x x πωϕ=++,所以2ω=,又f(x)为偶函数,,424k k k z πππϕπϕπ∴+=+⇒=+∈,()2)22f x x x π∴=+=,选A .(2011·新课标Ⅰ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )A .45-B .35-C .35D .45【答案】B 解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B.(2011·新课标Ⅱ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( ) A .45-B .35-C .35D .45【答案】B 解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,故选B. (2011·新课标Ⅱ,11)设函数()sin()cos()(0,||)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增【答案】A 解析:()2)(0,||)42f x x ππωϕωϕ=++><的最小正周期为π,所以2ω=,又()()f x f x -=,∴ f (x )为偶函数,=+,4k k Z πϕπ∴∈,()2)22f x x x π∴+=,故选A. 二、填空题(2018·新课标Ⅰ,理16)已知函数x x x f 2sin sin 2)(+=,则)(x f 的最小值是 .【答案】233-解析:方法一:()2sin sin 22sin 2sin cos 2sin (1cos )f x x x x x x x x =+=+=+, 所以222223[()]4sin (1cos )4(1cos )(1cos )4(1cos )(1cos )f x x x x x x x =+=-+=+- 4344(1cos )(1cos )(1cos )(33cos )27(1cos )(33cos )3344x x x x x x ++++++-⎛⎫=+-= ⎪⎝⎭≤,所以函数()f x 的值域为3333⎡⎢⎣⎦,所以()f x 的最小值为33方法二:23()2sin sin 22sin 2sin cos 2sin (1cos )4sin cos 2cos 8sin cos 22222x x x x xf x x x x x x x x ⎛⎫=+=+=+=⋅=⋅ ⎪⎝⎭3222223(sin cos )3sin cos cos cos 222222x x x x x x ⎛⎫=⋅⋅⋅ ⎪⎝⎭4222243sin cos cos cos 3222244x x x x ⎛⎫+++ ⎪⎛⎫= ⎪ ⎪⎝⎭ ⎪⎝⎭≤,33333sin cos 22x x 332sin sin 2x x ∴+≥. 方法三:x x x f 2cos 2cos 2)(+=')1cos 2)(1(cos 2-+=x x0)(>'x f 3232ππππ+<<-⇒k x k ,函数)(x f 在)32,32(ππππ+-k k 单调递增;0)(<'x f 32352ππππ-<<-⇒k x k ,函数)(x f 在)32,352(ππππ--k k 单调递减; ∴32ππ-=k x 时,函数)(x f 有最小值,即)32()(min ππ-=k f x f )32(2sin )32sin(2ππππ-+-=k k 233-=. (2018·新课标Ⅱ,理15)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.【答案】12-【解析】解法一:2222sin cos 1sin cos 2sin cos 1cos sin 0cos sin 2cos sin 0a αβαβαβαββαβ⎧+=++=⎧⎪−−−−→⎨⎨+=++=⎪⎩⎩两边平方 解法二: sin cos 1cos 1sin cos sin 0sin cos αββααββα+==-⎧⎧⇒⎨⎨+==-⎩⎩综上所述:()1sin 2αβ+=-解法三:特殊值法 设1sin cos 2αβ==,则3cos α=,3sin β,()1sin sin cos cos sin 2αβαβαβ+=+=-.(2018·新课标Ⅲ,理15)函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 【答案】3 解析:由()cos(3)06f x x π=+=,有3()62x k k Z πππ+=+∈,解得39k x ππ=+,由039k πππ≤+≤得k 可取0,1,2,∴()cos(3)6f x x π=+在[0,]π上有3个零点.(2017·新课标Ⅱ,14)函数()23sin 34f x x x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 .【答案】1【解析】∵ ()23sin 3cos 0,42f x x x x π⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭,22sin cos 1x x +=,∴ ()21cos 3cos 4f x x x =-++,设cos t x =,[]0,1t ∈,∴ ()2134f x t t =-++,函数对称轴为[]30,1t =∈,∴ ()max 1f x =.(2016·新课标Ⅱ,13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 45A =,1cos 53C =,a = 1,则b = . 【答案】2113 解析:∵4cos 5A =,5cos 13C =,∴3sin 5A =,12sin 13C =,()63sin sin sin cos cos sin 65B A C A C A C =+=+=,由正弦定理得:sin sin b a B A =,解得2113b =.(2016·新课标Ⅲ,14)函数sin 3cos y x x =-的图像可由函数sin 3cos y x x =+的图像至少向右平移______个单位长度得到. 【答案】23π 解析:sin 3cos 2sin ,sin 3cos 2sin 33y x x x y x x x ππ⎛⎫⎛⎫=-=-=+=+ ⎪ ⎪⎝⎭⎝⎭,故可前者的图像可由后者向右平移23π个单位长度得到. (2015·新课标Ⅰ,16)在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .【答案】 (62,6+2)- 解析:如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合于E 点时,AB 最长,在BCE ∆中,75B C ∠=∠=,30E ∠=,2BC =,由正弦定理可得o osin 30sin 75BC BE=,解得BE =6+2;平移AD ,当D 与C 重合时,AB 最短,此时在BCF ∆中,75B BFC ∠=∠=,30FCB ∠=,由正弦定理知o osin 30sin 75BF BC=,解得62BF =-,所以AB 的取值范围为(62,6+2)-()23sin 3cos 4f x x x =+-.(2014·新课标Ⅰ,16)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 . 【答案】3 解析:由2a =且 (2)(sin sin )()sin b A B c b C +-=-,即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc +-=,故2221cos 22b c a A bc +-==,∴060A ∠=,∴224b c bc +-=,224b c bc bc =+-≥,∴1sin 32ABC S bc A ∆=≤(2014·新课标Ⅱ,14)函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________. 【答案】1 解析:∵()sin(2)2sin cos()sin[()]2sin cos()f x x x x x ϕϕϕϕϕϕϕ=+-+=++-+∵x R ∈,∴()f x 的最大值为1.(2013·新课标Ⅰ,15)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________. 【答案】25 解析:f (x )=sin x -2cos x 555x x ⎫⎪⎭,令cos α5sin α=5 则f (x )5α+x ),当x =2k π+π2-α(k ∈Z)时,sin(α+x )有最大值1,f (x )5即θ=2k π+π2-α(k ∈Z),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α=2555=-. (2013·新课标Ⅱ,15)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=_________.【答案】 10解析:由π1tan 1tan 41tan 2θθθ+⎛⎫+== ⎪-⎝⎭,得tan θ=13-,即sin θ=13-cos θ. 将其代入sin 2θ+cos 2θ=1,得210cos 19θ=. 因为θ为第二象限角,所以cos θ=31010-,sin θ=1010,sin θ+cos θ=10. (2011·新课标Ⅰ,16)在ABC 中,60,3B AC ==2AB BC +的最大值为 .【答案】7解析:00120120A C C A +=⇒=-,0(0,120)A ∈,22sin sin sin BC ACBC A A B==⇒= 022sin 2sin(120)3cos sin sin sin AB ACAB C A A A C B==⇒==-=+; 2AB BC ∴+=35sin 28)27)A A A A ϕϕ+=+=+,故最大值是27三、解答题(2018·新课标Ⅰ,理17)在平面四边形ABCD 中,oADC 90=∠,oA 45=∠,2=AB ,5=BD .(1)求ADB ∠cos ;(2)若22=DC ,求BC .解析:解法1:(1)在ADB ∆中,由正弦定理:A ADB ∠=∠sin 5sin 2,所以A ADB ∠=∠sin 52sin 52=,又因为o ADC 90=∠,所以oADB 90<∠,所以523cos =∠ADB . 解法2:在ADB ∆中,由余弦定理可得222252cos 222=⨯⨯-+=∠AD AD ADB ,解得232+=AD (负值舍去),再由余弦定理可得ADB ∠cos =⨯+⨯-++=5)232(225)232(222523. (2)OADB BDC 90=∠+∠,所以=∠BDC cos ADB ∠sin 52=,在BDC ∆中,由余弦定理可知2208252cos 2222BC DC BD BC DC BD BDC -+=⋅-+=∠52=,解得5=BC .(2017·新课标Ⅰ,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长解析:(1)∵ABC △面积23sin a S A =.且1sin 2S bc A =,∴21sin 3sin 2a bc A A =, ∴223sin 2a bc A =,∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.(2)由(1)得2sin sin 3B C =,1cos cos 6B C =,∵πA B C ++=, ∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=, 又∵()0πA ∈,,∴60A =︒,3sin A ,1cos 2A =,由余弦定理得2229a b c bc =+-= ①由正弦定理得sin sin a b B A =⋅,sin sin a c C A =⋅,∴22sin sin 8sin a bc B C A=⋅= ② 由①②得33b c +=∴333a b c ++=ABC △周长为333+(2017·新课标Ⅱ,17)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2BA C +=. (1)求cosB ;(2)若6a c += , ABC ∆面积为2,求.b . 解析:(Ⅰ)【解法1】由题设及2sin8sin ,2BB C B A ==++π,故sin 4-cosB B =(1),上式两边平方,整理得 217cos B-32cosB+15=0,解得 15cosB=cosB 171(舍去),=. 【解法2】由题设及2sin8sin ,2B BC B A ==++π,所以2sin 82cos 2sin 22B B B =,又02sin ≠B ,所以412tan =B ,17152tan 12tan 1cos 22=+-=B BB . (Ⅱ)由158cosB sin B 1717==得,故14a sin 217ABC S c B ac ∆==,又17=22ABC S ac ∆=,则,由余弦定理及a 6c +=得22221715b 2cos a 2(1cosB)362(1)4217a c ac B ac =+-=-+=-⨯⨯+=(+c ),所以b=2. (2017·新课标Ⅲ,17)ABC △的内角,,A B C 的对边分别为,,a b c ,已知sin 3cos 0A A =,27a =2b =.(1)求c ;(2)设D 为BC 边上一点,且 AD AC ⊥,求ABD △的面积.解析:(1)由sin 30A A =得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈,所以ππ3A +=,得2π3A =. 由余弦定理2222cos a b c bc A =+-⋅.又因为127,2,cos 2a b A ===-代入并整理得()2125c +=.故4c =.(2)因为2,27,4AC BC AB ===, 由余弦定理22227cos 2a b c C ab +-=. 因为AC AD ⊥,即ACD △为直角三角形,则cos AC CD C =⋅,得7CD =由勾股定理223AD CD AC =-又2π3A =,则2πππ326DAB ∠=-=, 1πsin 326ABD S AD AB =⋅⋅=△(2016·新课标Ⅰ,17)ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2.(Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长. 解析:⑴()2cos cos cos C a B b A c +=,由正弦定理得:()2cos sin cos sin cos sin C A B B A C ⋅+⋅=()2cos sin sin C A B C ⋅+=,∵πA B C ++=,()0πA B C ∈、、,,∴()sin sin 0A B C +=>∴2cos 1C =,1cos 2C =,∵()0πC ∈,,∴π3C =⑵ 由余弦定理得:2222cos c a b ab C =+-⋅,221722a b ab =+-⋅,()237a b ab +-= 1333sin 2S ab C =⋅,∴6ab =,∴()2187a b +-=,5a b += ∴ABC △周长为57a b c ++=(2015·新课标Ⅱ,17)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sin sin BC∠∠;(Ⅱ) 若AD =1,DC =22 ,求BD 和AC 的长.解析:(Ⅰ)1sin 2ABD S AB AD BAD ∆=⋅∠,1sin 2ADC S AC AD CAD ∆=⋅∠,因为2ABD ADC S S ∆∆=,BAD CAD ∠=∠,所以2AB AC =,由正弦定理可得sin 1sin 2B AC C AB ∠==∠.(Ⅱ)因为::2ABD ADC S S BD DC ∆∆==,22DC =2BD =ABD ∆和ADC ∆中, 由余弦定理知,2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠, 故222222326AB AC AD BD DC +=++=,由(Ⅰ)知2AB AC =,所以1AC =.(2013·新课标Ⅰ,17)如图,在△ABC 中,∠ABC =90°,AB 3BC =1,P 为△ABC 内一点,∠BPC=90°.(1)若PB =12,求PA ;(2)若∠APB =150°,求tan ∠PBA . 解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=117323cos 30424+-︒=,故PA =72. (2)设∠PBA =α,由已知得PB =sin α,在△PBA 3sin sin(30)αα=︒-, 3cos α=4sin α,所以tan α3tan ∠PBA 3(2013·新课标Ⅱ,17)在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB .(Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.解析:(Ⅰ)由已知及正弦定理得sin A =sin B cos C +sin C sin B ①, 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C ②,由①,②和C ∈(0,π)得sin B =cos B ,又B ∈(0,π),所以4B π=. (Ⅱ)△ABC 的面积12sin 2S ac B ==. 由已知及余弦定理得224=+2cos 4a c ac π-. 又a 2+c 2≥2ac ,故22ac ≤-,当且仅当a =c 时,等号成立.因此△ABC 2+1.(2012·新课标Ⅰ,17)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,cos 3sin 0a C a C b c --=. (1)求A ;(2)若2a =,△ABC 3b ,c . 解析:(1)根据正弦定理R CcB b A a 2sin sin sin ===,得A R a sin 2=,B R b sin 2=,C R c sin 2=,因为cos 3sin 0a C a C b c +--=,所以0sin 2sin 2sin )sin 2(3cos )sin 2(=--+C R B R C A R C A R , 即0sin sin sin sin 3cos sin =--+C B C A C A ,(1)由三角形内角和定理,得C A C A C A B sin cos cos sin )sin(sin +=+=,代入(1)式得0sin sin cos cos sin sin sin 3cos sin =---+C C A C A C A C A , 化简得C C A C A sin sin cos sin sin 3=-, 因为0sin ≠C ,所以1cos sin 3=-A A ,即21)6sin(=-πA , 而π<<A 0,6566πππ<-<-A ,从而66ππ=-A ,解得3π=A .(2)若2a =,△ABC 31)得3π=A ,则⎪⎪⎩⎪⎪⎨⎧==-+=43cos 233sin 21222a bc c b bc ππ,化简得⎩⎨⎧=+=8422c b bc , 从而解得2=b ,2=c .。
三年高考(2019)高考数学试题分项版解析 专题09 三角恒等变换与求值 理(含解析)
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……专题09三角恒等变换与求值考纲解读明方向★★★分析解读:1.掌握两角和与差的正弦、余弦、正切公式及二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.备考时,应做到灵活掌握各公式的正用、逆用、变形用等.3.三角恒等变换是三角变换的工具,主要考查利用两角和与差的三角公式、二倍角公式进行三角函数的化简与求值,可单独考查,也可与三角函数的知识综合考查,分值为5分或12分,为中低档题.分析解读1.了解任意角、弧度制的概念,能正确进行弧度与角度的互化.2.会判断三角函数值的符号;理解任意角三角函数(正弦、余弦、正切)的定义.3.能利用单位圆中的三角函数线推导出±α,π±α的正弦、余弦、正切的诱导公式,会用三角函数线解决相关问题.4.理解同角三角函数的基本关系式:sin2x+cos2x=1,=tan x,全面系统地掌握知识的来龙去脉,熟悉各知识点之间的联系.5.本节内容在高考中一般融入三角函数求值、化简中,不能单独考查.2018年高考全景展示1.【2018年理数全国卷II】已知,,则__________.【答案】点睛:三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.【2018年浙江卷】已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().2.(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【答案】(Ⅰ) , (Ⅱ)或【解析】分析:(Ⅰ)先根据三角函数定义得,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.详解:(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的. 3.【2018年江苏卷】已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.2017年高考全景展示1.【2017课标II ,理14】函数()23sin 4f x x x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 。
