2017年秋季学期北京课改版七年级数学上册5.5一元一次方程教案
北师大版-数学-七年级上册-七上 第五章 一元一次方程 同步教案(共2课时)

一元一次方程第1——2课时 一元一次方程相关概念及解法一、知识梳理1.等式及其性质⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 2.方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 3.解一元一次方程的步骤①去 ;②去 ;③移 ;④合并 ;⑤系数化为1. 4.易错知识辨析(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.二、课堂精讲例题(一)一元一次方程的定义 例题1若3223=+-k kxk是关于x 的一元一次方程,则k =_______.【难度分级】:A 类【选题意图】(对应知识点):本题主要考查学生对一元一次方程的定义的理解。
【解析】:该方程为一元一次方程,则必须满足⎩⎨⎧=-≠1230k k ,由3223=+-k kxk是关于x 的一元一次方11230==-≠k k k 解得且 【搭配课堂训练题】 (A )1.若()521||=--m x m 是一元一次方程,则m =(B )2.下列方程中,属于一元一次方程的是( )A 、x -3B .012=-x C 、2x -3=0 D 、x -y =3(二)方程的解例题2.已知关于x 的方程3x +2a =2的解是a -1,则a 的值是( ) A .1 B .53 C .51D .-1 【难度分类】:A 级【分析】:方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等【答案】:根据题意得:3(a -1)+2a =2,解得a =1 故选A .【点评】:本题主要考查了方程解的定义,已知a -1是方程的解实际就是得到了一个关于a 的方程.【搭配课堂训练题】(A )1.方程2x +a -4=0的解是x =-2,则a 等于( ) A .-8 B .0 C .2 D .8(B )2.已知关于x 的方程4x -3m =2的解是x =m ,则m 的值是( ) A .2 B .-2 C .72 D .72- (三)解方程例题3若2005-200.5=x -20.05,那么x 等于( )A .1814.55B .1824.55C .1774.55D .1784.55 【难度分级】:A 类【选题意图】(对应知识点):本题主要考查学生解一元一次方程。
(最新整理)初中数学七年级上册《一元一次方程》教学设计

初中数学七年级上册《一元一次方程》教学设计编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学七年级上册《一元一次方程》教学设计)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学七年级上册《一元一次方程》教学设计的全部内容。
北师大版初中数学七年级上册《一元一次方程》教学设计5。
1一元一次方程一、学生知识状况分析:学生在小学已经初步接触过方程的知识,了解了什么是方程,什么是方程的解,并学会了运用逆运算法解一些简单的方程。
但是学生对于方程的定义、解的理解并不深刻,不知道为什么学习的方程叫做一元一次方程?一元一次方程的解为什么只有一个?…诸如此类的问题。
二、教学任务分析本节课是学生初中阶段方程有关知识的起始课,进入中学后学生需要对方程概念有进一步的认识,即根据未知数的位置、个数和次数来认识方程的各种类型。
为了开发和拓展方程概念的育人价值,为了使学生能够主动地从整体上把握方程的各种类型,方程的概念教学要遵循从上位到下位的认识原则.在前面第三章学生学过代数式相关概念及求代数式值的基础上,本节课主要帮助学生在原有对方程的感性认识的基础上,建立方程、一元一次方程及方程的解的概念,为今后进一步学习方程做好知识、方法上的铺垫,在教材中起到了承上启下的重要作用.方程是将众多实际问题“数学化”的一个重要模型.因此本节课也是帮助学生学会怎样建立方程模型的建模课.针对以上情况,制定本节课的教学目标如下教学目标:1。
在代数式、方程整体背景下,根据材料辨析理解方程的概念,会对方程进行分类,确定方程命名的方法。
发展学生分类、辨析比较和归纳概括的能力。
北京课改版数学七年级上册2.5.5《一元一次方程》教学设计

北京课改版数学七年级上册2.5.5《一元一次方程》教学设计一. 教材分析《一元一次方程》是北京课改版数学七年级上册第2.5.5节的内容。
本节内容是在学生已经掌握了整数、分数、负数等基本数学知识的基础上,进一步引出一元一次方程的概念、性质和解法。
通过本节的学习,使学生能够理解一元一次方程在实际生活中的应用,培养学生解决实际问题的能力。
二. 学情分析学生在进入七年级之前,已经具备了一定的数学基础,对整数、分数、负数等概念有了初步的认识。
但部分学生可能对一些概念的理解不够深入,解决问题的能力有待提高。
此外,学生对于方程的解法可能还存在一定的困难,需要老师在教学过程中进行针对性的指导。
三. 教学目标1.知识与技能:使学生掌握一元一次方程的概念、性质和解法,能够运用一元一次方程解决实际问题。
2.过程与方法:通过自主学习、合作交流的方式,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:一元一次方程的概念、性质和解法。
2.难点:一元一次方程在实际生活中的应用。
五. 教学方法1.情境教学法:通过生活实例引入一元一次方程,使学生能够直观地理解方程的概念和应用。
2.自主学习法:引导学生通过自主学习,掌握一元一次方程的解法,提高学生的学习能力。
3.合作交流法:学生在小组内进行讨论、交流,共同解决问题,培养学生的合作意识。
六. 教学准备1.准备相关的生活实例,用于导入一元一次方程的概念。
2.准备一些练习题,用于巩固学生对一元一次方程的理解。
3.准备多媒体教学设备,用于展示教学内容和板书。
