P+F安全栅组态说明 ppt课件
P+F安全栅组态步骤.pptx

点击"KF*-UT2-* FDT”,然后点击确定,或者直接双击,。出现以下画面:
集团 温度 温度 模拟输.入 温度 数字输.入 数字输.入 温度 模拟输.入 模拟输入
设畚版本
A
1.4. 110.70 / 20
1.4. 110.70 / 20
1.4. 110.70 / 20 =
1.4. 110.70 / 20 1.4. 110.70 / 20
学海无涯
第一步双击桌面图标“PACTware 4.1”打开如下窗口:
1
学海无涯
在出现在菜单中选择中选择“添加设备”,如下图 2
学海无涯
将弹出以下对话框,选择“P2P RS232 FDT”,然后点击“确定”或者直接双击"P2P RS232 FDT”。
然后将显示以下画面:
双击绿色图标,出现以下对话框,调整通讯接口为“USB1 (K-ADP-USB)”,然后按回车键 3
II :项目 设
备标签 廚斯
C
日同
A
IS参数I
回 Laziguage 画画。
Sensor 1: FT100
学海无涯
C MAX: 850.00
Serial Nuinber: Firmware Version: Ksrdwsre Version: Supply Frequency: Quantity of Chaimel: Output Type:
1.4. 110.70 / 20
1.4. 110.70 / 20
1.4. 110.70 / 20
1.4. 110.70 / 20
通
[ 确定 ][取消 ]
双击右边的“KF*-UT2-* FDT”图标,出现以下对话框就可以进行组态了 5
P+F安全栅

对比齐纳式和隔离式安全栅的特点和性能后可以看出,隔离式 安全栅 有着突出的优点和更为广泛用途,虽然其价格略高于 齐纳式安全栅,但从设计、施工安装、调试及维护成本来考虑 , 其综合成本可能反而低于齐纳式安全栅。在要求较高的工 程现场几 乎无一例外地采用了隔离式安全栅作为主要本安防 爆仪表, 隔离式安全栅已逐渐取代了齐纳 式安全栅,在安全 防爆领域得到了日益广泛的应用。
路,给设计及现场施工带来 极大方便。 2.对危险 区的仪表要求大幅度降低,现场无需采用隔离式的 仪表。 3.由于信号线路无需共地,使得检测和控制 回路信号的稳定性和抗干扰能力大 大增强,从而提 高了整个系统的可靠性。 4.隔离式安全栅具备更强 的输入信号处理能力,能够接受并处理热电偶、热 电 阻、频率等信号,这是齐纳式安全栅所无法做到 的。 5.隔离式安全栅可输出两路相互隔离的信号, 以提供给使用同一信号源的两台设备使用,并保证 两设备信号不互相干扰,同时提高所连接设备相互 之间的电气安全绝缘性能。
P+F安全栅的组态主要指对温变式安全栅的 组态,下面我们大概了解一下,温变式安全 栅组态软件的安装与一般组态。
2015.11.16
安装位置:安全栅安装于安全场所,接收来自危险区的信号,输 出安全信号到安全区或危险区。 安全栅的结构形式:常见的分为齐纳式和隔离式安全栅 齐纳式安全栅:电路中采用快速熔断器、限流电阻或限压二 极管以对输入的电能量进行限制,从而保证输出到危险区的 能量。 隔离式安全栅:采用了将输入、输出以及电源三方之间相互 电气隔离的电路结构,同时符合本安型限制能量的要求。
隔离式安全栅
隔离式安全栅:带有电流隔离功能的安全栅,称为隔离式安全栅,简称隔 离栅。 构成:通常由回路限能单元、电流隔离单元、信号处理单元 回路限能单元中最核心的电路为安全栅基本限能电路,辅助有用于驱动现 场仪表的回路供电电路和用于仪表信号采集的检测电路。 电流隔离单元包括变压器隔离组件、模频转换和频模转换电路。 信号处理单元则根据各品种隔离栅的功能要求实施信号处理。
P+F安全栅组态 经验分享

在弹出的面板中选择P2P RS232 FDT
双击P2P RS232 FDT,在弹出的窗口中,将
Communication Port 项由COM1修改为USB1。(具体 选项可依据实际使用的接口类型进行选择) 完成后,关闭此窗口。回到主界面。
右键单机左侧出现的“P2P
RS232 FDT”选项,选择 ADD DEVICE
UT2*-FDT”,选择 DISCONNECT 右键点击“P2P RS232 FDT”,选择 DISCONNECT 断开成功后,拆除连 线,组态完毕。
注意:可在ANALOGUE OUTPUT2中进行同样的组态,
即可实现安全栅的一入两出组态。
Analogue output 1:
Analogue output 2:
右键单击“KF*-
UT2*-FDT”选择 STORE TO DEVICE, 将组态信息下装至安 全栅。
右键点击“KF*-
K-ADP-USB组态线
• 装有 PACTware 组态软件 的笔记本 电脑一台
• P+F KADP-Fra bibliotekSB 组态线一 根
笔记本电脑
1.将KADP-USB 组态线USB 端插入电脑 USB口。
2.将KADP-USB 另一端插入 P+F安全栅 组态口。
1.打开pactware组态软件
2.右键HOST PC ,选择ADD DEVICE
单机组态面板左侧“INPUT1”,对输入信号进行组态
SENSOR:一次原件类型,如PT100,CU50等
Unit:测量单位,如℃,F,K等 Connection mode :接线类型,如三线制,四线制等
P+F安全栅组态说明 ppt课件

第十步、设定Output输出参数。
PPT课件
13
温度量程下限输入到“start value”对话框中,量程上限输入到“end value”对 话框中。
在“Charachteristic”中可选择输出的模式,我们推荐选择“4-20mA NE43”,便 于对线路进行监测。
PPT课件
14
END
PPT课件
15
组态软件的安装。
PPT课件
3
第三步、安装相应的 Interface Technology 软件, 用于驱动 通讯电缆后采集所有正常连接的设备。如计算机为非win7和64 位操作系统,则选中第 1 、 2 项,然后点击“Install selected applications”,如计算机为win7和64位操作系统, 则选中第 1 、 3 项,然后点击“Install selected applications”,进行安装。
PPT课件
11
第九步、设定Input(输入)参数。
热电阻输入,需要选择电阻的输入线制,主要是 2 线制、3 线制还是 4
线制。如果选择 2 线制热电阻,则可在“lead resistance”对话框中输
入线电阻阻值,从而减少线电阻对温度测量的影响。
PPT课件
12
热电偶输入,需要选择是“外部补偿”还是“冷端温度补偿”。如果选择外部补 偿,可将室温输入到“Ext.Ref.Temp”外部参考温度对话框中,从而减小室温的 影响。如选则内部补偿,则需使用 K-CJC 补偿端子。
PPT课件
4
安装完成后,弹出如下窗口,即成功安装。
以上三个软件需正常安装,才能进行P+F安全栅组态, 即表示成功了一半。
P+F温度安全栅组态

栅设备型号
添加完安全栅后,右键 点建立连接
当出现如下窗口表示连 接存在问题,这时候一 般或就者关将掉电软脑件重重启新后打再将开开端,还端口有口设就对置是不为检对C查,O下在M使设1 用备的管
理里找到端口,双击我 们的设备
选择端口设置菜单,点 高级按钮
建立连接后,从设备读 出
同样的这些修改 都需要敲击回车
来确认
在Output菜单中设置 量程。
这里还有一个设置量是程选下择限断线 后是输出保持上限还是下限, 亦上或限者,保D持ow不ns变ca。le量保U程p持s上c下a限le限保,持
Ho安全栅 组态软件图标
打这开里择以点添这来设后击加是我备首右设添们,先键备加选对在选设择应备这我的个们页P的2面P组协,态议接线的下
点击添加设备后会出现这个窗口, 我们主要用的是KF*-UT2-*FDT与 KCD2-UT2-*FDT这两个温度安全 栅型号,它们的区别是厚薄不一
样
当连接正常时,读取数 据时将有进度条
然面几O组后就个ut态安出标pu的全现签t内是栅了,的I的,需n参p参这要u数t数边我和。界有们数据读取成功后,在这设些置设接置线完形以式后。都这需以点如选击PT择这10温里0偶或度下。各元拉类件按热类钮电型可, 里右键后选择参数选项敲回车来确认输入, 否则修改无效
P+F安全栅说明书(中文)

KF 系列隔离栅的主要特点
KF 系列隔离式安全栅满足欧洲最新的防 爆认证要求,并取得 ATEX 认证。
在中国,KF 系列隔离栅满足中国国家标 准,并取得 NEPSI 认证。
KF 系列隔离栅在市场上的成功,主要基 于三个重要,而且独特的设计理念。其一,被称 为全能的隔离栅系列。就是尽可能在一个系列里 面,满足用户的各种应用功能。其二,被称为信 息化的隔离栅系列。这表现在全面支持模拟量回 路的智能通讯和完善现场线路故障监测及其故障 信息的收集报警。其三,被称为对工程友好的隔 离栅系列。就是尽可能地多为工程施工和日常维 护着想。
KF系列隔离栅 应用指南
PEPPERL + FUCHS
KF 系列隔离式安全栅
隔离式安全栅
限制回路电能量从而实现本质安全防爆功 能的回路限能关联设备通常被称为安全栅。而带 有电流隔离功能的安全栅,则被称为隔离式安全 栅,简称隔离栅。
隔离栅通常由回路限能单元、电流隔离单 元和信号处理单元三部分组成,如图 1 所示。回 路限能单元中最核心的电路为安全栅基本限能电 路。此外,辅助有用于驱动现场仪表的回路供电 电路和用于仪表信号采集的检测电路。电流隔离 单元包括变压器隔离组件、模频转换和频模转换 电路。信号处理单元则根据各品种隔离栅的功能 要求实施信号处理。
双通道/
一进二出
—
有源或无源 4-20mA 信号。热 — 电偶应用时请订购冷端补偿器
K-CJC。PC 机组态,可选 — PW2-ADP1-USB 组态软件包
DI,
KCD2-SR-Ex1.LB
一进二出 - SIL2
NAMUR 型 开关信号或 干接点信 号。