2019高考数学真题(理)分类汇编三角函数及解三角形含答案解析
三角函数及解三角形专题1.【2019年高考全国Ⅰ卷文数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案. 2.【2019年高考全国Ⅰ卷文数】tan255°=A .−2B .−C .2D .【答案】D【解析】tan 255tan(18075)tan 75tan(4530)︒=︒+︒=︒=︒+︒=tan 45tan 301tan 45tan 30︒+︒-︒︒12+==+故选D. 【名师点睛】本题主要考查三角函数的诱导公式、两角和与差的三角函数、特殊角的三角函数值、运算求解能力.首先应用诱导公式,将问题转化成锐角三角函数的计算,进一步应用两角和的正切公式2sin cos ++x xx x计算求解.题目较易,注重了基础知识、基本计算能力的考查.3.【2019年高考全国Ⅰ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A −b sin B =4c sin C ,cos A =−14,则b c=A .6B .5C .4D .3【答案】A【解析】由已知及正弦定理可得2224a b c -=,由余弦定理推论可得2222214131cos ,,,422424b c a c c c A bc bc b +---==∴=-∴=3462b c ∴=⨯=,故选A . 【名师点睛】本题考查正弦定理及余弦定理推论的应用.先利用余弦定理推论得出a ,b ,c 关系,再结合正弦定理边角互换列出方程,解出结果. 4.【2019年高考全国Ⅱ卷文数】若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32C .1D .12【答案】A【解析】由题意知,()sin f x x ω=的周期232()44T ωπππ==-=π,解得2ω=.故选A . 【名师点睛】本题考查三角函数的极值和周期,渗透了直观想象、逻辑推理和数学运算素养.利用周期公式,通过方程思想解题.5.【2019年高考全国Ⅱ卷文数】已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=A .15BCD 【答案】B 【解析】2sin 2cos21αα=+,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,sin 5α∴=,故选B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.6.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2 B .3 C .4D .5【答案】B【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=, 得sin 0x =或cos 1x =,[]0,2πx ∈,0π2πx ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【名师点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养.令()0f x =,得sin 0x =或cos 1x =,再根据x 的取值范围可求得零点.7.【2019年高考北京卷文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数;()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,即()cos()sin()cos sin f x x b x x b x -=-+-=-,cos sin cos sin x b x x b x +=-,得sin 0b x =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【名师点睛】本题较易,注重基础知识、逻辑推理能力的考查.根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -恒成立进行判断.8.【2019年高考北京卷文数】如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β【答案】B【解析】设圆心为O ,如图1,连接OA ,OB ,AB ,OP ,则22AOB APB ∠=∠=β,所以22242OABS ⨯==扇形ββ,因为ABP AOB OAB S S S S =+-△△阴影扇形,且AOB OAB S S △扇形,都已确定, 所以当ABP S △最大时,阴影部分面积最大.观察图象可知,当P 为弧AB 的中点时(如图2),阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π−β,面积S 的最大值为ABP AOB OAB S S S S =+-△△阴影扇形=4β+S △POB + S △POA =4β+12|OP ||OB |sin (π−β)+12|OP ||OA |sin (π−β)=4β+2sin β+2sin β=4β+4 sin β,故选B. 【名师点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键是观察分析区域面积最大时的状态,并将面积用边角等表示.9.【2019年高考天津卷文数】已知函数()sin()(0,0,||π)f x A x A ωϕωϕ=+>><是奇函数,且()f x 的最小正周期为π,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若π4g ⎛⎫= ⎪⎝⎭3π8f ⎛⎫= ⎪⎝⎭A .−2B .C D .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=; ∵()f x 的最小正周期为π,2ππ,T ∴==ω∴2ω=,∴1()sin sin ,2g x A x A x ==ω又π()4g =2A =,∴()2sin 2f x x =,3π()8f = 故选C.【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数()g x ,结合函数性质逐步得出,,A ωϕ的值即可.10.【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【答案】4-【解析】23π()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x =+-=--=--+ 23172(cos )48x =-++,1cos 1x -≤≤,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.【名师点睛】本题首先应用诱导公式,转化得到二倍角的余弦,进一步应用二倍角的余弦公式,得到关于cos x 的二次函数,从而得解.注意解答本题的过程中,部分考生易忽视1cos 1x -≤≤的限制,而简单应用二次函数的性质,出现运算错误.11.【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 【答案】3π4【解析】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠∴sin cos 0B B +=,即tan 1B =-,3.4B π∴=【名师点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.本题容易忽视三角形内角的范围致误,三角形内角均在(0,π)范围内,化边为角,结合三角函数的恒等变化求角.12.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭222tan 1tan =2tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式=22112()1()33[]=1210()13⨯-+--⨯-+综上,πsin 2410α⎛⎫+= ⎪⎝⎭ 【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.由题意首先求得tan α的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.13.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以BD =.ππcos cos()cos cos sin sin 44ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征. 14.【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2). 【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=.因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积ABC S =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△. 因此,△ABC面积的取值范围是⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 15.【2019年高考北京卷文数】在△ABC 中,a =3,–2b c =,cos B =12-. (1)求b ,c 的值; (2)求sin (B +C )的值. 【答案】(1)7b =,5c =;(2【解析】(1)由余弦定理2222cos b a c ac B =+-,得2221323()2b c c =+-⨯⨯⨯-.因为2b c =+,所以2221(2)323()2c c c +=+-⨯⨯⨯-. 解得5c =.所以7b =. (2)由1cos 2B =-得sin 2B =.由正弦定理得sin sin 14a A Bb ==. 在ABC △中,B C A +=π-.所以sin()sin B C A +==【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.16.【2019年高考天津卷文数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26πB ⎛⎫+⎪⎝⎭的值. 【答案】(1)14-;(2)716+-. 【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅.(2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故71sin 2sin 2cos cos 2sin 66682B B B πππ⎛⎫+=+=⨯= ⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.17.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.【答案】(1)c =(2.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c+-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 2B B ⎛⎫+== ⎪⎝⎭【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.18.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+.【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.'因为PB ⊥AB , 所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==, 从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15.再讨论点Q 的位置. 由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,1CQ =此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+.解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3.因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (−4,−3),直线AB 的斜率为34.因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==.因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3),所以线段AD :36(44)4y x x =-+-剟.在线段AD 上取点M (3,154),因为5OM =<=, 所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.19.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)[1-+. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=,所以cos 0θ=.又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y f x f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π123x ⎛⎫=+ ⎪⎝⎭.因此,函数的值域是[1+. 【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力.20.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知角α的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(1)P ,则cos2=αAB .13C .13- D.3-【答案】B【解析】因为角α的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(1)P ,所以cos3==-α, 因此21cos 22cos 13=-=αα.故选B. 【名师点睛】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.解答本题时,先由角α的终边过点(1)P ,求出cos α,再由二倍角公式,即可得出结果.。
专题09 三角函数与解三角形-2019年新课标全国卷(1、2、3卷)理科数学备考宝典
2019年新课标全国卷(1、2、3卷)理科数学备考宝典9.三角函数与解三角形一、考试大纲1.任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化. 2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出2πα±,απ±的正弦、余弦、正切的诱导公式,能画出 y = sin x ,y =cos x ,y = tan x 的图像,了解三角函数的周期性.(3)理解正弦函数、余弦函数在区间[ 0,2π ]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间[,]22ππ-内的单调性.(4)理解同角三角函数的基本关系式:22sin cos 1x x +=,sin tan cos xx x=. (5)了解函数 y =A sin(x+ )的物理意义;能画出 y =A sin(x+)的图像,了解参数A ,,对函数图像变化的影响.(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 3.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.4.应用:能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.二、新课标全国卷命题分析新课标全国卷对于三角函数的考查比较固定,一般考查三角函数的图象与性质、三角恒等变换、解三角形,一般是1小1大,或者3小题,一般考查考生转化与化归思想和运算求解能力。
三角函数求值、三角恒等变换、三角函数的单调性、奇偶性、周期性、对称性、最值范围、图象变换等都是热门考点。
解三角形问题也是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”.三、典型高考试题讲评题型1 三角函数的定义、同角三角函数的基本关系 例1 (2016·新课标Ⅲ,理5)若3tan 4α=,则2cos 2sin 2αα+=( )A.6425 B. 4825 C. 1 D. 1625解析:22222cos 4sin cos 14tan 64cos 2sin 225cos sin 1tan ααααααααα+++===++,故选A. 【解题技巧】本题考查三角恒等变换,齐次化切.题型2 三角函数的恒等变换例2 (2018·新课标Ⅲ,理4)若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-解析:227cos 212sin 199αα=-=-=.故选B.例3 (2015·新课标Ⅰ,2)sin 20cos10cos160sin10-=( )A.-.12- D .12解析:sin 20cos10cos160sin10sin 20cos10cos 20sin10sin30-=+=,选D ..题型3 三角恒等变换与三角函数的值域例4 (2018·新课标Ⅰ,理16)已知函数x x x f 2sin sin 2)(+=,则)(x f 的最小值是 .【答案】233-解析:方法一:()2sin sin 22sin 2sin cos 2sin (1cos )f x x x x x x x x =+=+=+, 所以222223[()]4sin (1cos )4(1cos )(1cos )4(1cos )(1cos )f x x x x x x x =+=-+=+- 4344(1cos )(1cos )(1cos )(33cos )27(1cos )(33cos )3344x x x x x x ++++++-⎛⎫=+-= ⎪⎝⎭≤, 所以函数()f x的值域为⎡⎢⎣⎦,所以()f x的最小值为 方法二:23()2sin sin 22sin 2sin cos 2sin (1cos )4sin cos 2cos 8sin cos 22222x x x x xf x x x x x x x x ⎛⎫=+=+=+=⋅=⋅ ⎪⎝⎭ 3222223(sin cos )3sin cos cos cos 222222x x x x x x ⎛⎫=⋅⋅⋅ ⎪⎝⎭4222243sin cos cos cos 3222244x x xx ⎛⎫+++ ⎪⎛⎫= ⎪ ⎪⎝⎭ ⎪⎝⎭≤,3sin cos 22x x 2sin sin 2x x ∴+≥.方法三:x x x f 2cos 2cos 2)(+=')1cos 2)(1(cos 2-+=x x0)(>'x f 3232ππππ+<<-⇒k x k ,函数)(x f 在)32,32(ππππ+-k k 单调递增;0)(<'x f 32352ππππ-<<-⇒k x k ,函数)(x f 在)32,352(ππππ--k k 单调递减; ∴32ππ-=k x 时,函数)(x f 有最小值,即)32()(min ππ-=k f x f )32(2sin )32sin(2ππππ-+-=k k 233-=.题型4 三角函数的图形变换例5 (2017全国1理9)已知曲线1cos C y x =:,22πsin 23C y x ⎛⎫=+⎪⎝⎭:,则下面结论正确的是( ). A.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC.把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD.把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C解析 :首先曲线1C ,2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224C y x y x x ⎛⎫⎛⎫⎛⎫=+−−−−−−−−−−→=+=+→ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭上各坐短到原的倍点横标缩来2ππsin 2sin 233y x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.注意ω的系数,左右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D.