七. 教学过程1.导入(5分钟)通过一个生活实例,如购物问题,引出一元一次方程的概念。
向学生介绍一元一次方程的定义,使其能够理解方程的意义。
2.呈现(10分钟)向学生讲解一元一次方程的性质,如解的意义、解的判断等。
通过示例,让学生了解一元一次方程的解法,如代入法、加减法等。
【教案】七年级数学上册第五章一元一次方程教案北师大版【精华】

§5.1一元一次方程(1)〖教学目的〗〖知识与技能目标:〗使学生了解一元一次方程的概念,〖过程与方法:〗并牢固地掌握最简单一元一次方程的解法;〖情感态度与价值观:〗培养学生观察、分析、概括的能力以及准确而迅速的运算能力.〖教学重点、难点:〗重点:一元一次方程的概念和方程ax=b(a≠0)的解法.难点:正确地解方程ax=b(a≠0).〖教学方法:〗启发式教学〖教学过程:〗Ⅰ.创设现实情景,引入新课1.针对前二节所学内容,请学生回答下列问题(1)什么叫等式?等式应具备什么性质?(2)什么叫方程?方程的解?解方程?(3)(投影)某数的4倍减去9等于3,列出方程,并检验x=2,x=3是不是该方程的解.(让一名学生在黑板上板演本题,其余学生在练习本上完成,教师巡视,发现问题,及时纠正)请找出它们具有的特点?(①只含有一个未知数;②未知数的次数都是一次)2.在学生回答完上述问题的基础上,引出课题我们将具备上述特点的方程叫做一元一次方程.请学生回答:什么叫一元一次方程?根据学生的回答,教师板书一元一次方程的概念.这时,教师还需指出:“元”是指未知数的个数,“次”是指方程中含有未知数项的最高次数.本节课我们来学习最简单的一元一次方程的解法.(板书课题)Ⅱ.讲授新课师生共同讨论得出最简一元一次方程的解法例解下列方程:分析:利用等式性质2,在方程的两边都除以未知数x的系数,将其系数化1,即可得到原方程的解.最后还需检验所得的数是否为原方程的解.(2)(3)(4)略.(让学生先回答本题,教师追问根据,然后,老师根据学生的回答将方程(1)的解答过程板书.方程(2)(3)(4)的解答过程请三名学生板演,师生共同讲评)最后,教师可追问学生,方程ax=b(a≠0)的解是什么?根据是什么?Ⅲ.做一做解下列方程:(投影)(本题的作用是进一步巩固学生对最简一元一次方程的解法的掌握,使之运用得灵活、自如.这样做也为后继课的学习做好铺垫)Ⅳ.课时小结采用师生一问一答的方式,小结本节课所学的内容.最后教师指出:据是等式性质2.2.不要把两个方程用等号连接起来.如-x=1=x=1.3.问题:若a=0,则方程ax=b的解又是什么呢?(思考) Ⅴ.课后作业解下列方程,并检验:思考题解关于x的方程:(关于x的方程,就是把方程中除x以外的字母看成已知数,解此类问题要注意已知数a,b的取值范围)〖板书设计:〗§5.1一元一次方程(1)(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习练习设计§5.1一元一次方程(2)〖教学目的〗〖知识与技能目标:〗使学生掌握移项的概念〖过程与方法:〗并能利用移项解简单的一元一次方程;〖情感态度与价值观:〗培养学生观察、分析、概括和转化的能力,提高他们的运算能力.〖教学重点、难点:〗重点:移项解一元一次方程.难点:移项的概念〖教学方法:〗启发式教学〖教学过程:〗Ⅰ.创设现实情景,引入新课1.等式的性质是什么?2.什么叫一元一次方程?方程ax=b(a≠0)的解是什么?3.(投影)解方程:(让学生口答本题,发动其余学生及时纠正出现的错误,做到一题多用)我们已经学习了解最简单的一元一次方程ax=b(a≠0),今天学习把某些简单的一元一次方程化为最简的一元一次方程,从而求得其解.(教师板书课题:一元一次方程的解法(二) Ⅱ.讲授新课师生共同研究解简单的一元一次方程的方法例1解方程3x-5=4.在分析本题时,教师应向学生提出如下问题:1.怎样才能将此方程化为ax=b的形式?2.上述变形的根据是什么?(以上过程,如学生回答有困难,教师应作适当引导)解:3x-5=4,方程两边都加上5,得3x-5+5=4+5,即3x=4+5,3x=9,x=3.(本题的解答过程应找多名学生分别口述,教师严格、规范板书,并请学生口算检验)例2解方程7x=5x-4.(此题的分析与解答过程的教学设计可仿照例1重复进行)针对例1,例2的分析与解答,教师可提出以下几个问题:3.将方程3x-5=4,变形为3x=4+5这一过程中,什么变化了?怎样变化的?4.将方程7x=5x-4,变形为7x-5x=-4这一过程中,什么变化了?怎样变化的?(-5变为+5,并由方程的左边移到方程的右边;5x变为-5x,并由方程的右边移到方程的左边)我们将方程中某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.利用移项,我们可以将例2按以下步骤来书写.解:7x=5x-4,移项,得7x-5x=-4,合并同类项,得2x=-4,未知数x的系数化1,得x=-2.至此,应让学生总结出解诸如例1、例2这样的一元一次方程的步骤,并强调移项要变号.Ⅲ.做一做(用投影给出)解方程:(这个练习,应找部分学生板演,其余学生在下面自行完成,其间,教师要巡视,发现问题及时纠正,并鼓励同学间互相讲评,同时,教师还应要求学生严格参照例2的解题格式完成这个练习,并要求口算检根)Ⅳ.课时小结首先,采取师生一问一答的形式回顾本节课学习了哪些内容?采用了什么样的思维方法?在解题时需要注意什么?然后,教师需指出,采用了将“未知”转化为“已知”的思维方法,这是一种非常重要的思维方法,它在后继课的学习起着非常重要的作用.同时再次强调移项要变号.最后,教师可引申,若所给方程中的某一项或某几项有括号,我们应如何求出方程的解?(为下节课埋下伏笔,引出悬念,从而激发学生的学习兴趣)Ⅴ.课后作业解下列方程:思考题解关于x的方程:(1)ax=bx; (2)(a2+1)x=(a2-1)x.〖板书设计:〗§5.1一元一次方程(2)(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习练习设计§5.1一元一次方程(3)〖教学目的〗〖知识与技能目标:〗使学生掌握解一元一次方程的移项规律。