KCD2-SR-Ex2 KFD2-SR2-Ex2.W KFD2-SR2-Ex1.W KFD2-SR2-Ex1.W.LB
P+F 安全珊Hart管理
eexcellence in dependable automationFMEDA including SFF determinationand PFD calculationProject:HART multiplexer KFD2-HMM-16 together with KFD0-HMS-16 and 2700 HART Signal MultiplexerCustomer:Pepperl+Fuchs GmbHMannheimGermanyContract No.: P+F 02/4-11Report No.: P+F 02/4-11 R006Version V1, Revision R1.2, July 2002Stephan AschenbrennerCONFIDENTIAL INFORMATIONManagement summaryThis report summarizes the results of the analysis carried out on the HART multiplexerKFD2-HMM-16 together with KFD0-HMS-16 and the 2700 HART Signal Multiplexer.The assessment does not contain an evaluation of the correct functioning of the HARTmultiplexer but a statement about the interference freeness on the safety related 4..20mAloop when used for HART communication with regard to the suitability in part for Safety Instrumented System (SIS) usage in a particular Safety Integrity Level (SIL).The failure rates are based on the Siemens standard SN 29500.According to table 2 of IEC 61508-1 the average PFD for systems operating in low demandmode has to be ≥10-4 to < 10-3 for SIL 3 safety functions and ≥10-3 to < 10-2 for SIL 2 safetyfunctions. However, as the modules under consideration are only one part of an entire safetyfunction they should not claim more than 10% of this range, i.e. they should be better than orequal to 10-4 for SIL 3 and better than or equal to 10-3 for SIL 2.The modules under evaluation can be considered to be Type B components. However, the components that can contribute to a disturbance of the safety system are considered to be TypeA components.For Type A components the SFF has to fulfill the requirements as stated in table 2 ofIEC 61508-2 which are the following:Hardware fault tolerance (HFT)0 1 2 SIL 2 60% ≤ SFF < 90% SFF < 60%SIL 3 90% ≤ SFF < 99% 60% ≤ SFF < 90% SFF < 60%The following tables show under which conditions the critical components of the two modulesthat can contribute to a disturbance of the safety system fulfill this requirement (considering onlyone communication line being part of the safety function).Table 1: KFD2-HMM-16 together with KFD0-HMS-16 without additional module interfaceT[Proof] = 1 year T[Proof] = 5 years T[Proof] = 10 yearsPFD AVG = 1.23E-06PFD AVG = 6.13E-06PFD AVG = 1.23E-05than 10% of this range, i.e. to be better than or equal to 10-3. The PFD values even fulfill the requirements of higher SILs but the system does only fulfill the architectural constraints requirements (HFT/SFF) for SIL 2 which are set by table 2 of IEC 61508-2 for type A components having a hardware fault tolerance of 0.If the HART multiplexer KFD2-HMM-16 and KFD0-HMS-16 are used together with the module interface as described in section 4.1 then two de-coupling capacitors have to fail to bring the (sub)system into a dangerous state. This corresponds to a hardware fault tolerance of 1.Table 2: KFD2-HMM-16 together with KFD0-HMS-16 with additional module interface T[Proof] = 1 year T[Proof] = 5 years T[Proof] = 10 yearsPFD AVG = 6.13E-08PFD AVG = 3.07E-07PFD AVG = 6.13E-07than 10% of this range, i.e. to be better than or equal to 10-4. The PFD values even fulfill the requirements of a higher SIL but the system does only fulfill the architectural constraints requirements (HFT/SFF) for SIL 3 which are set by table 2 of IEC 61508-2 for type A components having a hardware fault tolerance of 1.Table 3: 2700 HART Signal MultiplexerT[Proof] = 1 year T[Proof] = 5 years T[Proof] = 10 yearsPFD AVG = 2.50E-07PFD AVG = 1.25E-06PFD AVG = 2.50E-06than 10% of this range, i.e. to be better than or equal to 10-4. The PFD values even fulfill the requirements of higher SILs but the system does only fulfill the architectural constraints requirements (HFT/SFF) for SIL 3 which are set by table 2 of IEC 61508-2 for type A components having a hardware fault tolerance of 1.The calculations are based on the assumption that the HART multiplexer are mounted in an environment that is IP 54 compliant (e.g. housing, control cabinet or control room).Table of ContentsManagement summary (2)1Purpose and Scope (5)2Project management (5)2.1Roles of the parties involved (5)2.2Standards / Literature used (5)2.3Reference documents (6)2.3.1Documentation provided by the customer (6)2.3.2Documentation