【解题技巧】关于y =Asin (ωx +φ)函数图像由y =sinx 的图像的变换,先将y =sinx 的图像向左(或右)平移|φ|个单位,再将其上的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的1ω倍,再将其纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍,也可先进行伸缩变换,再进行平移变换,此时平移不再是|φ|个单位,而是|φω|个单位,原则是保证x 的系数为1,同时注意变换的方法不能出错.题型5 三角函数的单调性、奇偶性、周期性、对称性 例6 (2017·新课标Ⅲ,6)设函数()πcos 3f x x ⎛⎫=+⎪⎝⎭,则下列结论错误的是( ). A .()f x 的一个周期为2-πB .()y f x =的图像关于直线83x π=对称 C .()f x +π的一个零点为6x π=D .()f x 在π,2⎛⎫π⎪⎝⎭单调递减 解析: 函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图像可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误.故选D.π例7 (2016·新课标Ⅱ,理7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( )A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈解析:平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .题型6 三角函数性质的综合应用例8 (2016全国乙理12)已知函数π()sin()0,2f x x ωϕωϕ⎛⎫=+>≤⎪⎝⎭,π4x =-为()f x 的零点,π4x =为()y f x =图像的对称轴,且()f x 在π5π1836⎛⎫⎪⎝⎭,上单调,则ω的最大值为( ). A.11 B.9 C.7 D.5解析:选B. 方法1:因为x =-π4为函数f(x)的零点,x =π4为y =f(x)图像的对称轴,所以π2=kT 2+T4(k ∈Z,T 为周期),得T =2π2k+1(k ∈Z ).又f(x)在(π18,5π36)上单调,所以T ≥π6,k ≤112,又当k =5时,ω=11,φ=-π4,f(x)在(π18,5π36)上不单调;当k =4时,ω=9,φ=π4,f(x)在(π18,5π36)上单调,满足题意;故ω=9,即ω的最大值为9.方法2:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤,接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调;若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减.故选B .题型7 解三角形、正余弦定理例9 (2018·新课标Ⅱ,6)在ABC △中,cos2C 1BC =,5AC =,则AB =( ) A. BC.解析:因为2cos 2cos 12CC =-,所以23cos 215C =-=-⎝⎭, 由余弦定理可知:2222cos AB AC BC AC BC C =+-⋅,222351251325AB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,故AB =题型8 三角函数与解三角形的综合应用例10 (2017·新课标Ⅰ,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长解析:(1)∵ABC △面积23sin a S A =.且1sin 2S bc A =,∴21sin 3sin 2a bc A A =, ∴223sin 2a bc A =,∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.(2)由(1)得2sin sin 3B C =,1cos cos 6B C =,∵πA B C ++=, ∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=,又∵()0πA ∈,,∴60A =︒,sin A ,1cos 2A =,由余弦定理得2229a b c bc =+-= ①由正弦定理得sin sin a b B A =⋅,sin sin a c C A =⋅,∴22sin sin 8sin a bc B C A=⋅= ②由①②得b c +=∴3a b c ++=+ABC △周长为32011年—2018年新课标全国卷理科数学试题分类汇编9.三角函数与解三角形一、选择题(2018·新课标Ⅱ,6)在ABC △中,cos2C =1BC =,5AC =,则AB =( )A .BC .(2018·新课标Ⅲ,理4)若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-(2018·新课标Ⅲ,理9)ABC △的内角A B C ,,的对边分别为,b ,,若ABC ∆的面积为2224a b c +-,则C =( )A .2π B .3π C .4πD .6π (2017·新课标Ⅰ,9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2(2017·新课标Ⅲ,6)设函数()πcos 3f x x ⎛⎫=+⎪⎝⎭,则下列结论错误的是( ). A .()f x 的一个周期为2-πB .()y f x =的图像关于直线83x π=对称C .()f x +π的一个零点为6x π=D .()f x 在π,2⎛⎫π⎪⎝⎭单调递减 (2016·新课标Ⅰ,12)已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为 )(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5(2016·新课标Ⅱ,7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( )A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈(2016·新课标Ⅱ,9)若3cos()45πα-=,则sin 2α =( ) A .725B .15C .15-D .725-(2016·新课标Ⅲ,5)若3tan 4α=,则2cos 2sin 2αα+=( ) A.6425 B. 4825 C. 1 D. 1625(2016·新课标Ⅲ,8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( )C. D.(2015·新课标Ⅰ,2)sin 20cos10cos160sin10-=( )A .2-B .2C .12-D .12(2015·新课标Ⅰ,8)函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z B .13(2,2),44k k k ππ-+∈Z C .13(,),44k k k -+∈Z D .13(2,2),44k k k -+∈Z(2014·新课标Ⅰ,6)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )(2014·新课标Ⅰ,8)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=(2014·新课标Ⅱ,4)钝角三角形ABC 的面积是12,AB =1,BC ,则AC =( )A .5BC .2D .1(2012·新课标Ⅰ,9)已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( )A .[12,54] B .[12,34] C .(0,12] D .(0,2](2012·新课标Ⅱ,9)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是( )A. 15[,]24B. 13[,]24C. 1(0,]2D. (0,2](2011·新课标Ⅰ,11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在(0,)2π单调递减 (B )()f x 在3(,)44ππ单调递减(C )()f x 在(0,)2π单调递增(D )()f x 在3(,)44ππ单调递增(2011·新课标Ⅰ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )A .45-B .35-C .35D .45(2011·新课标Ⅱ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( )A .45-B .35-C .35D .45(2011·新课标Ⅱ,11)设函数()si n()cos()(0,||)2f x x x πωϕωϕωϕ=+++><的最小正周期为,且()()f x f x -=,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增二、填空题(2018·新课标Ⅰ,理16)已知函数x x x f 2sin sin 2)(+=,则)(x f 的最小值是 .(2018·新课标Ⅲ,理15)函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. (2018·新课标Ⅱ,理15)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.(2017·新课标Ⅱ,14)函数()23sin 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 . (2016·新课标Ⅱ,13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 45A =,1cos 53C =,a = 1,则b = .(2016·新课标Ⅲ,14)函数sin cos y x x =-的图像可由函数sin y x x =的图像至少向右平移______个单位长度得到.(2015·新课标Ⅰ,16)在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .(2014·新课标Ⅰ,16)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .(2014·新课标Ⅱ,14)函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________.(2013·新课标Ⅰ,15)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________.(2013·新课标Ⅱ,15)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=_________.(2011·新课标Ⅰ,16)在ABC V 中,60,B AC ==2AB BC +的最大值为 . 三、解答题(2018·新课标Ⅰ,理17)在平面四边形ABCD 中,oADC 90=∠,oA 45=∠,2=AB ,5=BD .(1)求ADB ∠cos ;(2)若22=DC ,求BC .(2017·新课标Ⅰ,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长(2017·新课标Ⅱ,17)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2BA C +=. (1)求cosB ;(2)若6a c += , ABC ∆面积为2,求.b .(2017·新课标Ⅲ,17)ABC △的内角,,A B C 的对边分别为,,a b c ,已知sin 0A A =,a =2b =.(1)求c ;(2)设D 为BC 边上一点,且 AD AC ⊥,求ABD △的面积.(2016·新课标Ⅰ,17)ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2. (Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长.(2015·新课标Ⅱ,17)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sin sin B C ∠∠;(Ⅱ) 若AD =1,DC =2,求BD 和AC 的长.(2013·新课标Ⅰ,17)如图,在△ABC 中,∠ABC =90°,AB ,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .(2013·新课标Ⅱ,17)在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.(2012·新课标Ⅰ,17)已知a,b,c分别为△ABC三个内角A,B,C的对边,--=.a C Cb ccos sin0a=,△ABC b,c.(1)求A;(2)若22011年—2018年新课标全国卷理科数学试题分类汇编9.三角函数与解三角形(逐题解析版)一、选择题(2018·新课标Ⅱ,6)在ABC △中,cos2C =1BC =,5AC =,则AB =( )A .BC .【答案】A 解析:因为2cos 2cos 12CC =-,所以 23cos 215C =-=-⎝⎭, 由余弦定理可知:2222cos AB AC BC AC BC C =+-⋅,222351251325AB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,故,AB =(2018·新课标Ⅲ,理4)若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-【答案】B 解析:227cos 212sin 199αα=-=-=.故选B.(2018·新课标Ⅲ,理9)ABC △的内角A B C ,,的对边分别为,b ,,若ABC ∆的面积为2224a b c +-,则C =( )A .2π B .3π C .4πD .6π 【答案】C 解析:2222c o s 1c o s 442ABCa b c ab C S ab C ∆+-===,又1s i n 2ABC S ab C ∆=,故t a n 1C =,∴4C π=.故选C.(2017·新课标Ⅰ,9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D 解析:1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x ,首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+−−−−−−−−−→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x .注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D ; (2017·新课标Ⅲ,6)设函数()πcos 3f x x ⎛⎫=+⎪⎝⎭,则下列结论错误的是( ). A .()f x 的一个周期为2-πB .()y f x =的图像关于直线83x π=对称 C .()f x +π的一个零点为6x π=D .()f x 在π,2⎛⎫π⎪⎝⎭单调递减 【答案】D 解析: 函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图像可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误.故选D.π(2016·新课标Ⅰ,12)已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x为 )(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【答案】B 解析:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤,接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调;若π9,4ωϕ==,此时π()s i n 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减.故选B .(2016·新课标Ⅱ,7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( )A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈【答案】B 解析:平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .(2016·新课标Ⅱ,9)若3cos()45πα-=,则sin 2α =( ) A .725B .15C .15-D .725-【答案】D 解析:∵3cos()45πα-=,2ππ7sin 2cos(2)cos[2()]2cos ()124425παααα=-=-=--=,故选D .(2016·新课标Ⅲ,5)若3tan 4α=,则2cos 2sin 2αα+=( ) A.6425 B. 4825 C. 1 D. 1625【答案】A 解析:22222cos 4sin cos 14tan 64cos 2sin 225cos sin 1tan ααααααααα+++===++,故选A.(2016·新课标Ⅲ,8)在ABC△中,π4B=,BC边上的高等于13BC,则cos A=()C.D.【答案】C 解析:如图所示,可设1BD AD==,则AB2DC=,AC∴=,由余弦定理知,cos A==(2015·新课标Ⅰ,2)sin20cos10cos160sin10-=()A.-.12- D.12【答案】D解析:sin20cos10cos160sin10sin20cos10cos20sin10sin30-=+=,选D..(2015·新课标Ⅰ,8)函数()f x=cos()xωϕ+的部分图象如图所示,则()f x的单调递减区间为()A.13(,),44k k kππ-+∈ZB.13(2,2),44k k kππ-+∈ZC.13(,),44k k k-+∈ZD.13(2,2),44k k k-+∈Z【答案】D解析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x xππ=+,令22,4k x k kπππππ<+<+∈Z,解得124k-<x<324k+,k∈Z,故单调减区间为(124k-,324k+),k∈Z,故选D.(2014·新课标Ⅰ,6)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,DCAB垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )【答案】B 解析:如图:过M 作MD ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x x OM PM OP =cos sin x x =1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B.(2014·新课标Ⅰ,8)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】B 解析:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B(2014·新课标Ⅱ,4)钝角三角形ABC 的面积是12,AB =1,BC ,则AC =( )A .5BC .2D .1【答案】B 解析:∵1||||sin 2ABC S AB BC B ∆=⋅⋅,即:111sin 22B =⋅,∴sin 2B =,即45B =或135. 又∵222||||||2||||cos AC AB BC AB BC B =+-⋅⋅,∴2||1AC =或5,又∵ABC ∆为钝角三角形,∴2||5AC =,即:||AC =(2012·新课标Ⅰ,9)已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( )A .[12,54] B .[12,34] C .(0,12] D .(0,2]【答案】A 解析:因为0ω>,2x ππ<<,所以2444x ππππωωωπ⋅+<+<⋅+,因为函数()sin()4f x x πω=+在(2π,π)上单调递减,所以242342πππωππωπ⎧⋅+≥⎪⎪⎨⎪⋅+≤⎪⎩,解得1524ω≤≤,故选A. (2012·新课标Ⅱ,9)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是() A. 15[,]24B. 13[,]24C. 1(0,]2D. (0,2]【答案】A 解析:由322,22442k k k ππππππωπωπ+≤+<+≤+∈Z 得,1542,24k k k ω+≤≤+∈Z ,15024∵,∴ωω>≤≤.(2011·新课标Ⅰ,11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 【答案】A解析:())4f x x πωϕ=++,所以2ω=,又f(x)为偶函数,,424k k k z πππϕπϕπ∴+=+⇒=+∈,())2f x x x π∴=+=,选A .