数学北师大七年级上册52《求解一元一次方程》【教案】

《求解一元一次方程》教学设计教材分析该内容选自北师大版数学七年级上册第五章第2节。
方程是代数学的核心内容,应用广泛,在义务教育阶段的数学课程中占重要地位。
其中,一元一次方程是最简单的代数方程,而去分母、去括号、移项又是解一元一次方程的重要步骤。
在前面学习了整式的加减的基础上,利用已学的等式的基本性质对方程进一步变形,使“未知”逐步转化为“已知”,完善一元一次方程的解法。
同时,本节课的学习也为今后学习二元一次方程组、一元二次方程奠定基础。
教学目标1.知识目标:进一步熟悉利用等式的基本性质解一元一次方程的基本技能。
2.能力目标:通过观察、思考,使学生探索方程的解法,经历和体验用多种方法解方程,提高解决问题的能力。
3.情感目标:使学生在动手、独立思考的过程中,进一步体会方程模型的作用,体会学习数学的实用性。
教学重难点【教学重点】解一元一次方程。
【教学难点】准确解一元一次方程。
课前准备多媒体课件。
教学过程第一课时一、复习引入1.下列方程变形的根据是什么?请填在后面的横线上.(1)由x -3=5,得x =5+3,根据____________;(2)由 3x =2,得x =6,根据__________; (3)由5x =3,得x =53 ,根据__________; 2.合并同类项:(1)3x -5x =________;(2)-3x +7x =________;(3)x +5x -2x =________. 在微卡上书写答案,同桌二人交换批改【设计意图】通过练习复习等式的基本性质,为利用性质解方程打下基础。
二、自主学习1.解方程 5x -2=8要求: 1.独立完成解方程2.自学课本上的第二种方法,哪些地方更简便了?3.总结解方程的方法4.四人组交流,用自己的语言表达5.展示结果方程两边同时加上2,得:5x -2=85x -2+2=8+25x=8+2移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项. 思考:移项时应该注意什么?移项变形的依据是什么?移项的依据是等式的性质1移项的目的是使含有未知项的集中于方程的一边(左边),含有已知项的集中于方程的另一边(右边)【设计意图】通过学生独立完成方程并观察,得到移项的方法,并总结解一元一次方程的解法步骤。
七年级数学上册第五章一元一次方程1认识一元一次方程第1课时一元一次方程教案新版北师大版

第五章 一元一次方程1 认识一元一次方程第1课时 一元一次方程1.理解并掌握一元一次方程、方程的解的概念.2.初步了解列方程的一般步骤,体会用方程解决实际问题的优越性.重点理解并掌握一元一次方程、方程的解的概念.难点列方程解决实际问题.一、情境导入课件出示问题:一辆客车和一辆卡车同时从A 地出发沿同一公路同方向行驶,客车的行驶速度是70 km /h ,卡车的行驶速度是60 km /h ,客车比卡车早1 h 到达B 地.A ,B 两地间的路程是多少?教师:请同学们用算术方法解决这个问题.学生独立思考后,与同桌交流,老师作简单讲解.教师:如果设A ,B 两地相距x km ,你能分别用代数式表示客车和卡车从A 地到B 地的行驶时间吗?学生思考后举手回答,教师点评并进一步讲解:匀速运动时,时间=路程速度.根据问题的条件,客车和卡车从A 地到B 地的行驶时间可以分别表示为x 70 h 和x 60 h .因为客车比卡车早1 h 到达B 地,所以可以得到方程:x 70-x 60=1.教师:我们已经知道,方程是含有未知数的等式.上面等式中的x 是未知数,这个等式是一个方程.以后我们将学习如何解方程求出未知数x ,从而得出A ,B 两地间的路程为420 km .教师:比较这两种方法,用方程来解决问题有什么优点?学生相互交流,说出自己对方程的感受.二、探究新知1.一元一次方程的概念课件出示问题:根据下列问题,设未知数并列出方程.(1)用一根长24 cm 的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1 700 h ,预计每个月再使用150 h ,经过几个月这台计算机的使用时间达到规定的检修时间2 450 h?(3)某校女生占全体学生人数的52%,比男生多80人,这个学校有多少学生?学生完成后举手回答,教师点评总结:同学们在列方程时,一定要弄清方程两边的代数式所表示的意义,体会列方程所依据的等量关系.教师:上面各方程都含有一个未知数(元),未知数的指数都是1,这样的方程叫做一元一次方程.那么在实际问题中怎样列出方程呢?引导学生总结出列方程的一般步骤:实际问题――→设未知数、列方程一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程是用数学知识解决实际问题的一种方法.2.方程的解教师:当x =6时,4x 的值为多少?学生:24.教师:也就是说,x =6是方程4x =24的解.引导学生得出:解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.三、练习巩固教材第131页“随堂练习”第1,2题.四、小结1.通过本节课的学习,你有什么收获?2.一元一次方程、方程的解的概念分别是什么?3.实际问题中列一元一次方程的步骤是什么?五、课外作业教材第132页习题5.1第1,3题.本节课的内容是一元一次方程的初步认识,主要使学生了解什么是方程,什么是一元一次方程;体会字母表示数的好处,体会从算式到方程是数学的一大进步;会将实际问题抽象为数学问题,通过找相等关系列方程解决问题.在教学过程中,通过新旧知识的联系,使学生温故而知新,并能从学习过的知识中得到拓展和延伸.同时结合生活实例,理解一元一次方程的概念.使学生感受数学的魅力,提高学习的兴趣.课堂上,营造宽松、和谐的课堂氛围,激活学生的思维,提高学生参与课堂的积极性.。
北师大版七年级数学上册教案-第五章第一节 认识一元一次方程