generated by (6)3Description of the HART communication (7)4Description of the analyzed modules (8)4.1KFD2-HMM-16 and KFD0-HMS-16 (8)4.22700 HART Signal Multiplexer (11)5Failure Modes, Effects, and Diagnostics Analysis (12)5.1Description of the failure categories (12)5.2Methodology – FMEDA, Failure rates (12)5.2.1FMEDA (12)5.2.2Failure rates (12)5.2.3Assumption (13)6Results of the assessment (13)6.1KFD2-HMM-16 and KFD0-HMS-16 (15)6.22700 HART Signal Multiplexer (17)7Terms and Definitions (19)8Status of the document (20)8.1Liability (20)8.2Releases (20)8.3Release Signatures (20)1 Purpose and ScopeThis report shall describe the results of the FMEDAs carried out on the HART multiplexer KFD2-HMM-16 together with KFD0-HMS-16 and the 2700 HART Signal Multiplexer.It shall be shown that the HART multiplexer do not electrically interfere with the connected safety related system when using the 4..20mA loop for the HART communication.It shall be assessed whether these modules meet the Probability of Failure on Demand (PFD) requirements for SIL 2 / SIL 3 sub-systems according to IEC 61508 with regard to the interference freeness on the safety related 4..20mA loop.The assessment does neither consider any calculations necessary for proving intrinsic safety nor an evaluation of the correct functioning of the HART multiplexer.Pepperl+Fuchs GmbH contracted in May 2002 with the FMEDA and PFD calculation of the above mentioned modules.2 Project management2.1 Roles of the parties involvedPepperl+Fuchs Manufacturer of the HART multiplexer. Did the FMEDAs together with the determination of the Safe Failure Fraction (SFF) and calculated the Probability of Failure on Demand (PFD)using Markov models.2.2 Standards / Literature usedThe services delivered by were performed based on the following standards / literature.[N1] IEC 61508-2:1999 Functional Safety of Electrical/Electronic/ProgrammableElectronic Safety-Related Systems[N2] ISBN: 0471133019 Electronic Components: Selection and Application Guidelinesby Victor MeeldijkJohn Wiley & Sons[N3] FMD-91, RAC 1991 Failure Mode / Mechanism Distributions[N4] SN 29500 Failure rates of components2.3 Reference documents2.3.1 Documentation provided by the customer[D1] DL0799, DL0800 of 21.04.01 Circuit diagram for KFD2-HMM-16 and KFD0-HMS-16 [D2] 107905 Bill of material for KFD2-HMM-16[D3] ES-984240/1-A1 of 18.11.99 Circuit diagram for 2700 HART Signal Multiplexer(Mother Board Multiplexer / Interface Circuit)[D4] CL-984240/1-A4 of 24.03.99 Bill of material for 2700 HART Signal Multiplexer (MotherBoard)[D5] ES-984240/2-A1 of 18.11.99 Circuit diagram for 2700 HART Signal Multiplexer(µProcessor Board)[D6] CL-984240/2-A3 of 16.03.99 Bill of material for 2700 HART Signal Multiplexer(µProcessor Board)[D7] Datasheet metallized polyester capacitor WIMA MKS 2 2.3.2 Documentation generated by [R1] FMEDA KFD2-HMM-16 V1 R1.0 – Analysis of 24.06.02[R2] FMEDA KFD2-HMM-16 V1 R1.0 – Results of 24.06.02[R3] FMEDA MUX 2700 V1 R1.0 – Analysis of 24.06.02[R4] FMEDA MUX 2700 V1 R1.0 – Results of 24.06.023 Description of the HART communicationThe HART1 protocol is supported by many conventional 4..20 mA field devices, which thus enable digital communication for configuration and servicing purposes. Many device parameters and also the measured values themselves can thus be digitally transferred to and from the device. This digital communication runs in parallel with the 4..20 mA signal on the same cable. This is possible through a current modulation, which is superimposed on the user signal.Figure 1: Modulated HART signalHART is a master-slave protocol: A field device does only respond when requested (except in "Burst mode").The message duration is several hundred milliseconds, so that between two and three messages can be transferred per second.On HART, there are three groups of commands:• The "Universal" commands; these must be supported by all field devices;• The "Common practice" commands; these are pre-defined commands, suitable for many field devices, which, if they are supported by the device, must be implemented in the pre-defined form;• Device-specific commands; these are commands, which are particularly suitable for this field device.1 HART = Highway Addressable Remote Transducer4 