(2011·新课标Ⅰ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )A .45-B .35-C .35D .45【答案】B 解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B.(2011·新课标Ⅱ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( ) A .45-B .35-C .35D .45【答案】B 解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,故选B. (2011·新课标Ⅱ,11)设函数()si n()cos()(0,||)2f x x x πωϕωϕωϕ=+++><的最小正周期为,且()()f x f x -=,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增【答案】A 解析:())(0,||)42f x x ππωϕωϕ=++><的最小正周期为π,所以2ω=,又()()f x f x -=,∴ f (x )为偶函数,=+,4k k Z πϕπ∴∈,())2f x x x π∴+=,故选A. 二、填空题(2018·新课标Ⅰ,理16)已知函数x x x f 2sin sin 2)(+=,则)(x f 的最小值是 .【答案】233-解析:方法一:()2sin sin 22sin 2sin cos 2sin (1cos )f x x x x x x x x =+=+=+, 所以222223[()]4sin (1cos )4(1cos )(1cos )4(1cos )(1cos )f x x x x x x x =+=-+=+- 4344(1cos )(1cos )(1cos )(33cos )27(1cos )(33cos )3344x x x x x x ++++++-⎛⎫=+-= ⎪⎝⎭≤,所以函数()f x 的值域为⎡⎢⎣⎦,所以()f x 的最小值为 方法二:23()2sin sin 22sin 2sin cos 2sin (1cos )4sin cos 2cos 8sin cos 22222x x x x xf x x x x x x x x ⎛⎫=+=+=+=⋅=⋅ ⎪⎝⎭3222223(sin cos )3sin cos cos cos 222222x x x x x x ⎛⎫=⋅⋅⋅ ⎪⎝⎭4222243sin cos cos cos 3222244x xx x ⎛⎫+++⎪⎛⎫= ⎪ ⎪⎝⎭ ⎪⎝⎭≤,3sin cos 22x x 2sin sin 2x x ∴+≥. 方法三:x x x f 2cos 2cos 2)(+=')1cos 2)(1(cos 2-+=x x0)(>'x f 3232ππππ+<<-⇒k x k ,函数)(x f 在)32,32(ππππ+-k k 单调递增;0)(<'x f 32352ππππ-<<-⇒k x k ,函数)(x f 在)32,352(ππππ--k k 单调递减; ∴32ππ-=k x 时,函数)(x f 有最小值,即)32()(min ππ-=k f x f )32(2sin )32sin(2ππππ-+-=k k 233-=.(2018·新课标Ⅱ,理15)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________. 【答案】12-【解析】解法一:2222sin cos 1sin cos 2sin cos 1cos sin 0cos sin 2cos sin 0a αβαβαβαββαβ⎧+=++=⎧⎪−−−−→⎨⎨+=++=⎪⎩⎩两边平方 ()()122sin cos cos sin 1sin 2αβαβαβ−−−−→++=⇒+=-对位相加解法二: sin cos 1cos 1sin cos sin 0sin cos αββααββα+==-⎧⎧⇒⎨⎨+==-⎩⎩① ()()()sin sin cos cos sin sin 1sin cos cos sin 1αβαβαβααααα+=+=-+-=- ②()()22221sin cos 11sin cos 1sin 2ββααα+=⇒-+-=⇒=综上所述:()1sin 2αβ+=-解法三:特殊值法设1sin cos 2αβ==,则cos α=,sin β=,()1sin sin cos cos sin 2αβαβαβ+=+=-.(2018·新课标Ⅲ,理15)函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 【答案】3 解析:由()cos(3)06f x x π=+=,有3()62x k k Z πππ+=+∈,解得39k x ππ=+,由039k πππ≤+≤得k 可取0,1,2,∴()cos(3)6f x x π=+在[0,]π上有3个零点.(2017·新课标Ⅱ,14)函数()23sin 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 .【答案】1【解析】∵ ()23sin 0,42f x x x x π⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭,22sin cos 1x x +=,∴ ()21cos 4f x x x =-+,设cos t x =,[]0,1t ∈,∴ ()214f x t =-++,函数对称轴为[]0,1t =,∴ ()max 1f x =.(2016·新课标Ⅱ,13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 45A =,1cos 53C =,a = 1,则b = . 【答案】2113 解析:∵4cos 5A =,5cos 13C =,∴3sin 5A =,12sin 13C =,()63sin sin sin cos cos sin 65B A C A C A C =+=+=,由正弦定理得:sin sin b a B A =,解得2113b =.(2016·新课标Ⅲ,14)函数sin cos y x x =-的图像可由函数sin y x x =的图像至少向右平移______个单位长度得到.【答案】23π解析:sin 2sin ,sin 2sin 33y x x x y x x x ππ⎛⎫⎛⎫==-=+=+ ⎪ ⎪⎝⎭⎝⎭,故可前者的图像可由后者向右平移23π个单位长度得到. (2015·新课标Ⅰ,16)在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .【答案】 解析:如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合于E 点时,AB 最长,在BCE ∆中,75B C ∠=∠=,30E ∠=,2BC =,由正弦定理可得o osin 30sin 75BC BE=,解得BE ;平移AD ,当D 与C 重合时,AB 最短,此时在BCF ∆中,75B BFC ∠=∠=,30FCB ∠=,由正弦定理知o osin 30sin 75BF BC=,解得BF =AB的取值范围为()23sin 4f x x x =+-.(2014·新课标Ⅰ,16)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .解析:由2a =且 (2)(sin sin )()sin b A B c b C +-=-,即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc+-=,故2221cos 22b c a A bc +-==,∴060A ∠=,∴224b c bc +-=,224b c bc bc =+-≥,∴1sin 2ABC S bc A ∆=≤(2014·新课标Ⅱ,14)函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________. 【答案】1 解析:∵()sin(2)2sin cos()sin[()]2sin cos()f x x x x x ϕϕϕϕϕϕϕ=+-+=++-+sin cos()cos sin()2sin cos()cos sin()sin cos()sin x x x x x x ϕϕϕϕϕϕϕϕϕϕ=+++-+=+-+=∵x R ∈,∴()f x 的最大值为1.(2013·新课标Ⅰ,15)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________.【答案】5- 解析:f (x )=sin x -2cos x x x ⎫⎪⎭,令cos αsin α=,则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z ),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α==.(2013·新课标Ⅱ,15)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=_________.【答案】 解析:由π1tan 1tan 41tan 2θθθ+⎛⎫+== ⎪-⎝⎭,得tan θ=13-,即sin θ=13-cos θ. 将其代入sin 2θ+cos 2θ=1,得210cos 19θ=. 因为θ为第二象限角,所以cos θ=sin θsin θ+cos θ=.(2011·新课标Ⅰ,16)在ABC V 中,60,B AC ==2AB BC +的最大值为 .【答案】解析:00120120A C C A +=⇒=-,0(0,120)A ∈,22sin sin sin BC ACBC A A B==⇒=022sin 2sin(120)sin sin sin AB ACAB C A A A C B==⇒==-=+;2AB BC ∴+=5sin ))A A A A ϕϕ+=+=+,故最大值是三、解答题(2018·新课标Ⅰ,理17)在平面四边形ABCD 中,oADC 90=∠,oA 45=∠,2=AB ,5=BD .(1)求ADB ∠cos ;(2)若22=DC ,求BC .解析:解法1:(1)在A D B ∆中,由正弦定理:AADB ∠=∠sin 5sin 2,所以A ADB ∠=∠sin 52sin 52=,又因为o ADC 90=∠,所以oADB 90<∠,所以523cos =∠ADB . 解法2:在ADB ∆中,由余弦定理可得222252cos 222=⨯⨯-+=∠AD AD ADB ,解得232+=AD (负值舍去),再由余弦定理可得ADB ∠cos =⨯+⨯-++=5)232(225)232(222523. (2)OADB BDC 90=∠+∠,所以=∠BDC cos ADB ∠sin 52=,在BDC ∆中,由余弦定理可知2208252cos 2222BC DC BD BC DC BD BDC -+=⋅-+=∠52=,解得5=BC .(2017·新课标Ⅰ,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长解析:(1)∵ABC △面积23sin a S A =.且1sin 2S bc A =,∴21sin 3sin 2a bc A A =, ∴223sin 2a bc A =,∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.(2)由(1)得2sin sin 3B C =,1cos cos 6B C =,∵πA B C ++=, ∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=, 又∵()0πA ∈,,∴60A =︒,sin A ,1cos 2A =,由余弦定理得2229a b c bc =+-= ①由正弦定理得sin sin a b B A =⋅,sin sin a c C A =⋅,∴22sin sin 8sin a bc B C A=⋅= ②由①②得b c +=∴3a b c ++=+ABC △周长为3(2017·新课标Ⅱ,17)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2B AC +=. (1)求cos B ;(2)若6a c += , ABC ∆面积为2,求.b .解析:(Ⅰ)【解法1】由题设及2sin8sin ,2BB C B A ==++π,故sin 4-cosB B =(1), 上式两边平方,整理得 217cos B-32cosB+15=0,解得 15cosB=cosB 171(舍去),=.【解法2】由题设及2sin 8sin ,2B B C B A ==++π,所以2sin 82cos 2sin 22B B B =,又02sin ≠B ,所以412tan =B ,17152tan 12tan 1cos 22=+-=B BB . (Ⅱ)由158cosB sin B 1717==得,故14a sin 217ABC S c B ac ∆==,又17=22ABC S ac ∆=,则,由余弦定理及a 6c +=得22221715b 2cos a 2(1cosB)362(1)4217a c ac B ac =+-=-+=-⨯⨯+=(+c ),所以b=2.(2017·新课标Ⅲ,17)ABC △的内角,,A B C 的对边分别为,,a b c ,已知sin 0A A =,a =2b =.(1)求c ;(2)设D 为BC 边上一点,且 AD AC ⊥,求ABD △的面积.解析:(1)由sin 0A A =得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈,所以ππ3A +=,得2π3A =. 由余弦定理2222cos a b c bc A =+-⋅.又因为12,cos 2a b A ===-代入并整理得()2125c +=.故4c =.(2)因为2,4AC BC AB ===,由余弦定理222cos 2a b c C ab +-=.因为AC AD ⊥,即ACD △为直角三角形,则cos AC CD C =⋅,得CD =.由勾股定理AD =又2π3A =,则2πππ326DAB ∠=-=, 1πsin 26ABD S AD AB =⋅⋅=△(2016·新课标Ⅰ,17)ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2.(Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长. 解析:⑴()2cos cos cos C a B b A c+=,由正弦定理得:()2cos sin cos sin cos sin C A B B A C ⋅+⋅= ()2cos sin sin C A B C ⋅+=,∵πA B C ++=,()0πA B C ∈、、,,∴()sin sin 0A B C +=>∴2cos 1C =,1cos 2C =,∵()0πC ∈,,∴π3C =⑵ 由余弦定理得:2222cos c a b ab C =+-⋅,221722a b ab =+-⋅,()237a b ab +-=1sin 2S ab C =⋅==,∴6ab =,∴()2187a b +-=,5a b +=∴ABC △周长为5a b c ++=(2015·新课标Ⅱ,17)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sin sin BC∠∠;(Ⅱ) 若AD =1,DC ,求BD 和AC 的长.解析:(Ⅰ)1s i n 2ABD S AB AD BAD ∆=⋅∠,1sin 2ADC S AC AD CAD ∆=⋅∠,因为2A B D A D CS S ∆∆=,BAD CAD ∠=∠,所以2AB AC =,由正弦定理可得sin 1sin 2B AC C AB ∠==∠.(Ⅱ)因为::2ABD ADC S S BD DC ∆∆==,2DC =,所以BD ABD ∆和ADC ∆中, 由余弦定理知,2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠, 故222222326AB AC AD BD DC +=++=,由(Ⅰ)知2AB AC =,所以1AC =.(2013·新课标Ⅰ,17)如图,在△ABC 中,∠ABC =90°,AB ,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得P A 2=11732cos 30424+-︒=,故P A =2.(2)设∠PBA =α,由已知得PB =sin α,在△PBA sin sin(30)αα=︒-,α=4sin α,所以tan α,即tan ∠PBA(2013·新课标Ⅱ,17)在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.解析:(Ⅰ)由已知及正弦定理得sin A =sin B cos C +sin C sin B ①, 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C ②,由①,②和C ∈(0,π)得sin B =cos B ,又B ∈(0,π),所以4B π=.(Ⅱ)△ABC 的面积1sin 2S ac B ==. 由已知及余弦定理得224=+2cos 4a c ac π-. 又a 2+c 2≥2ac,故ac ≤a =c 时,等号成立.因此△ABC .(2012·新课标Ⅰ,17)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,cos sin 0a C C b c --=.(1)求A ;(2)若2a =,△ABCb ,c . 解析:(1)根据正弦定理R CcB b A a 2sin sin sin ===,得A R a sin 2=,B R b sin 2=,C R c sin 2=,因为cos sin 0a C C b c +--=,所以0sin 2sin 2sin )sin 2(3cos )sin 2(=--+C R B R C A R C A R , 即0sin sin sin sin 3cos sin =--+C B C A C A ,(1)由三角形内角和定理,得C A C A C A B sin cos cos sin )sin(sin +=+=,代入(1)式得0sin sin cos cos sin sin sin 3cos sin =---+C C A C A C A C A , 化简得C C A C A sin sin cos sin sin 3=-, 因为0sin ≠C ,所以1cos sin 3=-A A ,即21)6sin(=-πA , 而π<<A 0,6566πππ<-<-A ,从而66ππ=-A ,解得3π=A .(2)若2a =,△ABC1)得3π=A ,则⎪⎪⎩⎪⎪⎨⎧==-+=43cos 233sin 21222a bc c b bc ππ,化简得⎩⎨⎧=+=8422c b bc , 从而解得2=b ,2=c .。
专题 三角函数及解三角形(解析版)