北师大版七年级数学上册教案第五章一元一次方程第一节认识一元一次方程第一课时一元一次方程【教学目标】1.归纳出方程、一元一次方程的概念.2.感受方程作为刻画现实生活有效模型的意义.【教学重难点】重点:通过丰富的实例,建立一元一次方程,展现方程是刻画现实生活的有效数学模型.难点:根据具体问题中的数量关系列一元一次方程.【教学过程】一、创设情境,导入新课出示教材第130页猜年龄的游戏.分析:小彬的年龄现在是不知道的,因此设小彬今年x岁,“小彬的年龄乘2再减5”就是2x-5,因此得到等式2x-5=21.学生对照等式解释这个等式的意义:某人的年龄x的两倍减去5等于21.教师与学生仿照小华与小彬之间的游戏规则,学生报出得数,教师迅速说出结果,连续几次练习,激发学生学习方程的好奇心.二、师生互动,探究新知1.问题探究.(1)小树慢慢长高.小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约5厘米,大约几周后树苗长高到1米?解答:学生互相交流,分析数量关系,找出相等关系:树原高+长高=1米.设x周后小树长高到1米,得到方程:40+5x=100.(注意:1米=100厘米)(2)黑板的长和宽.教室里长方形黑板的周长是11.4米,长与宽的差是3.3米,黑板的长和宽分别是多少米?师生共同分析题中已知和未知:已知黑板的周长,长与宽之间的数量关系,而长与宽的具体数值是未知的,因此:设黑板的长为x米,则宽为(x-3.3)米.根据2(长+宽)=周长,得到方程:2[x+(x-3.3)]=11.4.鼓励学生用自己的语言表达自己的想法,学生可能列出不同的方程,只要合理都应给予鼓励.2.探究概念.学生阅读教材第130页的第4个问题的内容(组织学生先进行自主学习,再进行小组合作学习).(1)交流对题意的理解.设2000年每10万人中约有x人具有大学文化程度,则增长的人数为x·147.30%.相等关系:“2000年每10万人中的大学生人数+增长人数=2010年每10万人中的大学生人数”或简单说成:“2000年大学生人数+增长人数=2010年大学生人数”(明白是指每10万人中).因此根据这个等量关系,我们可以列出方程:x+x·147.30%=8930.(2)通过本题分析让学生感受到大学生人数在增加,受教育程度在提高,社会在不断进步.(3)由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程?与同伴进行充分的交流并列出本节所列出的几个方程:2x-5=21,40+5x=100,2[x+(x-3.3)]=11.4,x+x·147.30%=8930.观察以上方程有什么共同特点?让学生进行充分的交流,各抒己见,归纳出以上方程的特点,得出一元一次方程的概念:在一个方程中,只含有一个未知数,而且方程中的代数式都是整式,未知数的指数都是1,这样的方程叫做一元一次方程(linear equation with one unknown).使方程左、右两边的值相等的未知数的值,叫做方程的解.三、运用新知,解决问题1.根据题意列出方程:(1)在一卷公元前1600年左右遗留下来的古埃及纸草书中,记载着一些数学问题.其中一个问题翻译过来是:“啊哈,它的全部,它的17,其和等于19.”你能求出问题中的“它”吗?(2)甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了22分.甲队胜了多少场?平了多少场?2.x =2是下列方程的解吗?(1)3x +(10-x)-20;(2)4x +6=7x.四、课堂小结,提炼观点你认为在解决实际问题时,列出方程的关键是什么?学生提出自己的问题,师生共同解决.五、布置作业,巩固提升1.小明参加知识竞赛,共有20道题,规则为答对一题加5分,答错一题或不答扣2分,小明的最后得分是86分,你能知道小明一共答对多少道题吗?2.教材第132页习题5.1.【板书设计】一元一次方程1.根据给出的问题,分析其中的数量关系,列出方程.2.分析列出的方程,归纳一元一次方程的概念:在一个方程中,只含有一个未知数,而且方程中的代数式都是整式,未知数的指数都是1,这样的方程叫做一元一次方程.3.方程的解的概念:使方程左、右两边的值相等的未知数的值,叫做方程的解.第二课时等式的基本性质【教学目标】理解等式的基本性质,并能用它们来解方程.【教学重难点】重点:深刻理解等式的基本性质.难点:理解等式的基本性质及应用.【教学过程】一、创设情境,导入新课看下面一组式子,请你添上适当的数或者式子,保证等式还成立(师生探讨,允许学生犯错误,教师进行及时的纠正).1+2=3,1+2+____=3+____,1+2-____=3-____;2x+3x=5x,2x+3x+____=5x+____,2x+3x-____=5x-____.再换一个数或者式子试试.分小组交流讨论,多试几次.归纳发现的规律:由此你发现等式有什么性质?请用语言叙述一下:_____________________________________________________ ___________________;用数学符号表示:若________=________,那么________=________.点拨:等式两边同时加(或减)同一个代数式,所得结果仍是等式.a=b,a±c=b±c.二、师生互动,探究新知1.看一组式子:请你添上适当的数使等式还成立.(1)6+2=8,(6+2)×____=8×____,(6+2)□____=8□____;(2)3x+7x=10x,(3x+7x)□____=10x□____,(3x+7x)÷____=10x÷____.归纳发现的规律:由此你又发现了等式有什么性质?用语言叙述一下:_____________________________________________________ ___________________;用数学符号表示:(1)若________=________,那么________=________;(2)若________=________(________),那么________=________.