Description of the analyzed modulesIn safety-related applications the HART communication is used to provide additional (non safety-related) information about statuses and reading, allow for better preventive maintenance and thus improve the integrity of the field instrumentation.For this purpose the HART multiplexer have to be directly connected to the field wiring of the respective safety-related system (see Figure 2).Figure 2: Connection of the HART multiplexer with the safety-related system4.1 KFD2-HMM-16 and KFD0-HMS-16The HART multiplexer KFD2-HMM-16 can operate up to 256 analog transmitters. The built-in slave unit operates the first 16 loops, and a maximum of further 15 KFD0-HMS-16 slaves can be connected.The power supply (24 VDC nominal voltage) is provided via the power rail or terminals 17 and 18. The optional slave units or the RPI control module are connected with the master via a 14-core flat cable. Its connector is placed on the same housing side as the terminals for the RS 485 interface and the voltage supply.The analog signals for each unit are connected separately via a 26-core cable. 16 leads are provided for the HART signals of the analog instrument circuits, the other 10 are connected to ground.The minimum load resistance of the analog instrument circuits is 230 Ω (min. load resistance in accordance with the HART specification), the max. load resistance is 500 Ω. Load resistances of up to 1000 Ω are possible, however, resistance values greater than 500 Ω can interfere with the HART communication.A process control system or a PC can be connected via a RS 485 interface (terminals 13, 14 and 15). Up to 31 KFD2-HMM-16 can be operated on one RS 485 interface. Terminals 19, 20 and 21 can be used to connect additional stations to the RS 485 interface. The DIP-switch on the housing front is for the setting of the RS 485 address and the baud rate.Figure 3: Block diagram of KFD2-HMM-1626 pin connectorfor up to16 analog signal sources 14 pin connector for up to 15 KFD0-HMS-16 devicesFigure 4: Block diagram of KFD2-HMS-16The HART multiplexer KFD2-HMM-16 (KFD0-HMS-16) has only one de-coupling capacitor for each analog signal as can be seen in Figure 3 and Figure 4, but can be connected to a module interface as shown in Figure 5 to also have the ground de-coupled by a second capacitor. Figure 5: Block diagram HART multiplexer with module interface for loop 1 and 24.2 2700 HART Signal MultiplexerThe Mux2700 HART Multiplexer provides 32 signal channels for connection to “smart” transmitters or control devices supporting digital communication according to the HART standard.Two Decoupling Capacitors are provided, one for each signal connection.Both + Ve (positive) & - Ve (negative) signal wires are therefore decoupled from DC signal. Only the high frequency digital HART protocol signal passes through to the internal Multiplexer circuitry.It acts as a gateway between a workstation - typically a PC - and the field instrumentation.Each Mux2700 is networked simply by connecting the high-speed RS485 output in multidrop configuration. The Mux2700 interrogates each field device, under the supervision of the workstation, retrieving information for storage in its internal database, which can then be accessed at ease.Figure 6: Block diagram of 2700 HART Signal Multiplexer5 Failure Modes, Effects, and Diagnostics Analysis5.1 Description of the failure categoriesThe fail-safe state is defined as the HART multiplexer is not communicating.Failures are categorized and defined as follows:A safe failure (S) is defined as a single failure that causes the HART multiplexer not to communicate.A dangerous failure (D) is defined as a single failure that disturbs the safety system connected to the HART multiplexer.A “don't care” failure (#) is defined as a single failure of a component that is part of the safety function but has no effect on the safety function of the module / (sub)system.5.2 Methodology – FMEDA, Failure rates5.2.1 FMEDAA Failure Modes and Effects Analysis (FMEA) is a systematic way to identify and evaluate the effects of different component failure modes, to determine what could eliminate or reduce the change of failure, and to document the system in consideration.An FMEDA (Failure Mode Effect and