2,π)单调递增5B.3D.专题三角函数及解三角形1.【2019年高考全国Ⅰ卷理数】函数f(x)=sinx+x在[-π,π]的图像大致为cosx+x2A.B.C.D.2.【2019年高考全国Ⅰ卷理数】关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(π③f(x)在[-π,π]有4个零点其中所有正确结论的编号是A.①②④C.①④3.【2019年高考全国Ⅱ卷理数】下列函数中,以④f(x)的最大值为2B.②④D.①③π2为周期且在区间(π4,π2)单调递增的是A.f(x)=|cos2x|C.f(x)=cos|x|4.【2019年高考全国Ⅱ卷理数】已知α∈(0,B.f(x)=|sin2x|D.f(x)=sin|x|π2),2sin2α=cos2α+1,则sinα=5A.15C.3255 5.【2019年高考全国Ⅲ卷理数】设函数f(x)=sin(ωx+个零点,下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点②f(x)在(0,2π)有且仅有2个极小值点π5)(ω>0),已知f(x)在[0,2π]有且仅有5④ ω 的取值范围是[ , )【2π ,且 g ⎛ ⎫⎪= 2 ,则 f ⎛ ⎪= = - ,则 sin 2α + ⎪ 的值是 ▲ . ⎛ αtan + ⎪【 B b c③ f (x )在( 0, π 10)单调递增12 295 10其中所有正确结论的编号是A .①④C .①②③B .②③D .①③④6. 2019 年高考天津卷理数】已知函数 f ( x ) = A s in(ω x + ϕ )( A > 0, ω > 0,| ϕ |< π) 是奇函数,将 y = f (x )的图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),所得图象对应的函数为g (x ).若 g (x )的最小正周期为A . -2C . 2⎝ 4 ⎭ ⎝ 8 ⎭π 3π ⎫ B . - 2D . 27.【2019 年高考北京卷理数】函数 f (x )=sin 22x 的最小正周期是__________.8.【2019 年高考全国Ⅱ卷理数】 △ABC 的内角 A, B, C 的对边分别为 a, b , c .若 b = 6, a = 2c, B = π3△ABC 的面积为_________.,则9.【2019 年高考江苏卷】已知tan α 2 ⎛ π ⎫π ⎫ 3 ⎝ 4 ⎭⎝ 4 ⎭10.【2019 年高考浙江卷】在△ABC 中, ∠ABC = 90︒ , AB = 4 , BC = 3,点 D 在线段 AC 上,若∠BDC = 45︒ ,则 BD = ___________, cos ∠ABD = ___________.11.【2019 年高考全国Ⅰ卷理数】△ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,设(sin B - sin C )2 = sin 2 A - sin B sin C .(1)求 A ;(2)若 2a + b = 2c ,求 sinC .12. 2019 年高考全国Ⅲ卷理数】△ABC 的内角 A , ,C 的对边分别为 a , , ,已知 a sin(1)求 B ; A + C2b sin A.(2)求 sin2B + ⎪ 的值.(△2)若 ABC 为锐角三角形,且 c △=1,求 ABC 面积的取值范围.13.【2019 年高考北京卷理数】在△ABC 中,a =3,b −c =2,cosB = -(1)求 b ,c 的值;(2)求 sin (B –C )的值.1 2 .14.【2019 年高考天津卷理数】在 △ABC 中,内角 A, B, C 所对的边分别为 a, b , c .已知 b + c = 2a ,3c s in B = 4a sin C .(1)求 cos B 的值;⎛ ⎝π⎫ 6⎭15.【2019 年高考江苏卷】在△ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c .(1)若 a =3c ,b = 2 ,cosB = 2 3,求 c 的值;(2)若sin A要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分)]2+[f(x+)]2的值域.【cos Bπ=,求sin(B+)的值.a2b216.【2019年高考江苏卷】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划....别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.17.【2019年高考浙江卷】设函数f(x)=sinx,x∈R.(1)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值;(2)求函数y=[f(x+ππ12418.重庆西南大学附属中学校2019届高三第十次月考数学试题】已知角α的顶点在坐标原点,始边与x轴正半轴重合,终边经过点P(-2,1),则cos2α=3B.C.-1tan α-⎪=20.【广东省韶关市2019届高考模拟测试(4月)数学文试题】已知函数f(x)=sin(ωx+)(ω>0)的相,将函数图象向左平移个单位得到函数g(x)的图象,则g(x)= C的对边,若△ABC的面积为S,且43S=(a+b)2-c2,则sin C+⎪=A.22133D.-22319.【四川省宜宾市2019届高三第三次诊断性考试数学试题】已知c osα=-4,α∈(-π,0),则5⎛π⎫⎝4⎭1A.B.77C.-17D.-7π6邻对称轴之间的距离为ππ26A.sin(x+C.cos2xπ3)πB.sin(2x+)3πD.cos(2x+)321.【河南省郑州市2019届高三第三次质量检测数学试题】已知函数f(x)=A s in(ωx+ϕ),A>0,ω>0,ϕ<π的部分图象如图所示,则使f(a+x)-f(a-x)=0成立的a的最小正值为2A.C.π12π4B.D.π6π322.【山东省实验中学等四校2019届高三联合考试数学试题】在△ABC中,a,b,c分别为角A,B,⎛π⎫⎝4⎭4D .【(2)当 x ∈ [0, ] 时,不等式 c < f ( x ) < c + 2 恒成立,求实数 c 的取值范围.【 =A .1B .22C . 6 - 26 + 2423.【山东省烟台市 2019 届高三 3 月诊断性测试(一模)数学试题】在△ABC 中,角 A , B , C 的对边分别为 a , b , c ,若 a = 1 , 3 sin A cos C + ( 3 sin C + b ) cos A = 0 ,则角 A =A .C .2π3 π 6B .D .π 3 5π 624. 广东省韶关市 2019 届高考模拟测试(4 月)数学试题】在 △ABC 中,a 、b 、c 分别是内角 A 、 B 、C 的对边,且 3b cos A = sin A(a cos C + c cos A) .(1)求角 A 的大小;(2)若 a = 2 3 , △ABC 的面积为5 3 4,求 △ABC 的周长.25. 北京市昌平区 2019 届高三 5 月综合练习(二模)数学试题】已知函数 f ( x ) cosx( 3 sin x - cos x)+π(1)求 f ( ) 的值;3π21 2.【解析】由 f (- x ) = sin(- x) + (- x) 2 1 + 2 = 4 + 2π > 1, f (π) = 排除 A .又 f ( ) = ( )2π 2 -1 + π2 , π )单调递增答 案1.【2019 年高考全国Ⅰ卷理数】函数 f(x)= sinx + xcosx + x 2在 [-π, π] 的图像大致为A .B .C .D .【答案】D- sin x - x== - f ( x ) ,得 f ( x ) 是奇函数,其图象关于原点对称, cos(- x ) + (- x ) cos x + x 2π π 2 π22π> 0 ,排除 B ,C ,故选 D .【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得f ( x ) 是奇函数,排除 A ,再注意到选项的区别,利用特殊值得正确答案.2.【2019 年高考全国Ⅰ卷理数】关于函数 f ( x ) = sin | x | + | sin x | 有下述四个结论:①f(x)是偶函数②f(x)在区间(π③f(x)在 [-π, π] 有 4 个零点 其中所有正确结论的编号是A .①②④C .①④④f(x)的最大值为 2B .②④D .①③【答案】C【解析】Q f (- x ) = sin - x + sin (- x ) = sin x + sin x = f (x ) , ∴ f (x )为偶函数,故①正确.当π⎛π<x<π时,f(x)=2sin x,它在区间 ,π⎪单调递减,故②错误.作出y=sin2x的图象如图3,由图象知,其周期为,在区间(,)单调递减,排除B,⎫2⎝2⎭当0≤x≤π时,f(x)=2sin x,它有两个零点:0,π;当-π≤x<0时,f(x)=sin(-x)-sin x =-2sin x,它有一个零点:-π,故f(x)在[-π,π]有3个零点:-π,0,π,故③错误.当x∈[2kπ,2kπ+π](k∈N*)时,f(x)=2sin x;当x∈[2kπ+π,2kπ+2π](k∈N*)时,f(x)=sin x-sin x=0,又f(x)为偶函数,∴f(x)的最大值为2,故④正确.综上所述,①④正确,故选C.【名师点睛】本题也可画出函数f(x)=sin x+sin x的图象(如下图),由图象可得①④正确.3.【2019年高考全国Ⅱ卷理数】下列函数中,以A.f(x)=|cos2x|C.f(x)=cos|x|π2为周期且在区间(B.f(x)=|sin2x|D.f(x)=sin|x|π4,π2)单调递增的是【答案】A【解析】作出因为y=sin|x|的图象如下图1,知其不是周期函数,排除D;因为y=cos x=cos x,周期为2π,排除C;作出y=cos2x图象如图2,由图象知,其周期为πππ,在区间(,)单调递增,A正确;242πππ242故选A.图12 ),2sin2α=cos2α+1,则 sin α=5B .3D . 【 解 析 】 Q 2sin 2α = cos2 α +1 , ∴ 4sin α ⋅ cos α = 2cos 2 α .Q α ∈ 0, ⎪ ,∴ cos α > 0 , sin α > 0,∴2sin α = cos α ,又sin 2α + cos 2α = 1 ,∴ 5sin 2 α = 1,sin 2α = ,又sin α > 0 ,∴ s in α =图 2图 3【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数 y = f ( x ) 的周期是函数 y = f ( x ) 周期的一半;② y = sin ω x 不是周期函数.4.【2019 年高考全国Ⅱ卷理数】已知 α∈(0,πA .1C .3【答案】B552 55⎛ ⎝ π⎫ 2 ⎭15 5 5,故选 B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为 1 关系得出答案.④ω的取值范围是[,)ππkπ-④当f(x)=sin(ωx+)=0时,ωx+=kπ(k∈Z),所以5,所以当k=5时,5π-12296π-5≤2π,当k=6时,x=5105>2π,解得5.【2019年高考全国Ⅲ卷理数】设函数f(x)=sin(ωx+个零点,下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点②f(x)在(0,2π)有且仅有2个极小值点π5)(ω>0),已知f(x)在[0,2π]有且仅有5③f (x)在(0,π10)单调递增1229510其中所有正确结论的编号是A.①④C.①②③B.②③D.①③④【答案】D【解析】①若f(x)在[0,2π]上有5个零点,可画出大致图象,由图1可知,f(x)在(0,2π)有且仅有3个极大值点.故①正确;②由图1、2可知,f(x)在(0,2π)有且仅有2个或3个极小值点.故②错误;π55x=ω因为f(x)在[0,2π]上有5个零点,x=ωππω≤ω<,③函数f(x)=sin(ωx+)的增区间为:-+2kπ<ωx+<+2kπ,2k-π+2k⎪π10⎭10<x<⎝⎭.7⎫综上可得,f(x)在 0,⎝10⎭【最小正周期为2π,且g ⎪=2,则f ⎪=又g(x)=A s inωx,∴T=42,∴A=2,故④正确.ππππ5252⎛⎛3⎫⎪⎝ωω取k=0,当ω=1271时,单调递增区间为-π<x<π,52482973当ω=时,单调递增区间为-π<x<π,102929⎛π⎫⎪单调递增.故③正确.所以结论正确的有①③④.故本题正确答案为D.【名师点睛】本题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理解深度高,考查数形结合思想.注意本题中极小值点个数是动态的,易错,正确性考查需认真计算,易出错.6.2019年高考天津卷理数】已知函数f(x)=A s in(ωx+ϕ)(A>0,ω>0,|ϕ|<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的A.-2 C.2⎛π⎫⎝4⎭⎛3π⎫⎝8⎭B.-2D.2【答案】C【解析】∵f(x)为奇函数,∴f(0)=A s inϕ=0,∴ϕ=kπ,k∈Z,∴k=0,ϕ=0;又g(π)=12π21ω2=2π,∴ω=2,∴f(x)=2sin2x,f(3π8)= 2.故选C.【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数g(x),再根据函数性【解析】函数 f (x ) = sin 2 2x = 1 - cos 4 x .=1= - ,则 sin 2α + ⎪ 的值是 ▲ .⎛ α tan + ⎪= = = - ,得 3tan 2 α - 5tan α - 2 = 0 ,tan α + ⎪ tan α (1 - tan α )sin 2α + ⎪ = sin 2α cos + cos 2α sin质逐步得出 A, ω,ϕ 的值即可.7.【2019 年高考北京卷理数】函数 f (x )=sin 22x 的最小正周期是__________.【答案】π2π,周期为 .2 2【名师点睛】本题主要考查二倍角的三角函数公式 三角函数的最小正周期公式,属于基础题.将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可8.【2019 年高考全国Ⅱ卷理数】 △ABC 的内角 A, B, C 的对边分别为 a, b , c .若 b = 6, a = 2c, B =π3△ABC 的面积为_________.【答案】 6 3,则【解析】由余弦定理得 b 2 = a 2 + c 2 - 2ac cos B ,所以 (2c)2 + c 2 - 2 ⨯ 2c ⨯ c ⨯解得 c = 2 3, c = -2 3 (舍去),1 3所以 a = 2c = 4 3 , Sac sin B = ⨯ 4 3 ⨯ 2 3 ⨯= 6 3.22 2 12 = 62 ,即 c 2 = 12 ,【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于 c 的方程,应用 a, c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.9.【2019 年高考江苏卷】已知【答案】210tanα 2 ⎛ π ⎫ π ⎫ 3 ⎝ 4 ⎭ ⎝ 4 ⎭【解析】由 tan α tan α 2⎛ π ⎫ tan α + 1 tan α + 1 3⎝ 4 ⎭ 1 - tan α解得 tan α = 2 ,或 tan α = -13.⎛π ⎫ π π ⎝4 ⎭ 4 42 (sin 2α + cos 2α )=22 ⎝sin 2 α + cos 2 α ⎭ 2 ⎝ tan 2 α + 1 ⎭= ; 当 tan α = 2 时,上式 = ⎪ ⎝ 2 2 + 1 ⎭10 13 3 ]= 2 .⨯ [2 ⨯ (- ) + 1 - (- )2 当 tan α = - 时,上式=1π ⎫ 2 = .4 ⎭ 10⎛【答案】 12 2 . .【解析】如图,在△ABD 中,由正弦定理有:AB= ,cos ∠BAC = = ,所以 BD ===2 ⎛ 2sin α cos α + cos 2 α - sin 2 α ⎫ ⎪2 ⎛ 2 tan α + 1 - tan 2 α ⎫⎪ ,2 ⎛ 2 ⨯ 2 + 1 - 22 ⎫ 2 21 123 210(- )2 + 13综上, sin 2α + ⎝⎪【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养采取转化法,利用分类讨 论和转化与化归思想解题.由题意首先求得 tan α 的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可 10.【2019 年高考浙江卷】在 △ABC 中, ∠ABC = 90︒ , AB = 4 , BC = 3 ,点 D 在线段 AC 上,若∠BDC = 45︒ ,则 BD = ___________, cos ∠ABD = ___________.7 2 ,5 10BD 3π= ,而 AB = 4, ∠ADB =sin ∠ADB sin ∠BAC 4,AC = AB 2 + BC 2 = 5 , sin ∠BAC =BC 3 AB 4 12 2 AC 5 AC 5 5.π π 7 2cos ∠ABD = cos(∠BDC - ∠BAC ) = cos cos ∠BAC + sin sin ∠BAC =4 4 10.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思( )cos C + sin C = 2sin C ,可得 cos (C + 60︒ )= - 【 B b c想.在 △ABD 中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征.11.【2019 年高考全国Ⅰ卷理数】△ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,设(sin B - sin C )2 = sin 2 A - sin B sin C .(1)求 A ;(2)若 2a + b = 2c ,求 sinC .【答案】(1) A = 60︒ ;(2) sin C =6 + 2 4.【解析】(1)由已知得 s in 2 B + sin 2 C - sin 2 A = sin B s in C ,故由正弦定理得 b 2 + c 2 - a 2 = bc .b 2 +c 2 - a 2 1 由余弦定理得 cos A = = .2bc 2因为 0︒ < A < 180︒ ,所以 A = 60︒ .(2)由(1)知 B = 120︒ - C ,由题设及正弦定理得 2 sin A + sin 120︒ - C = 2sin C ,即 6 3 1 2 +2 2 2 2.由于 0︒< C < 120︒,所以 sin(C + 60︒)=2 2,故sin C = sin (C + 60︒ - 60︒ )= sin (C + 60︒ )cos60 ︒ - cos (C + 60︒ )sin 60︒= 6 + 2 4.【名师点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.12. 2019 年高考全国Ⅲ卷理数】△ ABC 的内角 A , ,C 的对边分别为 a , , ,已知 a sin(1)求 B ;(2△)若 ABC 为锐角三角形,且 c =1△,求 ABC 面积的取值范围.A + C 2= b sin A .【答案】(1)B =60°;(2) ( 3因为 cos B 从而3△ABC<.因此,△ ABC 面积的取值范围是 8 , 2 ⎪⎭ .b 2 = 32 +c 2 - 2 ⨯ 3 ⨯ c ⨯ - ⎪.3, ) . 8 2【解析】(1)由题设及正弦定理得 s in A s in A + C= sin B sin A .2因为sinA ≠ 0,所以 sin A + C= sin B .2由 A + B + C = 180︒ ,可得 sin A + C B B B B= cos ,故 cos = 2sin cos .2 2 2 2 2B 1≠ 0 ,故 sin = ,因此B =60°.2 2 2(2)由题设及(1△)知 ABC 的面积 S△ABC = 3 4a .c sin A sin (120︒ - C )3 1由正弦定理得 a = = = + .sin C sin C 2 tan C 2△由于 ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故 1< a < 2 ,23< S82⎛ 3 3 ⎫ ⎪ .⎝【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查 V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题13.【2019 年高考北京卷理数】在△ ABC 中,a =3,b −c =2,cosB = -(1)求 b ,c 的值;(2)求 sin (B –C )的值.1 2 .【答案】(1) b = 7 , c = 5 ;(2)4 73 .【解析】(1)由余弦定理 b 2 = a 2 + c 2 - 2ac cos B ,得⎛ 1 ⎫ ⎝ 2 ⎭所以 (c + 2)2 = 32 + c 2 - 2 ⨯ 3 ⨯ c ⨯ - ⎪ . (2)由 cos B = - 得 sin B = ⎪ 的值.⎛ ( 得 3b s in C = 4a sin C ,即 3b = 4a .又因为 b + c = 2a ,得到 b = a , c = a .由余弦定理可得a 2 + c 2 -b 2 a 2 + a 2 - a 21 cos B = = =- .2因为 b = c + 2 ,⎛ 1 ⎫ ⎝ 2 ⎭解得 c = 5 .所以 b = 7 .1 32 2.由正弦定理得 s in C = c 5 3 sin B = b 14.在 △ABC 中,∠B 是钝角,所以∠C 为锐角.所以 cos C = 1 - sin 2 C = 11 14.所以 sin( B - C ) = sin B cos C - cos B sin C = 4 3 7.【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.14.【2019 年高考天津卷理数】在 △ABC 中,内角 A, B, C 所对的边分别为 a, b , c .已知 b + c = 2a ,3c s in B = 4a sin C .(1)求 cos B 的值;(2)求 sin 2B + ⎝π⎫6⎭【答案】(1) - 1 4 3 5 + 7;(2) - .16【解析】 1)在 △ABC 中,由正弦定理 b c=sin B sin C,得 b s in C = c s in B ,又由 3c sin B = 4a sin C ,4 23 34 169 92ac 42 ⋅ a ⋅ a3sin 2B + ⎪ = sin 2B cos + cos 2B sin =- ⨯ - ⨯ =- (2)若 sin A 3 2 ⨯ 3c ⨯ c ,得 ( ) π⎫ 2 5= cos B = 2 ⎭ 5⎛( 2 ) 由 ( 1 ) 可 得 sin B = 1 - cos 2 B =7cos 2B = cos 2 B - sin 2 B = - ,故815 15, 从 而 sin 2 B = 2sin B cos B = - , 4 8⎛ π⎫ π π 15 3 7 1 3 5 + 7 ⎝6 ⎭ 6 6 8 2 8 2 16.【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.15.【2019 年高考江苏卷】在△ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c .