点拨:等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式.(1)a =b ,a ·c =b ·c ;(2)a =b ,a c =b c (c ≠0).等式的基本性质:等式两边同时加(或减)同一个代数式,所得结果仍是等式.等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式.2.你会用等式的性质来解决以下问题吗?(试试看)(1)从x +5=y +5能得到x =y 吗?理由是:______________;(2)从x =y 能得到x -5=y -5吗?理由是:______________;(3)从-3a =-3b 能得到a =b 吗?理由是:______________;(4)如果3x -2=7,那么3x =7+________,根据________得到.3.你能辨析以下问题的正误吗?(1)在等式ab =ac 的两边都除以a ,可得b =c.这句话对吗?说出你的理由.师生探讨:这种说法错误,没考虑到a 是否为0的问题.(2)在等式a =b 两边都除以c 2+1,可得a c 2+1=b c 2+1.这句话对吗?说出你的理由.师生探讨:这个说法正确,因为c2+1≥1≠0,所以上述正确.三、运用新知,解决问题所谓“解方程”就是求得方程的解的过程,即要求出方程的解“x =?”,因此我们需要把方程转化为“x=a(a为常数)”的形式.1.x+2=5.解:方程两边同时________,得________.所以x=________.练习:x-2=5.反思学习:这道题你应用了________来解决的.2.-3x=15.解:方程两边同时________,得_____________________________________________________ ___________________.所以x=________.反思小结:本题你用了________来解决的.3.-3x+3=6.解:方程两边同时________,得________.方程两边同时________,得________.所以x=________.思考:本题先应用________,后应用________.发现:由此你发现解方程的依据是什么?________________________________________________________________________.四、课堂小结,提炼观点通过你的学习,你明白了什么?有什么收获?五、布置作业,巩固提升解方程:5-3y =-16;2x 3-1=5.(注明每一步的理由)【板书设计】等式的基本性质等式的基本性质:等式两边同时加(或减)同一个代数式,所得结果仍是等式.等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式。
北师大版七年级数学上册教案:第五章 一元一次方程
第五章一元一次方程1 认识一元一次方程第1课时认识一元一次方程【知识与技能】1.理解一元一次方程,方程的解等概念.2.会根据具体问题列一元一次方程.【过程与方法】通过实际问题建立方程模型,归纳一元一次方程的概念,培养学生的认知能力和归纳概括能力.【情感态度】结合本课教学特点,向学生进行理想主义教育和热爱学习教育,激发学生学习的兴趣.【教学重点】建立一元一次方程的概念,会根据具体问题列出一元一次方程.【教学难点】根据具体问题中的等量关系,列出一元一次方程.一、情境导入,初步认识教材第130页最上方的彩图如果设小彬的年龄为x岁,那么“乘2再减5”就是_________,因此可以得到方程:__________________.【教学说明】学生根据两人的对话找出相等关系,列出方程,初步体会根据实际问题建立方程模型的思想.二、思考探究,获取新知1.列方程问题1 (1)小颖种了一株树苗,开始时树苗高为40cm,栽种后每周树苗长高约5cm.大约几周后树苗长高到1m?如果设周后树苗长高到1m,那么可以得到方程:__________________.(2)甲、乙两地相距22km ,张叔叔从甲地出发到乙地,每小时比原计划多行走1km ,因此提前12min 到达乙地,张叔叔原计划每小时行走多少千米?设张叔叔原计划每小时行走x km ,可以得到方程:__________________.(3)根据第六次全国人口普查统计表数据,截至2010年11月1日0时,全国每10万人中具有大学文化程度的人数为8930人,与2000年第五次全国人口普查相比增长了147.30%.2000年第五次全国人口普查时每10万人中约有多少人具有大学文化程度?如果设2000年第五次全国人口普查时每10万人中约有x 人具有大学文化程度,那么可以得到方程:__________________.(4)某长方形操场上的面积是5850m 2,长和宽之差为25m,这个操场的长与宽分别是多少米?如果设这个操场的宽为x m ,那么长为(x +25)m ,由此可以得到方程__________________.【教学说明】 学生根据题意,找出相等关系列出方程,进一步体会方程建模思想.【归纳结论】 分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学知识解决实际问题的一种常用方法.2.一元一次方程及方程的解问题2 (1)由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程?(2)方程2x -5=21,40+5x =100,x (1+147.30%)=8930有什么共同点?【教学说明】 学生通过观察,与同伴进行交流,找出这些方程的共同点,归纳一元一次方程的概念.【归纳结论】 在一个方程中,只含有一个未知数,且未知数的指数都是1,这样的方程叫做一元一次方程.使方程左、右两边的值相等的未知数的值,叫做方程的解.三、运用新知,深化理解1.下列各式中,是一元一次方程的有________(填序号) .(1)833x =+;(2)8x -;(3)1=2x +2;(4)5x 2=20;(5)x +y =8. 2.