Diagnostic Analysis) is an FMEA extension. It combines standard FMEA techniques with extension to identify online diagnostics techniques and the failure modes relevant to safety instrumented system design. It is a technique recommended to generate failure rates for each important category (safe detected, safe undetected, dangerous detected, dangerous undetected, fail high, fail low) in the safety models. The format for the FMEDA is an extension of the standard from MIL STD 1629A, Failure Modes and Effects Analysis.5.2.2 Failure ratesThe failure rate data used by in this FMEDA are from the Siemens SN 29500 failure rate database. The rates were chosen in a way that is appropriate for safety integrity level verification calculations. It is expected that actual field failure results with average environmental stress will be superior to the results predicted by these numbers.The user of these numbers is responsible for determining their applicability to any particular environment. Accurate plant specific data is preferable to general industry average data. Industrial plant sites with high levels of stress must use failure rate data that is adjusted to a higher value to account for the specific conditions of the plant.5.2.3 AssumptionThe following assumptions have been made during the Failure Modes, Effects, and Diagnostic Analysis of the HART multiplexer.• Failure rates are constant, wear out mechanisms are not included.• Propagation of failures is not relevant.• All component failure modes are known.• The repair time after a safe failure is 8 hours.• The average temperature over a long period of time is 40°C.• The stress levels are average for an industrial environment.• All modules are operated in the low demand mode of operation.• Only one communication line is considered to be part of the safety function.6 Results of the assessment did the FMEDAs supported by Pepperl+Fuchs.The analysis has shown that only a couple of components of the HART multiplexer can be found where potentially dangerous failure exist. All other component failures can only lead to the defined safe state but can never disturb the connected safety-related system. The following critical points were identified:1. Short circuits (to ground, to power or between each other) of the signal lines from theinterconnection terminal to the field side of the de-coupling capacitors;2. Short circuit of the de-coupling capacitor.For the calculation of the Safe Failure Fraction (SFF) the following has to be noted:λtotal consists of the sum of all component failure rates. This means:λtotal = λsafe + λdangerous + λdon’t care2SFF = 1 – λdu / λtotalFor the FMEDAs the following failure modes and below mentioned distributions were used. Capacitor fixed plastic (in accordance with [N3])Failure Mode Distribution (in %)Short 40 Open 42 Change in value 182 These are all failures that have no impact on the safety function. The behavior of the system is neither dangerous nor safe.Capacitor Al-ELKO (in accordance with [N3]) Failure ModeDistribution (in %)Short 38 Open 31 Seal failure31For the calculation of the PFD the following Markov models for a 1oo1 and 1oo2 architecture were used. As there are no explicit on-line diagnostics, no state “dd” – dangerous detected is required. As after a complete proof all states are going back to the OK state no proof rate is shown in the Markov models but included in the calculation.The proof time was changed using the Microsoft® Excel 2000 based FMEDA tool of as a simulation tool. The results are documented in the following sections.Figure 7: Markov model for a 1oo1 architectureAbbreviations: d The system has failed dangerous s The system has failed safe λd Failure rate of dangerous failures λs Failure rate of safe failures βCommon cause factor (set to 5%)T Repair Repair time τRepair Repair rate (1 / T Repair )Figure 8: Markov model for a 1oo2 architecture6.1 KFD2-HMM-16 and KFD0-HMS-16Item 1. of the critical points identified in section 6 can be excluded according to draft IEC 60947-5-3 A.1.2 if:• The HART multiplexer are mounted in a housing of minimum IP 54• The base material used is according to IEC 60249, the design and use of the printed board is according to IEC 60326 T3 and the creepage distances and clearances are