(1)若 a =3c ,b = 2 ,cosB = 23,求 c 的值;cos B π= ,求 sin(B + ) 的值.a 2b 2【答案】(1) c =3 2 5;(2) . 3 5【解析】(1)因为 a = 3c, b =2,cos B = 23,a 2 + c 2 -b 2 2 (3c)2 +c 2 - ( 2) 2 1由余弦定理 cos B = ,得 = ,即 c 2 = .2ac 3所以 c =3 3.(2)因为 sin A cos B =a 2b, 由正弦定理 a b cos B sin B= =sin A sin B 2b b,所以 cos B = 2sin B .4从而 cos 2 B = (2sin B)2 ,即 cos 2 B = 4 1 - cos 2 B ,故 cos 2 B = .5因为 sin B > 0 ,所以 cos B = 2sin B > 0 ,从而 cos B = 2 55.因此 sin B + ⎝⎪ .【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分16.【2019年高考江苏卷】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划....别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+321(百米).【解析】解法一:(1)过A作AE⊥BD,垂足为E.由已知条件得,四边形ACDE为矩形,DE=BE=AC=6,AE=CD=8.'因为PB⊥AB,所以cos∠PBD=sin∠ABE=84=.105所以PB=BD12==15.cos∠PBD45因此道路PB的长为15(百米).(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.5②若Q 在D 处,连结AD ,由(1)知 AD = AE 2 + ED 2 = 10 ,从而 cos ∠BAD = AD 2 + AB 2 - BD 2 7= > 0 ,所以∠BAD 为锐角.2 A D ⋅ AB 25所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设 P 为l 上一点,且 PB ⊥ AB ,由(1)知, P B =15,1 1 1此时 PD = PB sin ∠PBD = PB cos ∠EBA = 15 ⨯ 3 = 9 ;1111当∠OBP >90°时,在 △PPB 中, PB > PB = 15 .1 1由上可知,d ≥15.再讨论点Q 的位置.由 ( 2 ) 知 , 要 使 得 QA ≥15 , 点 Q 只 有 位 于 点 C 的 右 侧 , 才 能 符 合 规 划 要 求 . 当 QA =15 时 ,CQ = QA 2 - AC 2 = 152 - 62 = 3 21 .此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综 上 , 当 PB ⊥AB , 点 Q 位 于 点 C 右 侧 , 且 CQ = 3 21 时 , d 最 小 , 此 时 P , Q 两 点 间 的 距 离PQ =PD +CD +CQ =17+ 3 21 .因此,d 最小时,P ,Q 两点间的距离为17+ 3 21 (百米).解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.在线段AD 上取点M (3, ),因为 OM = 32 + ⎪ < 32 + 42 = 5 ,因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3.因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (−4,−3),直线AB 的斜率为 3 4.因为PB ⊥AB ,所以直线PB 的斜率为 -4 25直线PB 的方程为 y =- x -.334 3,所以P (−13,9), PB =(-13 + 4)2 + (9 + 3)2 = 15 .因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD : y = - 3x + 6(-4剟x 4) .415 ⎛ 15 ⎫24⎝ 4 ⎭所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设 P 为l 上一点,且 PB ⊥ AB ,由(1)知, P B =15,此时 P (−13,9);1111当∠OBP >90°时,在 △PPB 中, PB > PB = 15 .1 1由上可知,d ≥15.(2)求函数 y = [ f ( x + π )]2 + [ f ( x + )]2的值域. 又 θ ∈ [0, 2π) ,因此θ =π(2) y = ⎢ f x + + ⎢ f x + ⎪⎥ = sin 2 x + 12 ⎭⎥⎦ 4 ⎭⎦ ⎝ + sin 2 x + ⎪ 12 ⎭ ⎝ 4 ⎭ 1 - cos 2 x + ⎪ 1 - cos 2 x + ⎪= + = 1 - cos 2 x - sin 2 x ⎪π ⎫ 6 ⎭ cos 2 x + ⎪ .再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由 AQ = (a - 4)2 + (9 - 3)2 = 15(a > 4) ,得a = 4 + 3 21 ,所以Q ( 4 + 3 21 ,9),此时,线段QA上所有点到点O 的距离均不小于圆O 的半径.综上,当P ( 13,9),Q ( 4 + 3 21 ,9)时,d 最小,此时P ,Q 两点间的距离PQ = 4 + 3 21 - (-13) = 17 + 3 21 .因此,d 最小时,P ,Q 两点间的距离为17 + 3 21 (百米).【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.17.【2019 年高考浙江卷】设函数 f ( x ) = sinx, x ∈ R .(1)已知θ ∈ [0,2 π), 函数 f ( x + θ ) 是偶函数,求θ 的值;π 12 4【答案】(1)θ = π 3π或 ;(2) [1-2 23 3 ,1 + ] . 2 2【解析】(1)因为 f ( x + θ ) = sin( x + θ ) 是偶函数,所以,对任意实数x 都有 sin( x + θ ) = sin( - x + θ ) ,即 sin x cos θ + cos x sin θ = - s in x cos θ + cos x sin θ ,故 2sin x cos θ = 0 ,所以 cos θ = 0 .3π或 . 2 2⎡ ⎣ ⎛ π ⎫⎤ 2 ⎡ ⎛ π ⎫⎤ 2 ⎛ ⎪ ⎝ ⎣ ⎝ π ⎫ ⎛ π ⎫ ⎪⎛ ⎛ π ⎫ ⎝ ⎝2 ⎭ 1 ⎛3 3 ⎫ 2 2 2 ⎝ 2 2⎭= 1 - 3 2⎛ π ⎫⎝ 3 ⎭因此,函数的值域是[1-3.【3B.tan α-⎪=【解析】Q cosα=-,a∈(-π,0),∴α∈⎛-π,-π⎫⎪,3,1+].22【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力18.重庆西南大学附属中学校2019届高三第十次月考数学试题】已知角α的顶点在坐标原点,始边与x轴正半轴重合,终边经过点P(-2,1),则cos2α=A.2213C.-13D.-223【答案】B【解析】因为角α的顶点在坐标原点,始边与x轴正半轴重合,终边经过点P(-2,1),所以cosα=-22+1=-63,因此cos2α=2cos2α-1=13.故选B.【名师点睛】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.解答本题时,先由角α的终边过点P(-2,1),求出cosα,再由二倍角公式,即可得出结果.19.【四川省宜宾市2019届高三第三次诊断性考试数学试题】已知c osα=-4,α∈(-π,0),则5⎛π⎫⎝4⎭A.17B.7C.-17D.-7【答案】C45⎝2⎭33∴s inα=-,tanα=,54π ⎫ tan α - 1 4 1 则 tan α - ⎪ == = - .故选 C . 4 ⎭ 1 + tan α 7 3 1 +20.【广东省韶关市 2019 届高考模拟测试(4 月)数学文试题】已知函数 f ( x ) = sin(ω x + ) (ω > 0) 的相,将函数图象向左平移 个单位得到函数 g ( x ) 的图象,则 g ( x ) =) + ] = sin 2 x + + ⎪ = cos 2 x 的图象,故选 C .3- 1 ⎛⎝4【名师点睛】本题主要考查了同角三角函数关系式及两角差的正切公式的简单应用,属于基础题.解答本题时,根据已知 c os α 的值,结合同角三角函数关系式可求 tan α,然后根据两角差的正切公式即可求解.π6邻对称轴之间的距离为 π π2 6A . sin( x +C . cos2 x π 3 ) πB . sin(2 x + )3πD . cos(2 x + )3【答案】C【解析】由函数 f ( x ) = sin(ω x +π π T π)(ω > 0) 的相邻对称轴之间的距离为 ,得 = ,即 T = π ,所6 2 2 2以 π =2πω ,解得 ω = 2 ,π π将函数 f ( x ) = sin(2 x + ) 的图象向左平移 个单位,6 6得到 g ( x ) = sin[2( x + π 6 π ⎛ 6 ⎝ π π ⎫ 3 6 ⎭【名师点睛】本题考查的知识要点:三角函数关系式的平移变换和伸缩变换的应用,正弦型函数性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.解答本题时,首先利用函数的图象求出函数的关系式,进一步利用图象的平移变换的应用求出结果.21.【河南省郑州市 2019 届高三第三次质量检测数学试题】已知函数 f (x ) = A s in (ωx + ϕ ),A > 0,ω > 0, ϕ < π的部分图象如图所示,则使 f (a + x )- f (a - x ) = 0 成立的 a 的最小正值为 2⇒>,∴ω<所以a的最小正值为.C的对边,若△ABC的面积为S,且43S=(a+b)2-c2,则sin C+⎪=4D.A.C.π12π4B.D.π6π3【答案】B【解析】由图象易知,A=2,f(0)=1,即2sinϕ=1,且ϕ<ππ,即ϕ=,26由图可知,f(11π11ππ11ππ12k-2 )=0,所以sin(⋅ω+)=0,∴⋅ω+=kπ,k∈Z,即ω=,k∈Z,1212612611 11π2π11π24又由图可知,周期T>,且ω>0,12ω1211所以由五点作图法可知k=2,ω=2,π所以函数f(x)=2sin(2x+),6因为f(a+x)-f(a-x)=0,所以函数f(x)关于x=a对称,即有2a+ππkππ=kπ+,k∈Z,所以可得a=+,k∈Z,6226π6故选B.【名师点睛】本题考查了三角函数的图象和性质,熟练运用三角函数的图象和周期对称性是解题的关键,属于中档题.解答本题时,先由图象,求出A,ϕ,ω,可得函数f(x)的解析式,再由f(a+x)-f(a-x)=0易知f(x)的图象关于x=a对称,即可求得a的值.22.【山东省实验中学等四校2019届高三联合考试数学试题】在△ABC中,a,b,c分别为角A,B,⎛π⎫⎝4⎭A.1B.C.6-2【答案】D 226+2 4【解析】由43S=(a+b )2-c2,得43⨯12ab sin C=a2+b2-c2+2ab,∵a2+b2-c2=2ab cos C,∴23ab sin C=2ab cos C+2ab,即 3 sin C - cos C = 1 ,即 2sin C - 6 ⎭ = 1 ,则 sin C - ⎪ = ,+ = sin cos + cos sin = 3 ⨯ 2 + ⨯ 2 = 6 + 2 sin C + = sin ⎝ ⎝ 3 4 ⎭ 2 2 2 2 44 ⎭ 3 4 3 4 π ⎫⎛⎝ π ⎫ ⎪ ⎛ ⎝π ⎫ 1 6 ⎭ 2∵ 0 < C < π ,∴ - π π 5π π π π< C - < , ∴ C - = ,即 C = ,6 6 6 6 6 3则 ⎛ ⎛ π π ⎫ π π π π 1 ⎪ ⎪,故选 D .【名师点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出C 的值以及利用两角和差的正弦公式进行计算是解决本题的关键.解答本题时,根据三角形的面积公式以及余弦定理进行化简求出 C 的值,然后利用两角和的正弦公式进行求解即可.23.【山东省烟台市 2019 届高三 3 月诊断性测试(一模)数学试题】在△ABC 中,角 A , B , C 的对边分别为 a , b , c ,若 a = 1 , 3 sin A cos C + ( 3 sin C + b ) cos A = 0 ,则角 A =A .C .2π 3 π 6B .D .π 3 5π 6【答案】D【解析】∵ a = 1 , 3 sin A cos C + ( 3 sin C + b ) cos A = 0 ,∴ 3 sin A cos C + 3 sin C cos A = -b cos A ,∴ 3 sin( A + C ) = 3 sin B = -b cos A ,∴ 3a sin B = -b cos A ,由正弦定理可得: 3 sin A s in B = - sin B cos A ,∵ sin B > 0 ,∴ 3 sin A = - cos A ,即 tan A = - 3 3,∵ A ∈ (0, π) ,∴ A = 5π 6.故选 D .【名师点睛】本题主要考查解三角形,熟记正弦定理,两角和的正弦公式即可,属于基础题.解答本题时,由 3 sin A cos C + ( 3 sin C + b ) cos A = 0 ,可得 3a sin B = -b cos A ,再由正弦定理得到tan A = -3 ,结合 A ∈ (0, π) ,即可求得 A 的值.3【, a = 2 3 , △ABC 的面积为,24. 广东省韶关市 2019 届高考模拟测试(4 月)数学试题】在 △ABC 中,a 、b 、c 分别是内角 A 、 B 、C 的对边,且 3b cos A = sin A(a cos C + c cos A) .(1)求角 A 的大小;(2)若 a = 2 3 , △ABC 的面积为5 3 4,求 △ABC 的周长.【答案】(1) A =π 3;(2) 5 3 .【解析】(1)∵ 3b cos A = sin A(a cos C + c cos A) ,∴由正弦定理可得:3 sin B cos A = sin A(sin A cos C + sin C cos A) = sin A s in( A + C ) = sin A s in B ,即 3 sin B cos A = sin A s in B ,∵ sin B ≠ 0 ,∴ tan A = 3 ,∵ A ∈ (0, π) ,∴ A = π3.(2)∵ A = π 5 33 41 3 5 3∴ bc sin A = bc =2 4 4,∴ bc = 5 ,∴由余弦定理可得: a 2 = b 2 + c 2 - 2bc cos A ,即12 = b 2 + c 2 - bc = (b + c)2 - 3bc = (b + c)2 - 15 ,解得: b + c = 3 3 ,∴ △ABC 的周长为 a + b + c = 2 3 + 3 3 = 5 3 .【名师点睛】本题主要考查了正弦定理,两角和的正弦函数公式,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.(1)由正弦定理,两角和的正弦函数公式化简已知等式可得 3 sin B cos A = sin A s in B ,由 sin B ≠ 0 ,(2)当 x ∈ [0, ] 时,不等式 c < f ( x ) < c + 2 恒成立,求实数 c 的取值范围.【 = = sin 2 x - 所以 - ≤ sin (2 x - )≤ 1 .⎪⎩c + 2 > 1 所以实数 c 的取值范围为 (-1,- ) .(2)首先求得函数 f (x )在区间 ⎢0, ⎥ 上的值域,然后结合恒成立的结论得到关于 c 的不等式组,求可求 tan A = 3 ,结合 A ∈ (0, π) ,可求 A =π3.(2)利用三角形的面积公式可求bc = 5 ,进而根据余弦定理可得b + c = 3 3 ,即可计算△ABC 的周长的值.25. 北京市昌平区 2019 届高三 5 月综合练习(二模)数学试题】已知函数 f ( x ) cos x( 3 sin x - cos x)+π(1)求 f ( ) 的值;3π21【答案】(1)1;(2) (-1,- ) .21【解析】(1) f ( x )3 sin x cos x - cos 2 x + 2= 31cos 2 x2 2π=sin(2 x - ) ,6 π所以 f ( ) = 1 .31 2.(2)因为 0 ≤ x ≤ π 2,π π 5π所以 - ≤ 2 x - ≤ ,6 6 6 1 π2 6⎧1 ⎪ c <- 1由不等式 c < f ( x ) < c + 2 恒成立,得 ⎨2 ,解得 -1 < c < - . 212【名师点睛】本题主要考查三角函数的性质及其应用,恒成立问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.(1)首先整理函数的解析式,然后结合函数的解析式求解函数值即可;⎡ π ⎤ ⎣ 2 ⎦解不等式组可得 c 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年新课标全国卷(1、2、3卷)理科数学备考宝典9.三角函数与解三角形.三角函数与解三角形一、考试大纲1.任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化. 2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义. (2)能利用单位圆中的三角函数线推导出2πα±,απ±的正弦、余弦、正切的诱导公式,能画出 y = sin x ,y =cos x ,y = tan x 的图像,了解三角函数的周期性.(3)理解正弦函数、余弦函数在区间[ 0,2π ]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间[,]22ππ-内的单调性.(4)理解同角三角函数的基本关系式:22sin cos 1x x +=,sin tan cos xx x=.(5)了解函数 y =A sin(x+)的物理意义;能画出 y =A sin(x+)的图像,了解参数A ,,对函数图像变化的影响.(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 3.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.4.应用:能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.二、新课标全国卷命题分析新课标全国卷对于三角函数的考查比较固定,一般考查三角函数的图象与性质、三角恒等变换、解三角形,一般是1小1大,或者3小题,一般考查考生转化与化归思想和运算求解能力。
三角函数求值、三角恒等变换、三角函数的单调性、奇偶性、周期性、对称性、最值范围、图象变换等都是热门考点。