如果3x n –1=2是关于x 的一元一次方程,那么n =________.3.x =2________方程4x –1=3的解.(填“是”或“不是”)4.小刚准备用自己节省零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他有260元.设x个月后小刚有260元,则可列出计算月数的方程为()A.30x+50=260B.30x– 50=260C.x – 50=260D.x+50=260【教学说明】学生自主完成,加深对新学知识的理解.检测对一元一次方程和方程的求解的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.(1)(3) 2. 23.不是4.A四、师生互动,课堂小结1.师生共同回顾一元一次方程,方程的解的概念.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教学引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材“习题5.1”中选取.2.完成练习册中本课时的相应作业.本节课学生从实际问题中找出相等关系,列出方程,要了解一元一次的概念,运用等式的性质解一元一次方程培养学生动手、动脑习惯,激发学生学习的兴趣.第2课时等式的基本性质【知识与技能】掌握等式的基本性质,能利用等式的基本性质解一元一次方程.【过程与方法】通过实际问题情境培养学生思考的能力,体会数学与现实的密切联系,掌握等式的基本性质.【情感态度】通过观察、操作、归纳等数学活动,使学生感受数学思考过程的条理性和数学结论的严密性.【教学重点】理解等式的基本性质,掌握利用等式的性质解方程.【教学难点】利用等式的基本性质对方程进行变形.一、情境导入,初步认识上节课我们将几个实际问题转化成了数学模型即一元一次方程,只列出了方程,并没有求出方程的解.其实,在小学,我们利用逆运算能够求形如ax+b=c的方程,例如:5x=3x+4.对于这样的方程223146x x=+-+,比较复杂,怎样解呢?要想求出这些复杂的一元一次方程的解,我们必须先来研究一下等式的性质.【教学说明】让学生感受到原有知识无法解决问题,激发学生的求知欲,引入等式的基本性质.二、思考探究,获取新知1.等式的基本性质问题1 还记得小华和小彬猜年龄的问题吗? 你能帮小彬解开那个年龄谜吗? 你能解方程5x=3x+4吗?【教学说明】学生通过观察教材132页天平平衡图,感知等式的基本性质.【归纳结论】等式两边同时加上(或减去)同一个代数式,所得结果仍是等式,等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式.2. 利用等式的基本性质解一元一次方程问题2 解下列方程:(1)x +2=5(2)3=x – 5(3)– 3x =15(4)2103n =--. 【教学说明】 学生通过计算,掌握运用等式的基本性质解一元一次方程的方法.三、运用新知,深化理解1.根据题意列出方程:(1)在一卷公元前1600年左右遗留下来的古埃及草纸书中,记载着一些数学问题,其中一个问题翻译过来是:“啊哈,它的全部,它的17,其和等于19.” 你能求出问题中的“它”吗?(2)甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了12分.甲队胜了多少场? 平了多少场?2.x =2是下列方程的解吗?(1)3x+(10 – x )=20;(2)2x 2+6=7x .3.解下列方程:(1)x – 9=8;(2)5 – y = – 16;(3)3x+4= – 13; (4)2153x =-. 4.小红编了一道题:我是4月出生的,我的年龄的,2倍加上8,正好是我出生那一月的总天数.你猜我有几岁? 请你求出小红的年龄.【教学说明】 学生自主完成,加深对新学知识的理解.检测对一元一次方程和方程的求解的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.(1)设“它”为x,则1197x+x=,1338x=.(2)设甲队胜x场,则3x+(10 –x)=22. x=6,10 – 6 =4所以甲队胜了6场,平了4场2.(1)将x=2代入方程,左边=3×2+(10-2)=14≠右边,故x=2不是原方程的解.(2)将x=2代入方程,左边=2×22+6=14=右边,故x=2是原方程的解.3.(1)x=17 (2)y=21 (3)173x= (4)x=94. 设小红有x岁,则2x+8=30,解得x=11,故小红有11岁.四、师生互动,课堂小结1.师生共同回顾等式的基本性质.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教学引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材“习题5.2”中选取.2.完成练习册中本课时的相应作业.本节课学生从实际问题中找出相等关系,列出方程,要了解一元一次的概念,运用等式的性质解一元一次方程培养学生动手、动脑习惯,激发学生学习的兴趣.2 求解一元一次方程第1课时利用移项的方法解一元一次方程【知识与技能】1.通过具体例子,归纳移项法则.2.利用移项解一元一次方程.【过程与方法】通过具体例子,归纳移项法则,会解“ax+b=cx+d”类型的一元一次方程,理解解方程的目标,体会解方程过程中蕴涵的化归思想.【情感态度】结合本课教学特点,教育学生热爱学习,热爱生活,培养学生观察,发现数学问题的能力,激发学生学习兴趣.【教学重点】会用移项法则解一元一次方程.【教学难点】移项一定要改变符号.一、情境导入,初步认识对于方程5x-2=8,你会解吗?怎样解呢?【教学说明】学生很容易想到利用等式的基本性质求解,进一步巩固所学知识.二、思考探究,获取新知1.移项法则问题1 解方程5x-2=8,除了利用等式的基本性质来解,还有其他的解法吗?【教学说明】通过提出问题,激发学生的探求欲望.