designed according to IEC 60664-1 (1992) with pollution degree 2 / installation category III, or• The printed side(s) are coated with an insulation material in accordance to IEC 60664-3 (1992)Clearances and creepage distances according to IEC 60661-1 with pollution degree 2 / installation category II for a nominal voltage of 24 VDC are given in Table 4.Table 4: Clearances and creepage distances according to IEC 60661-1Clearances (table 2) Creepage distances (table 4) Printed wiring material 0,1 mm 0,04 mmAccording to Pepperl+Fuchs the base material used is according to IEC 60249 and the minimum creepage distances and clearances are 0,15 mm. This is considered to be sufficient as the interesting distances are part of an energy-consuming equipment supplied from fixed installation, i.e. installation category II. In addition the HART multiplexer is not a safety critical system itself but is connected to one. Thus there are no to special requirements with regard to reliability and availability (see section 2.2.2.1.1 of IEC 60664-1) and installation category III does not apply.Item 2. of the critical points identified in section 6 was analyzed in form of a FMEDA under the assumptions described in section 5.2.3 and 6.The following failure rates and SFF were calculated for the de-coupling capacitor:λtotal = 7,00E-10 1/hλsafe = 2,94E-10 1/hλdangerous = 2,80E-10 1/hλdon’t care = 1,26E-10 1/hSFF = 60,00% (HFT = 0)NOTE: As all faults of the additional electronic will either contribute to λsafe or λdon’t care with regard to the interference freeness on the 4..20mA signal the failure modes of the different components were not explicitly analyzed and are not part of the above mentioned failure rates.The PFD was calculated for three different proof times using the Markov model as described in Figure 7.T[Proof] = 1 year T[Proof] = 5 years T[Proof] = 10 yearsPFD AVG = 1.23E-06PFD AVG = 6.13E-06PFD AVG = 1.23E-05than 10% of this range, i.e. to be better than or equal to 10-3. The PFD values even fulfill the requirements of higher SILs but the system does only fulfill the architectural constraints requirements (HFT/SFF) for SIL 2 which are set by table 2 of IEC 61508-2 for type A components having a hardware fault tolerance of 0.The following figure shows the result of the PFD calculation for T[Proof] = 1 year.Figure 9: PFD for T[Proof] = 1 yearIf the HART multiplexer KFD2-HMM-16 and KFD0-HMS-16 are used together with the module interface as described in section 4.1 then two de-coupling capacitors have to fail to bring the (sub)system into a dangerous state. This corresponds to a hardware fault tolerance of 1.The PFD was calculated for three different proof times using the Markov model as described in Figure 8.T[Proof] = 1 year T[Proof] = 5 years T[Proof] = 10 yearsPFD AVG = 6.13E-08PFD AVG = 3.07E-07PFD AVG = 6.13E-07than 10% of this range, i.e. to be better than or equal to 10-4. The PFD values even fulfill the requirements of a higher SIL but the system does only fulfill the architectural constraints requirements (HFT/SFF) for SIL 3 which are set by table 2 of IEC 61508-2 for type A components having a hardware fault tolerance of 1.The following figure shows the result of the PFD calculation for T[Proof] = 1 year and β = 5% (maximum common cause factor for a logic sub-system according to IEC 61508-6).Figure 10: PFD for T[Proof] = 1 year and β = 5%6.2 2700 HART Signal MultiplexerItem 1. of the critical points identified in section 6 can be excluded according to draft IEC 60947-5-3 A.1.2 if:• The HART multiplexer are mounted in a housing of minimum IP 54• The base material used is according to IEC 60249, the design and use of the printed board is according to IEC 60326 T3 and the creepage distances and clearances are designed according to IEC 60664-1 (1992) with pollution degree 2 / installation category III, or• The printed side(s) are coated with an insulation material in accordance to IEC 60664-3 (1992)Clearances and creepage distances according to IEC 60661-1 with pollution degree 2 / installation category II for a nominal voltage of 24 VDC are given in Table 5.Table 5: Clearances and creepage distances according to IEC 60661-1Clearances (table 2) Creepage distances (table 4) Printed wiring material 0,1 mm 