解三角形问题也是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”.三、典型高考试题讲评题型1 三角函数的定义、同角三角函数的基本关系 例1 (2016·新课标Ⅲ,理5)若3tan α=,则2cos 2sin 2αα+=( ) A.6425 B. 4825 C. 1 D. 1625解析:22222cos 4sin cos 14tan 64cos 2sin 225cos sin 1tan ααααααααα+++===++,故选A. 【解题技巧】本题考查三角恒等变换,齐次化切.题型2 三角函数的恒等变换例2 (2018·新课标Ⅲ,理4)若1sin 3α=,则cos 2α=( )A .89B .79C .79-D .89-解析:227cos 212sin 199αα=-=-=.故选B. 例3 (2015·新课标Ⅰ,2)sin 20cos10cos160sin10-=( )A ..12- D .12解析:sin 20cos10cos160sin10sin 20cos10cos 20sin10sin30-=+=,选D ..题型3 三角恒等变换与三角函数的值域例4 (2018·新课标Ⅰ,理16)已知函数x x x f 2sin sin 2)(+=,则)(x f 的最小值是 .【答案】233-解析:方法一:()2sin sin 22sin 2sin cos 2sin (1cos )f x x x x x x x x =+=+=+, 所以222223[()]4sin (1cos )4(1cos )(1cos )4(1cos )(1cos )f x x x x x x x =+=-+=+- 4344(1cos )(1cos )(1cos )(33cos )27(1cos )(33cos )3344x x x x x x ++++++-⎛⎫=+-= ⎪⎝⎭≤,所以函数()f x 的值域为⎡⎢⎣⎦,所以()f x 的最小值为方法二:23()2sin sin 22sin 2sin cos 2sin (1cos )4sin cos 2cos 8sin cos 22222x x x x xf x x x x x x x x ⎛⎫=+=+=+=⋅=⋅ ⎪⎝⎭3222223(sin cos )3sin cos cos cos 222222x x x x x x ⎛⎫=⋅⋅⋅ ⎪⎝⎭4222243sin cos cos cos 3222244x xx x ⎛⎫+++⎪⎛⎫= ⎪ ⎪⎝⎭ ⎪⎝⎭≤,3sin cos 22x x 2sin sin 2x x ∴+≥. 方法三:x x x f 2cos 2cos 2)(+=')1cos 2)(1(cos 2-+=x x0)(>'x f 3232ππππ+<<-⇒k x k ,函数)(x f 在)32,32(ππππ+-k k 单调递增;0)(<'x f 32352ππππ-<<-⇒k x k ,函数)(x f 在)32,352(ππππ--k k 单调递减; ∴32ππ-=k x 时,函数)(x f 有最小值,即)32()(min ππ-=k f x f )32(2sin )32sin(2ππππ-+-=k k 233-=.题型4 三角函数的图形变换例5 (2017全国1理9)已知曲线1cos C y x =:,22πsin 23C y x ⎛⎫=+⎪⎝⎭:,则下面结论正确的是( ). A.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC.把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD.把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C解析 :首先曲线1C ,2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理. πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224C y x y x x ⎛⎫⎛⎫⎛⎫=+−−−−−−−−−−→=+=+→ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭上各坐短到原的倍点横标缩来2ππsin 2sin 233y x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.注意ω的系数,左右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D. 【解题技巧】关于y =Asin(ωx+φ)函数图像由y =sinx 的图像的变换,先将y =sinx 的图像向左(或右)平移|φ|个单位,再将其上的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的1ω倍,再将其纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍,也可先进行伸缩变换,再进行平移变换,此时平移不再是|φ|个单位,而是|φω|个单位,原则是保证x 的系数为1,同时注意变换的方法不能出错.题型5 三角函数的单调性、奇偶性、周期性、对称性 例6 (2017·新课标Ⅲ,6)设函数()πcos 3f x x ⎛⎫=+⎪⎝⎭,则下列结论错误的是( ). A .()f x 的一个周期为2-πB .()y f x =的图像关于直线83x π=对称 C .()f x +π的一个零点为6x π=D .()f x 在π,2⎛⎫π⎪⎝⎭单调递减 解析: 函数()πcos 3f x x ⎛⎫=+⎪⎝⎭的图像可由cos y x =向左平移π3个单位得到, 如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误.故选D.π例7 (2016·新课标Ⅱ,理7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( ) A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈解析:平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .题型6 三角函数性质的综合应用例8 (2016全国乙理12)已知函数π()sin()0,2f x x ωϕωϕ⎛⎫=+>≤⎪⎝⎭,π4x =-为()f x 的零点,π4x =为()y f x =图像的对称轴,且()f x 在π5π1836⎛⎫⎪⎝⎭,上单调,则ω的最大值为( ). A.11 B.9 C.7 D.5解析:选B. 方法1:因为x =-π4为函数f(x)的零点,x =π4为y =f(x)图像的对称轴,所以π2=kT 2+T4(k∈Z ,T 为周期),得T =2π2k+1(k∈Z ).又f(x)在(π18,5π36)上单调,所以T≥π6,k ≤112,又当k =5时,ω=11,φ=-π4,f(x)在(π18,5π36)上不单调;当k =4时,ω=9,φ=π4,f(x)在(π18,5π36)上单调,满足题意;故ω=9,即ω的最大值为9.方法2:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤,接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调;若π9,4ωϕ==,此时π()s i n 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减.故选B .题型7 解三角形、正余弦定理例9 (2018·新课标Ⅱ,6)在ABC △中,cos2C =,1BC =,5AC =,则AB =( ) A. BC.解析:因为2cos 2cos 12CC =-,所以 23cos 215C =-=-⎝⎭,由余弦定理可知:2222cos AB AC BC AC BC C =+-⋅,222351251325AB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,故AB =.题型8 三角函数与解三角形的综合应用例10 (2017·新课标Ⅰ,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长解析:(1)∵ABC △面积23sin a S A =.且1sin 2S bc A =,∴21sin 3sin 2a bc A A =,∴223sin 2a bc A =,∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.(2)由(1)得2sin sin 3B C =,1cos cos 6B C =,∵πA B C ++=, ∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=,又∵()0πA ∈,,∴60A =︒,sin A =1cos 2A =,由余弦定理得2229a b c bc =+-= ①由正弦定理得sin sin a b B A =⋅,sin sin a c C A =⋅,∴22sin sin 8sin a bc B C A=⋅= ②由①②得b c +=∴3a b c ++=ABC △周长为3+2011年—2018年新课标全国卷理科数学试题分类汇编9.三角函数与解三角形一、选择题(2018·新课标Ⅱ,6)在ABC △中,cos2C =,1BC =,5AC =,则AB =( )A .BC .(2018·新课标Ⅲ,理4)若1sin 3α=,则cos 2α=( )A .89B .79C .79-D .89-(2018·新课标Ⅲ,理9)ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =( )A .2π B .3πC .4πD .6π (2017·新课标Ⅰ,9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2(2017·新课标Ⅲ,6)设函数()πcos 3f x x ⎛⎫=+⎪⎝⎭,则下列结论错误的是( ). A .()f x 的一个周期为2-πB .()y f x =的图像关于直线83x π=对称 C .()f x +π的一个零点为6x π=D .()f x 在π,2⎛⎫π⎪⎝⎭单调递减 (2016·新课标Ⅰ,12)已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x为 )(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5(2016·新课标Ⅱ,7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( ) A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈ (2016·新课标Ⅱ,9)若3cos()45πα-=,则sin 2α =( ) A .725B .15C .15-D .725-(2016·新课标Ⅲ,5)若3tan 4α=,则2cos 2sin 2αα+=( ) A.6425 B. 4825 C. 1 D. 1625(2016·新课标Ⅲ,8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( )C. D.(2015·新课标Ⅰ,2)sin 20cos10cos160sin10-=( )A ..12- D .12(2015·新课标Ⅰ,8)函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z B .13(2,2),44k k k ππ-+∈Z C .13(,),44k k k -+∈Z D .13(2,2),44k k k -+∈Z(2014·新课标Ⅰ,6)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )(2014·新课标Ⅰ,8)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=(2014·新课标Ⅱ,4)钝角三角形ABC 的面积是12,AB =1,BC AC =( )A .5BC .2D .1(2012·新课标Ⅰ,9)已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( )A .[12,54] B .[12,34] C .(0,12] D .(0,2](2012·新课标Ⅱ,9)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是( ) A. 15[,]24B. 13[,]24C. 1(0,]2D. (0,2](2011·新课标Ⅰ,11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在(0,)2π单调递减 (B )()f x 在3(,)44ππ单调递减(C )()f x 在(0,)2π单调递增(D )()f x 在3(,)44ππ单调递增(2011·新课标Ⅰ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=( )A .45-B .35-C .35D .45(2011·新课标Ⅱ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( ) A .45-B .35-C .35D .45(2011·新课标Ⅱ,11)设函数()sin()cos()(0,||)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增二、填空题(2018·新课标Ⅰ,理16)已知函数x x x f 2sin sin 2)(+=,则)(x f 的最小值是 .(2018·新课标Ⅲ,理15)函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. (2018·新课标Ⅱ,理15)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.(2017·新课标Ⅱ,14)函数()23sin 4f x x x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 . (2016·新课标Ⅱ,13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 45A =,1cos 53C =,a = 1,则b = .(2016·新课标Ⅲ,14)函数sin y x x =的图像可由函数sin y x x =的图像至少向右平移______个单位长度得到.(2015·新课标Ⅰ,16)在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .(2014·新课标Ⅰ,16)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 . (2014·新课标Ⅱ,14)函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________.(2013·新课标Ⅰ,15)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________.(2013·新课标Ⅱ,15)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=_________.(2011·新课标Ⅰ,16)在ABC V 中,60,B AC ==2AB BC +的最大值为 . 三、解答题(2018·新课标Ⅰ,理17)在平面四边形ABCD 中,o ADC 90=∠,oA 45=∠,2=AB ,5=BD .(1)求ADB ∠cos ;(2)若22=DC ,求BC .(2017·新课标Ⅰ,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长(2017·新课标Ⅱ,17)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin2B AC +=. (1)求cos B ;(2)若6a c += , ABC ∆面积为2,求.b .(2017·新课标Ⅲ,17)ABC △的内角,,A B C 的对边分别为,,a b c ,已知sin 0A A =,a =2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.(2016·新课标Ⅰ,17)ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2.(Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长.(2015·新课标Ⅱ,17)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sin sin B C ∠∠;(Ⅱ) 若AD =1,DC ,求BD 和AC 的长.(2013·新课标Ⅰ,17)如图,在△ABC 中,∠ABC =90°,AB BC =1,P 为△ABC 内一点,∠BPC=90°.(1)若PB =12,求PA ;(2)若∠APB =150°,求tan ∠PBA .(2013·新课标Ⅱ,17)在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.(2012·新课标Ⅰ,17)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,cos sin 0a C C b c --=.(1)求A ;(2)若2a =,△ABC b ,c .2011年—2018年新课标全国卷理科数学试题分类汇编9.三角函数与解三角形(逐题解析版)一、选择题(2018·新课标Ⅱ,6)在ABC △中,cos2C =1BC =,5AC =,则AB =( )A .BC .【答案】A 解析:因为2cos 2cos 12CC =-,所以 23cos 215C =-=-⎝⎭, 由余弦定理可知:2222cos AB AC BC AC BC C =+-⋅,222351251325AB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,故,AB =.(2018·新课标Ⅲ,理4)若1sin 3α=,则cos 2α=( )A .89B .79C .79-D .89-【答案】B 解析:227cos 212sin 199αα=-=-=.故选B. (2018·新课标Ⅲ,理9)ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =( )A .2π B .3πC .4πD .6π 【答案】C 解析:2222cos 1cos 442ABCa b c ab C S ab C ∆+-===,又1s i n 2ABC S ab C ∆=,故t a n 1C =,∴4C π=.故选C.(2017·新课标Ⅰ,9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D 解析:1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x ,首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+−−−−−−−−−→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x . 注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D ; (2017·新课标Ⅲ,6)设函数()πcos 3f x x ⎛⎫=+⎪⎝⎭,则下列结论错误的是( ). A .()f x 的一个周期为2-πB .()y f x =的图像关于直线83x π=对称 C .()f x +π的一个零点为6x π=D .()f x 在π,2⎛⎫π⎪⎝⎭单调递减 【答案】D 解析: 函数()πcos 3f x x ⎛⎫=+⎪⎝⎭的图像可由cos y x =向左平移π3个单位得到, 如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误.故选D.π(2016·新课标Ⅰ,12)已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为 )(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【答案】B 解析:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤,接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调;若π9,4ωϕ==,此时π()s i n 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减.故选B .(2016·新课标Ⅱ,7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( ) A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈ 【答案】B 解析:平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .(2016·新课标Ⅱ,9)若3cos()45πα-=,则sin 2α =( ) A .725B .15C .15-D .725-【答案】D 解析:∵3cos()45πα-=,2ππ7sin 2cos(2)cos[2()]2cos ()124425παααα=-=-=--=,故选D .(2016·新课标Ⅲ,5)若3tan 4α=,则2cos 2sin 2αα+=( ) A.6425 B. 4825 C. 1 D. 1625【答案】A 解析:22222cos 4sin cos 14tan 64cos 2sin 225cos sin 1tan ααααααααα+++===++,故选A.(2016·新课标Ⅲ,8)在ABC △中,πB =,BC 边上的高等于1BC ,则cos A =( )C.D.DCAB【答案】C 解析:如图所示,可设1BD AD==,则AB2DC=,AC∴=cos A=(2015·新课标Ⅰ,2)sin20cos10cos160sin10-=()A..12- D.12【答案】D解析:sin20cos10cos160sin10sin20cos10cos20sin10sin30-=+=,选D.. (2015·新课标Ⅰ,8)函数()f x=cos()xωϕ+的部分图象如图所示,则()f x的单调递减区间为()A.13(,),44k k kππ-+∈ZB.13(2,2),44k k kππ-+∈ZC.13(,),44k k k-+∈ZD.13(2,2),44k k k-+∈Z【答案】D解析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x xππ=+,令22,4k x k kπππππ<+<+∈Z,解得124k-<x<324k+,k∈Z,故单调减区间为(124k-,324k+),k∈Z,故选D.(2014·新课标Ⅰ,6)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数()f x,则y=()f x在[0,π]上的图像大致为()【答案】B 解析:如图:过M 作MD ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x x OM PM OP =cos sin x x =1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B.