解方程:5x-2=8,方程两边都加上2,得5x-2+2=8+2也就是5x=8+2比较这个方程与原方程,可以发现,这个变形相当于【归纳结论】把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫移项.注意:移项一定要改变符号.2.利用移项解一元一次方程问题2 解下列方程:(1)2x+6=1;(2)3x+3=2x+7.【教学说明】学生通过解答,初步掌握利用移项解一元一次方程.【归纳结论】移项是解方程的重要变形,它是根据需要把方程的项由等号的一边移到另一边.一般把含有未知数的项移到等号的左边,而把常数项移到等号的右边,为防止漏项,先写不需要移动的项.问题3 解方程1/4x=-1/2x+3.【教学说明】学生通过解答进一步掌握利用移项解一元一次方程的步骤.【归纳结论】利用移项解一元一次方程的步骤(1)移项;(2)合并同类项;(3)系数化为1.3.一元一次方程的应用问题4 若1/3a2n+1b m+1与-5b-2m+7a3n-2是同类项,求(-n)m的值.【教学说明】学生通过思考、分析,与同伴交流,尝试完成,提高综合运用知识的能力.【归纳结论】根据同类项的概念可知,2n+1=3n-2,m+1=-2m+7,然后解方程求出m、n的值,再计算(-n)m的值.问题5聪聪到希望书店帮同学们买书,销货员主动告诉他,如果用20元钱办会员卡,将来享受八折优惠,请问在这次买书中,聪聪在什么情况下,办会员卡与不办会员卡费用一样?【教学说明】学生设未知数,根据题意找出相等关系,列出方程求解.初步体会一元一次方程的应用.【归纳结论】列方程解应用题先合理地设出未知数,用含有未知数的式子表示出各未知量,再找出相等关系,列出方程进行解答.三、运用新知,深化理解1.下列变形中,属于移项的是().A.由3x=-2,得x=-2/3B.由x/2=3,得x=6C.由5x-7=0,得5x=7D.由-5x+2=0,得2-5x=02.下列方程中,移项正确的是( ).A.方程3-x=5变形为-x=5+3B.方程2x=3x+1变形为2x-3x=1C.方程3x=4x+5变形为3x-4x=-5D.方程3-2x=-x+7变形为-x+2x=7+33.当x=______时,代数式5x-10与18-3x的值相等.4.解下列方程(1)10x-3=9;(2)5x-2=7x+8;(3)x=3/2x+16;(4)1-3/2x=3x+5/2.5.当m=3时,求方程2x-m=m2-x的解.6.用若干千克化肥给一块麦地追肥,每亩用6千克,还差17千克;如果每亩用5千克,还剩3千克,问这块麦地有多少亩?化肥多少千克?【教学说明】学生自主完成,检测对移项法则及利用移项解一元一次方程等知识的掌握情况,加深对新学知识的理解,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.C 2.B 3.7/24.(1)x=1.2 (2)x=-5 (3)x=-32 (4)x=-1/35.把m=3代入原方程得2x-3=9-x,移项得2x+x=9+3.合并同类项得3x=12,系数化为1得x=4,所以得m=3时,原方程的解为x=4.6.设这块麦地有x亩,由题意得:5x+3=6x-17,解得x=20.所以这块麦地有20亩,化肥103千克.四、师生互动,课堂小结1.师生共同回顾移项法则和利用移项解一元一次方程等知识点.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】老师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材问题“5.3”中选取.2.完成练习册中本课时的相应作业.本节课从学习探索移项法则,到利用移项解一元一次方程,培养学生动手、动脑习惯.加深对所学知识的认识,并运用所学知识解决实际问题,体验应用知识的成就感,激发学生学习的兴趣.第2课时解带括号的一元一次方程【知识与技能】1.通过分析具体问题中的数量关系,了解到解方程是运用方程解决实际问题的需要.2.正确理解和运用乘法分配律和去括号法则解方程.【过程与方法】通过实际问题,体会方程建模思想,掌握运用去括号法则解方程的方法,提高解决问题的能力.【情感态度】培养学生热爱数学,独立思考与合作交流的能力,领悟数学来源于实践,服务于实践,激发学生学习兴趣.【教学重点】正确理解和运用乘法分配律和去括号法则解方程.【教学难点】运用乘法分配律和去括号法则解方程.一、情境导入,初步认识教材第137页最上方的彩图及相关问题.【教学说明】学生通过思考、分析,设未知数列出方程,感受数学与生活的紧密联系.二、思考探究,获取新知1.去括号解一元一次方程问题1 如果设1听果奶饮料x元,那么可列出方程4(x+0.5)+x=10-3.(1)上面这个方程列得对吗?为什么?你还能列出不同的方程吗?(2)怎样解所列的方程?【教学说明】学生通过思考、分析,很容易得出这个方程列的是正确的,再列出不同的方程,最后解所得的方程,进一步体会数学与生活的紧密联系.问题2 解方程:4(x+0.5)+x=7.【教学说明】学生通过解答,掌握去括号解方程的一般步骤.【归纳结论】去括号解方程的步骤:①去括号;②移项;③合并同类项;④系数化为1.问题3 解方程:-2(x-1)=4.【教学说明】学生通过观察、分析,尝试不同的解题方法,进一步掌握去括号解方程的步骤和方法.【归纳结论】去括号时,一是要看清括号前面的符号;二是括号前的系数要与括号里的每一项相乘.问题4 观察问题3两种解方程的方法,它们有什么区别?【教学说明】学生通过观察,很容易找出它们的区别.明确去括号解方程的步骤是可以灵活处理的.2.一元一次方程的应用问题5在“五一”期间,小明、小亮等同学随家长共12人一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.【教学说明】学生通过思考、分析,与同伴进行交流,进一步体会一元一次方程的应用.三、运用新知,深化理解1.解方程2-3(x-1)=0,去括号正确的是().A.2-3x-1=0B.2-3x+1=0C.2+3x-3=0D.2-3x+3=02.方程2(x-1)=x+2的解是x=_______.3.