0,04 mmAccording to Pepperl+Fuchs the base material used is according to IEC 60249 and the minimum creepage distances and clearances are 0,25 mm. This is considered to be sufficient as the interesting distances are part of an energy-consuming equipment supplied from fixed installation, i.e. installation category II. In addition the HART multiplexer is not a safety critical system itself but is connected to one. Thus there are no to special requirements with regard to reliability and availability (see section 2.2.2.1.1 of IEC 60664-1) and installation category III does not apply.Item 2. of the critical points identified in section 6 was analyzed in form of a FMEDA under the assumptions described in section 5.2.3 and 6.The following failure rates and SFF were calculated for the two de-coupling capacitors: λtotal = 3,70E-09 1/h λsafe = 1,22E-09 1/h λdangerous = 1,42E-09 1/h λdon’t care = 1,06E-09 1/h SFF = 61,62% (HFT = 1)NOTE: As all faults of the additional electronic will either contribute to λsafe or λdon’t care with regard to the interference freeness on the 4..20mA signal the failure modes of the different components were not explicitly analyzed and are not part of the above mentioned failure rates. As two de-coupling capacitors have to fail to bring the (sub)system into a dangerous state a hardware fault tolerance of 1 is considered.The PFD was calculated based on the failure rate of the Al-ELKO as a worst case assumption for three different proof times using the Markov model as described in Figure 8.T[Proof] = 1 yearT[Proof] = 5 yearsT[Proof] = 10 yearsPFD AVG = 2.50E-07PFD AVG = 1.25E-06PFD AVG = 2.50E-06than 10% of this range, i.e. to be better than or equal to 10-4. The PFD values even fulfill the requirements of a higher SIL but the system does only fulfill the architectural constraints requirements (HFT/SFF) for SIL 3 which are set by table 2 of IEC 61508-2 for type A components having a hardware fault tolerance of 1.The following figure shows the result of the PFD calculation for T[Proof] = 1 year and β = 5% (maximum common cause factor for a logic sub-system according to IEC 61508-6).Figure 11: PFD for T[Proof] = 1 year and β= 5%7 Terms and DefinitionsFMEDA Failure Mode Effect and Diagnostic AnalysisHFT Hardware Fault ToleranceLow demand mode Mode, where the frequency of demands for operation made on a safety-related system is no greater than one per year and no greater than twicethe proof test frequency.λtotal Total failure rate λ (overall failure rate of all components)λsafe Failure rate λ of all safe failuresλdangerous Failure rate λ of all dangerous failuresλdu Failure rate λ of dangerous undetected failuresPFD Probability of Failure on DemandPFD AVG Average Probability of Failure on DemandSFF Safe Failure Fraction summarizes the fraction of failures, which lead to a safe state and the fraction of failures which will be detected bydiagnostic measures and lead to a defined safety action.SIF Safety Instrumented FunctionSIL Safety Integrity LevelSIS Safety Instrumented System8 Status of the document8.1 Liability prepares FMEDA reports based on methods advocated in International standards. Failure rates are obtained from a collection of industrial databases. accepts no liability whatsoever for the use of these numbers or for the correctness of the standards on which the general calculation methods are based.8.2 ReleasesVersion: V1Revision: R1.2Version History: V0, R1.0: Initial version, June 19, 2002V0, R1.1: Failure rates for the de-coupling capacitors of the MUX 2700corrected; section 2.3.2 completed; failure modes of Al-ELKO insection 6 added; June 24, 2002V1, R1.0: Comments after review integrated, June 27, 2002V1, R1.1: Management summary corrected; section “Purpose and Scope”modified, June 28, 2002V1, R1.2: Management summary changed; section “Purpose and Scope”modified, July 3, 2002AschenbrennerAuthors: StephanReview: V0, R1.0: Werner Bansemir (P+F), June 24, 2002V0, R1.1: Peter Müller (), June 26, 2002Release status: released to Pepperl+Fuchs8.3 Release SignaturesDipl.-Ing. (Univ.) Stephan Aschenbrenner, Senior Project ManagerDipl.-Ing. (Univ.) Rainer Faller, Principal Partner。
常用安全栅介绍及P+F温变设置(江朝均160601)
接近开关简介
接近开关又称无触点行程开关。它能在一定的距离(几毫 米至几十毫米)内检测有无物体靠近。当物体与其接近 到设定距离时,就可以发出“动作”信号。