(2014·新课标Ⅰ,8)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】B 解析:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B(2014·新课标Ⅱ,4)钝角三角形ABC 的面积是12,AB =1,BC AC =( )A .5BC .2D .1【答案】B 解析:∵1||||sin 2ABC S AB BC B ∆=⋅⋅,即:111sin 22B =⋅,∴sin B =,即45B =或135. 又∵222||||||2||||cos AC AB BC AB BC B =+-⋅⋅,∴2||1AC =或5,又∵ABC ∆为钝角三角形,∴2||5AC =,即:||AC =(2012·新课标Ⅰ,9)已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( )A .[12,54] B .[12,34] C .(0,12] D .(0,2]【答案】A 解析:因为0ω>,2x ππ<<,所以2444x ππππωωωπ⋅+<+<⋅+,因为函数()sin()4f x x πω=+在(2π,π)上单调递减,所以242342πππωππωπ⎧⋅+≥⎪⎪⎨⎪⋅+≤⎪⎩,解得1524ω≤≤,故选A.(2012·新课标Ⅱ,9)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是() A. 15[,]24B. 13[,]24C. 1(0,]2D. (0,2]【答案】A 解析:由322,22442k k k ππππππωπωπ+≤+<+≤+∈Z 得,1542,24k k k ω+≤≤+∈Z ,15024∵,∴ωω>≤≤.(2011·新课标Ⅰ,11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 【答案】A 解析:())4f x x πωϕ=++,所以2ω=,又f(x)为偶函数,,424k k k z πππϕπϕπ∴+=+⇒=+∈,())2f x x x π∴=+=,选A .(2011·新课标Ⅰ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=( )A .45-B .35-C .35D .45【答案】B 解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B.(2011·新课标Ⅱ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( )A .45-B .35-C .35D .45【答案】B 解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,故选B. (2011·新课标Ⅱ,11)设函数()sin()cos()(0,||)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增【答案】A解析:())(0,||)42f x x ππωϕωϕ=++><的最小正周期为π,所以2ω=,又()()f x f x -=,∴ f (x )为偶函数,=+,4k k Z πϕπ∴∈,())2f x x x π∴=+=,故选A. 二、填空题(2018·新课标Ⅰ,理16)已知函数x x x f 2sin sin 2)(+=,则)(x f 的最小值是 .【答案】233-解析:方法一:()2sin sin 22sin 2sin cos 2sin (1cos )f x x x x x x x x =+=+=+, 所以222223[()]4sin (1cos )4(1cos )(1cos )4(1cos )(1cos )f x x x x x x x =+=-+=+- 4344(1cos )(1cos )(1cos )(33cos )27(1cos )(33cos )3344x x x x x x ++++++-⎛⎫=+-= ⎪⎝⎭≤, 所以函数()f x的值域为⎡⎢⎣⎦,所以()f x的最小值为 方法二:23()2sin sin 22sin 2sin cos 2sin (1cos )4sin cos 2cos 8sin cos 22222x x x x xf x x x x x x x x ⎛⎫=+=+=+=⋅=⋅ ⎪⎝⎭ 3222223(sin cos )3sin cos cos cos 222222x x x x x x ⎛⎫=⋅⋅⋅ ⎪⎝⎭4222243sin cos cos cos 3222244x x xx ⎛⎫+++⎪⎛⎫= ⎪ ⎪⎝⎭ ⎪⎝⎭≤,3sin cos 22x x 2sin sin 2x x ∴+≥. 方法三:x x x f 2cos 2cos 2)(+=')1cos 2)(1(cos 2-+=x x0)(>'x f 3232ππππ+<<-⇒k x k ,函数)(x f 在)32,32(ππππ+-k k 单调递增;0)(<'x f 32352ππππ-<<-⇒k x k ,函数)(x f 在)32,352(ππππ--k k 单调递减; ∴32ππ-=k x 时,函数)(x f 有最小值,即)32()(min ππ-=k f x f )32(2sin )32sin(2ππππ-+-=k k 233-=.(2018·新课标Ⅱ,理15)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.【答案】12-【解析】解法一:2222sin cos 1sin cos 2sin cos 1cos sin 0cos sin 2cos sin 0a αβαβαβαββαβ⎧+=++=⎧⎪−−−−→⎨⎨+=++=⎪⎩⎩两边平方 ()()122sin cos cos sin 1sin 2αβαβαβ−−−−→++=⇒+=-对位相加解法二: sin cos 1cos 1sin cos sin 0sin cos αββααββα+==-⎧⎧⇒⎨⎨+==-⎩⎩① ()()()sin sin cos cos sin sin 1sin cos cos sin 1αβαβαβααααα+=+=-+-=- ② ()()22221sin cos 11sin cos 1sin 2ββααα+=⇒-+-=⇒=综上所述:()1sin 2αβ+=-解法三:特殊值法设1sin cos 2αβ==,则cos α=,sin β=,()1sin sin cos cos sin 2αβαβαβ+=+=-.(2018·新课标Ⅲ,理15)函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 【答案】3 解析:由()cos(3)06f x x π=+=,有3()62x k k Z πππ+=+∈,解得39k x ππ=+,由039k πππ≤+≤得k 可取0,1,2,∴()cos(3)6f x x π=+在[0,]π上有3个零点.(2017·新课标Ⅱ,14)函数()23sin 4f x x x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 .【答案】1【解析】∵ ()23sin 0,42f x x x x π⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭,22sin cos 1x x +=,∴ ()21cos 4f x x x =-+,设cos t x =,[]0,1t ∈,∴ ()214f x t =-++,函数对称轴为[]0,1t =,∴ ()max 1f x =.(2016·新课标Ⅱ,13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 45A =,1cos 53C =,a = 1,则b = . 【答案】2113 解析:∵4cos 5A =,5cos 13C =,∴3sin 5A =,12sin 13C =,()63sin sin sin cos cos sin 65B A C A C A C =+=+=,由正弦定理得:sin sin b a B A =,解得2113b =.(2016·新课标Ⅲ,14)函数sin y x x =的图像可由函数sin y x x =的图像至少向右平移______个单位长度得到.【答案】23π 解析:sin 2sin ,sin 2sin 33y x x x y x x x ππ⎛⎫⎛⎫==-==+ ⎪ ⎪⎝⎭⎝⎭,故可前者的图像可由后者向右平移23π个单位长度得到. (2015·新课标Ⅰ,16)在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .【答案】 解析:如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合于E 点时,AB 最长,在BCE ∆中,75B C ∠=∠=,30E ∠=,2BC =,由正弦定理可得o osin 30sin 75BC BE=,解得BE 平移AD ,当D 与C 重合时,AB 最短,此时在BCF ∆中,75B BFC ∠=∠=,30FCB ∠=,由正弦定理知o osin 30sin 75BF BC =,解得BF =AB 的取值范围为()23sin 4f x x x =+-.(2014·新课标Ⅰ,16)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .解析:由2a =且 (2)(sin sin )()sin b A B c b C +-=-,即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc +-=,故2221cos 22b c a A bc +-==,∴060A ∠=,∴224b c bc +-=,224b c bc bc =+-≥,∴1sin 2ABC S bc A ∆=≤(2014·新课标Ⅱ,14)函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________. 【答案】1 解析:∵()sin(2)2sin cos()sin[()]2sin cos()f x x x x x ϕϕϕϕϕϕϕ=+-+=++-+sin cos()cos sin()2sin cos()cos sin()sin cos()sin x x x x x x ϕϕϕϕϕϕϕϕϕϕ=+++-+=+-+=∵x R ∈,∴()f x 的最大值为1.(2013·新课标Ⅰ,15)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________.【答案】解析:f (x )=sin x -2cos x x x ⎫⎪⎭,令cos αsin α=则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x ) 即θ=2k π+π2-α(k ∈Z ),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α==(2013·新课标Ⅱ,15)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=_________.【答案】 解析:由π1tan 1tan 41tan 2θθθ+⎛⎫+== ⎪-⎝⎭,得tan θ=13-,即sin θ=13-cos θ. 将其代入sin 2θ+cos 2θ=1,得210cos 19θ=. 因为θ为第二象限角,所以cos θ=10-,sin θsin θ+cos θ=.(2011·新课标Ⅰ,16)在ABC V 中,60,B AC ==2AB BC +的最大值为 .【答案】解析:00120120A C C A +=⇒=-,0(0,120)A ∈,22sin sin sin BC ACBC A A B ==⇒=022sin 2sin(120)sin sin sin AB ACAB C A A A C B==⇒==-=+;2AB BC ∴+=5sin ))A A A A ϕϕ+=+=+,故最大值是三、解答题(2018·新课标Ⅰ,理17)在平面四边形ABCD 中,o ADC 90=∠,oA 45=∠,2=AB ,5=BD .(1)求ADB ∠cos ;(2)若22=DC ,求BC .解析:解法1:(1)在AD B ∆中,由正弦定理:A ADB ∠=∠sin 5sin 2,所以A ADB ∠=∠sin 52sin 52=,又因为o ADC 90=∠,所以oADB 90<∠,所以523cos =∠ADB . 解法2:在ADB ∆中,由余弦定理可得222252cos 222=⨯⨯-+=∠AD AD ADB ,解得232+=AD (负值舍去),再由余弦定理可得ADB ∠cos =⨯+⨯-++=5)232(225)232(222523. (2)OADB BDC 90=∠+∠,所以=∠BDC cos ADB ∠sin 52=,在BDC ∆中,由余弦定理可知2208252cos 2222BC DC BD BC DC BD BDC -+=⋅-+=∠52=,解得5=BC .(2017·新课标Ⅰ,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长解析:(1)∵ABC △面积23sin a S A =.且1sin 2S bc A =,∴21sin 3sin 2a bc A A =,∴223sin 2a bc A =,∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.(2)由(1)得2sin sin 3B C =,1cos cos 6B C =,∵πA B C ++=, ∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=, 又∵()0πA ∈,,∴60A =︒,sin A =1cos 2A =,由余弦定理得2229a b c bc =+-= ①由正弦定理得sin sin a b B A =⋅,sin sin a c C A =⋅,∴22sin sin 8sin a bc B C A=⋅= ②由①②得b c +=∴3a b c ++=ABC △周长为3+(2017·新课标Ⅱ,17)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin2B AC +=. (1)求cos B ;(2)若6a c += , ABC ∆面积为2,求.b .解析:(Ⅰ)【解法1】由题设及2sin8sin ,2BB C B A ==++π,故sin 4-cosB B =(1),上式两边平方,整理得 217cos B-32cosB+15=0,解得 15cosB=cosB 171(舍去),=.【解法2】由题设及2sin 8sin ,2B B C B A ==++π,所以2sin 82cos 2sin 22B B B =,又02sin ≠B ,所以412tan=B ,17152tan 12tan 1cos 22=+-=B BB . (Ⅱ)由158cosB sin B 1717==得,故14a sin 217ABC S c B ac ∆==,又17=22ABC S ac ∆=,则, 由余弦定理及a 6c +=得22221715b 2cos a 2(1cosB)362(1)4217a c ac B ac =+-=-+=-⨯⨯+=(+c ),所以b=2.(2017·新课标Ⅲ,17)ABC △的内角,,A B C 的对边分别为,,a b c ,已知sin 0A A =,a =2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.解析:(1)由sin 0A A +=得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈,所以ππ3A +=,得2π3A =. 由余弦定理2222cos a b c bc A =+-⋅.又因为12,cos 2a b A ===-代入并整理得()2125c +=.故4c =.(2)因为2,4AC BC AB ===,由余弦定理222cos 2a b c C ab +-==.因为AC AD ⊥,即ACD △为直角三角形,则cos AC CD C =⋅,得CD由勾股定理AD ==又2π3A =,则2πππ326DAB ∠=-=, 1πsin 26ABD S AD AB =⋅⋅△(2016·新课标Ⅰ,17)ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2.(Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长. 解析:⑴()2cos cos cos C a B b A c +=,由正弦定理得:()2cos sin cos sin cos sin C A B B A C ⋅+⋅=()2cos sin sin C A B C⋅+=,∵πA B C ++=,()0πA B C ∈、、,,∴()sin sin 0A B C +=> ∴2cos 1C =,1cos 2C =,∵()0πC ∈,,∴π3C =⑵ 由余弦定理得:2222cos c a b ab C =+-⋅,221722a b ab =+-⋅,()237a b ab +-=1sin 2S ab C =⋅==,∴6ab =,∴()2187a b +-=,5a b +=∴ABC △周长为5a b c ++=(2015·新课标Ⅱ,17)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍. (Ⅰ)求sin sin BC∠∠;(Ⅱ) 若AD =1,DC =2,求BD 和AC 的长. 解析:(Ⅰ)1sin 2ABD S AB AD BAD ∆=⋅∠,1sin 2ADC S AC AD CAD ∆=⋅∠,因为2ABD ADC S S ∆∆=,BAD CAD ∠=∠,所以2AB AC =,由正弦定理可得sin 1sin 2B AC C AB ∠==∠.(Ⅱ)因为::2ABD ADC S S BD DC ∆∆==,DC =BD ABD ∆和ADC ∆中, 由余弦定理知,2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠, 故222222326AB AC AD BD DC +=++=,由(Ⅰ)知2AB AC =,所以1AC =.(2013·新课标Ⅰ,17)如图,在△ABC 中,∠ABC =90°,AB BC =1,P 为△ABC 内一点,∠BPC=90°.(1)若PB =12,求PA ;(2)若∠APB =150°,求tan ∠PBA .解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=,故PA =2.(2)设∠PBA =α,由已知得PB =sin α,在△PBA 中,由正弦定理得sin sin150sin(30)αα=︒︒-,α=4sin α,所以tan α=4,即tan ∠PBA =4.(2013·新课标Ⅱ,17)在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.解析:(Ⅰ)由已知及正弦定理得sin A =sin B cos C +sin C sin B ①, 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C ②,由①,②和C ∈(0,π)得sin B =cos B ,又B ∈(0,π),所以4B π=.(Ⅱ)△ABC 的面积1sin 2S ac B ==. 由已知及余弦定理得224=+2cos 4a c ac π-. 又a 2+c 2≥2ac ,故ac ≤a =c 时,等号成立.因此△ABC.(2012·新课标Ⅰ,17)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C的对边,cos sin 0a C C b c --=. (1)求A ;(2)若2a =,△ABCb ,c . 解析:(1)根据正弦定理R Cc B b A a 2sin sin sin ===,得A R a sin 2=,B R b sin 2=,C R c sin 2=,因为cos sin 0a C C b c --=,所以0sin 2sin 2sin )sin 2(3cos )sin 2(=--+C R B R C A R C A R , 即0sin sin sin sin 3cos sin =--+C B C A C A ,(1)由三角形内角和定理,得C A C A C A B sin cos cos sin )sin(sin +=+=,代入(1)式得0sin sin cos cos sin sin sin 3cos sin =---+C C A C A C A C A , 化简得C C A C A sin sin cos sin sin 3=-, 因为0sin ≠C ,所以1cos sin 3=-A A ,即21)6sin(=-πA , 而π<<A 0,6566πππ<-<-A ,从而66ππ=-A ,解得3π=A .(2)若2a =,△ABC1)得3π=A ,则⎪⎪⎩⎪⎪⎨⎧==-+=43cos 233sin 21222a bc c b bc ππ,化简得⎩⎨⎧=+=8422c b bc , 从而解得2=b ,2=c .。