接近开关的核心部分是“感辨头”,它对正在接近的物体 有很高的感辨能力。
性能特点
接近开关与被测物不接触、不会产生机械磨损和疲劳损伤、 工作寿命长、响应快、无触点、无火花、无噪声、防潮、防 尘、防爆性能较好、输出信号负载能力强、体积小、安装、 调整方便; 缺点是 触点容量较小、输出短路时易烧毁。
开路故障,并将故障以干接点信号送入DCS或者PLC。 适合此应用的DI隔离栅有: KFD2-SR2-EX2.2S KFD2-SRA-EX4 KFD2-ST2-EX1.LB KFD2-ST2-EX2
KFD2-SOT2-EX2 KFD2-DU-EX1.D 适合此应用的DO隔离栅有: KFD2-SL2-EX1 KFD2-SL2-EX2 此应用是通过电源模块7和10端子输出一个干接点到DCS或者PLC系统。(继电
KFD2-UT-EX1-1单通道有源1-5V进控制系统。 (热阻热偶输入,热偶信号需配 置冷端补偿器)
KFD2-SR2-EX1.W 数字量输入,接受干接点。单通道 KFD2-SR2-EX1.W .LB数字量输入,接受干接点,单通道。一进二出。 KFD2-EB2 电源模块。每台配电容量为4A。最多可为49台导轨安全栅供电。一
控制引爆源
人为地消除引爆源,既消除足以引爆的火花,又消除足以引爆的仪表表面温升 。就是利用安全栅技术,将提供给现场仪表的电能量限制在既不能产生足以引爆 的火花,又不能产生足以引爆仪表表面温升的安全范围内。按照国际标准和国内 标准,当安全栅安全区一侧所接设备发生任何故障(不超过250V电压)时,本 质防爆方法确保现场的防爆安全。典型代表:EX i。EX ia级本质安全设备在正 常工作、发生一个故障、发生两个故障时均不能点燃爆炸性气体混合物。显而易 见,本质安全法是最可靠安全的防爆方法。
P+F安全栅介绍培训
K-System
Content
Part 1
Introduction Housing of the K-System Mounting options 安装方式 Supply and error message via Power Rail Setup of modules
K-System
导轨式安全栅的介绍及选型
K-System
主要内容
Part 1
Introduction 简介 Housing of the K-System K系列的外壳 Mounting options 安装方式 Supply and error message via Power Rail 通过电源导轨来供电和传递故障信息 Setup of modules 模块的设置
Sheet 28
K-System
Mounting Options
AC-Supply AC-供电
DC-Supply DC-供电
Sheet 25
Universal Supply 通用供电
K-System
Removable Terminals
Removable Terminals 可插拔端子
Easy module replacement 模块更换更便捷 Keyed to prevent misconnection 防混销防止错接
Sheet 22
K-System
Diversity in the System
KF-Module – High functionality
Many solutions with high functional Signal Converters 高功能型信号转换 Simple Setup with push buttons and display or PC-Software. 前面板按钮及显示屏或者PC机软件组态 Reduced Stock at worldwide usage with wide range power supply. 世界范围内的应用,支持多种供电方式
P+F安全栅培训ppt课件
中国国家级石油和化学工业电气产品防爆质量监督检验中心 (PCEC)是中华人民共和国地区监督生产安全防爆产品的权威机构, 对本安型安全栅产品有着严格、科学、详细的规定,只有通过该监 督站认证的企业及其所开发生产的产品才具备符合标准的安全性能, 否则可能会给使用方的设备、人员和生产造成无可估量的损害。
24
25
无源隔离栅和sink信号
26
其它类安全栅
27
安全供电方式
外部供电
导轨供电
28
29
齐纳安全栅
AI型30齐Fra bibliotek安全栅AO型
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
P+F安全栅 组态
P+F安全栅的组态主要指对温变式安全栅的组态 ,下面我们大概了解一下,温变式安全栅组态软 件的安装与一般组态。
P+F安全栅的基础知识 与接线组态、故障判断
及处理方法
1
主要内容
1.安全栅的简介 2.齐纳式安全栅 3.隔离式安全栅 4.P+F安全栅名称含义 5.常用的隔离式P+F安全栅 5.常用齐纳安全栅 6.温变式安全栅的组态 7.安全栅的常见故障及处理方法
2
安全栅简介
本安型安全栅介绍: 本安型安全栅应用在本安防爆系统的设计中,它是安装于安全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PPT课件
10
第七步、计算机、通讯电缆与设备连接成功后(通讯电缆的RX、TX 灯同时闪烁),右键点击“HiD2081或KF*-UT2-*FDT”的“load from device”选项,将 所连接设备的参数上传至计算机。
第八步、右键点击“HiD2081或KF*-UT2-*FDT”的“Parameter ” 选项,进入设备参数编辑画面,如下图。
PactWare软件组态说明
PPT课件
1
一、 PactWare 软件下载
需要下载如下三项: 1、Microsoft .NET Framework 2、PACTware 3、Interface Technology
PPT课件
2
二、 PactWare 软件安装
第一步、安装 Microsoft .NET Framework 第二步、安装 PACTware 4.1组态软件 ,弹出如下窗口,进行
PPT课件
8
第四步、右键点击“P2P RS232 FDT”的“参数(Parameter)” 选项,communication port设置为USB1。
PPT课件
9
第五步、建立连接电脑与通讯电缆的连接,右键点击“P2P RS232 FDT”的“Connect”选项。
第六步、建立通讯电缆与设备的连接,右键点击“HiD2081或 KF*-UT2-*FDT”的“Connect”选项。
注意:在对任何选项进行改动后,都要按回车键进行确认,才能改变所选项。
第十步、设定Output输出参数。
PPT课件
13
温度量程下限输入到“start value”对话框中,量程上限输入到“end value”对 话框中。
在“Charachteristic”中可选择输出的模式,我们推荐选择“4-20mA NE43”,便 于对线路进行监测。
PPT课件
6
第二步:打开 pactware 4.1 软件,点击 Device 菜单中添加 设备(Add device),选择“P2P RS232 FDT”点OK,添加这根数 据线。
PPT课件
7
第三步,再次点击“Device”菜单,添加”HiD2081或KF*-UT2*FDT”设备,即添加所需组态的安全栅。
组态软件的安装。
PPT课件
3
第三步、安装相应的 Interface Technology 软件, 用于驱动 通讯电缆后采集所有正常连接的设备。如计算机为非win7和64 位操作系统,则选中第 1 、 2 项,然后点击“Install selected applications”,如计算机为win7和64位操作系统, 则选中第 1 、 3 项,然后点击“Install selected applications”,进行安装。
PPT课件
14
END
PPT课件
15
PPT课件
4
安装完成后,弹出如下窗口,即成功安装。
以上三个软件需正常安装,才能进行P+F安全栅组态, 即表示成功了一半。
PPT课件
5
三、 PactWare 软件组态
第一步:将 K-ADP-USB 电缆插入 计算机USB 口后,在系统的 “设备管理器”中“通用串行总线控制器”会显示”K-ADPUSB-P2P”,如下图。
第十一步、参数下装,模块组态完成后,可通过 “Device”菜单中 的“store to device”,将组态参数下装到模块中。
注意:1.组态完后一定要进行下装,否则模块不会发生任何的改变。 2.下装完成后必须将设备与通讯电缆,通讯电缆与计算机依次Disconnect后,
再从设备上移除通讯电缆,以免nput(输入)参数。
热电阻输入,需要选择电阻的输入线制,主要是 2 线制、3 线制还是 4
线制。如果选择 2 线制热电阻,则可在“lead resistance”对话框中输
入线电阻阻值,从而减少线电阻对温度测量的影响。
PPT课件
12
热电偶输入,需要选择是“外部补偿”还是“冷端温度补偿”。如果选择外部补 偿,可将室温输入到“Ext.Ref.Temp”外部参考温度对话框中,从而减小室温的 影响。如选则内部补偿,则需使用 K-CJC 补偿端子。
在“error indication”中可设定现场回路断路/短路状态下,模块输出的电流值。 “upscale”表示跑大,“downscale”表示跑小。
如使用的是 KFD2-UT2-(EX)1, 则在“Analog input”项中选“Input 1”。 如使用的是 KFD2-UT2-(EX)2,则: 实现双通道功能,“Analog Output 1”中的“Analog Input”选“input 1”; “Analog output 2”中“Analog input”选“input 2”; 实现一进二出功能,“Analog Output 1”中的“Analog Input”选“input 1”; “Analog output 2”中“Analog input”选“input 1”;