解下列方程(1)5(x-1)=1;(2)2-(1-x)=-2;(3)11x+1=5(2x+1);(4)4x-3(20-x)=3;(5)5(x+8)-5=0;(6)2(3-x)=9;(7)-3(x+3)=24;(8)-2(x-2)=12.4.当x为何值时,代数式4x-7与代数式5(x+2/5)的值相等?5.某市按以下规定收取每月的煤气费:用煤气如果不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费,已知某用户10月份的煤气费平均每立方米0.88元,则10月份该用户应交煤气费多少元?【教学说明】学生自主完成,加深对新学知识的理解.检测对去括号解方程的掌握情况,对学生的疑惑教师应及时加以指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.D2.43.(1)x=6/5 (2)x=-3(3)x=4 (4)x=9(5)x=-7 (6)x=-3/2(7)x=-11 (8)x=-44.由题意得4x-7=5(x+2/5).去括号,得4x-7=5x+2.移项,合并得-x=9.系数化为1得x=-9.所以当x=-9时,这两个代数式的值相等.5.设10月份该用户使用煤气xm3,由题意得60×0.8+1.2(x-60)=0.88x,解得x=75,则应交煤气费为:0.88×75=66(元).四、师生互动,课堂小结1.师生共同回顾去括号解一元一次方程的步骤.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与应用.【板书设计】1.布置作业:从教材“习题5.4”中选取.2.完成练习册中本课时的相应作业.本节课从学生探索运用分配和去括号法则解方程,到运用方程解决实际问题.培养学生动手、动脑习惯,提高学生综合运用所用知识的能力.第3课时解含分母的一元一次方程【知识与技能】理解并掌握去分母解方程的方法,归纳解一元一次方程的一般步骤.【过程与方法】通过去分母解方程的过程,体会把“复杂”转化为“简单”,把“新知识”转化为“旧知识”的转化思想方法.【情感态度】结合本课教学特点,培养学生热爱数学,独立思考与合作交流的能力,激发学生学习兴趣.【教学重点】去分母解一元一次方程.【教学难点】解含有分母的一元一次方程.一、情境导入,初步认识前面我们已学习到了哪些一元一次方程的方法?【教学说明】学生很容易想到移项,去括号等方法,进一步巩固前面所学知识.二、思考探究,获取新知1.去分母解一元一次方程问题1 解方程:1/7(x+14)=1/4(x+20).【教学说明】学生通过思考、分析,确定先做什么,后做什么,尝试不同的解法.解法一:去括号,得1/7x+2=1/4x+5移项,合并同类项,得-3=3/28x.系数化为1,得-28=x.即x=-28.解法二:去分母,得4(x+14)=7(x+20).去括号,得4x+56=7x+140.移项,合并同类项,得-3x=84.系数化为1,得x=-28.问题2 问题1中的两种解法哪一种简便些?从中你能得出解一元一次方程有哪些步骤?【教学说明】学生很容易得出第二种解法简便些,再通过观察、交流,归纳解一元一次方程的步骤.【归纳结论】解一元一次方程,一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.解含有分母的一元一次方程问题3 解方程1/5(x+15)=1/2x-1/3(x-7).【教学说明】学生按解一元一次方程的一般步骤来做,进一步掌握解一元一次方程的一般步骤.【归纳结论】当方程中含有分母时,方程两边同乘以所有分母的最小公倍数,即可去掉分母.注意:去分母时,方程两边的每一项都要乘以这个最小公倍数,不要漏乘分母为1的项;当分子是多项式,去分母时,分子要添加括号.3.一元一次方程的应用问题4 为了参加2013年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.【教学说明】学生通过设未知数,根据题意找出相等关系,列出方程求解.进一步体会一元一次方程的应用,熟练掌握解一元一次方程的步骤和方法. 三、运用新知,深化理解1.解方程2113424x x-+-=,去分母后得到的方程是( ).A.2(2x-1)-(1+3x)=-4B.2(2x-1)-(1+3x)=16C.2(2x-1)-1+3x=-16D.2(2x-1)-[1-(-3x)]=-42.方程311126x x+--=的解是().A.x=-1/8B.x=1/2C.x=1/4D.x=-3/83.当x=_______时,代数式1/3(1-2x)与代数式2/7(3x+1)的值相等.4.解下列方程.5.小华同学在解方程21236x x a-+=-去分母时,方程的右边-2没有乘6,因而求得方程的解为x=2,试求a的值,并正确地解方程.6.某工厂购进了一批煤,原计划每天烧煤5吨,实际每天少烧2吨,这批煤多烧了20天.求这批煤有多少吨?【教学说明】学生自主完成,加深对新学知识的理解,检测对去分母解一元一次方程的掌握情况,对学生的疑惑,教师应及时加以指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.B2.C3.1/324.(1)x=1/5 (2)x=-16 (3)x=8(4)x=7 (5)x=-2/5 (6)x=35.由题意可知:x=2是2(2x-1)=x+a-2的解,解得a=6. 则原方程为21236x x a -+=-, 解得x=-4/3. 6.设这批煤有x 吨,由题意得:20.552x x +=- 解得:x=150.所以这批煤有150吨.四、师生互动,课堂小结1.师生共同回顾解一元一次方程的一般步骤.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】 教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材问题“5.5”中选取.2.完成练习册中本课时的相应作业.本节课从学生解含有分母的一元一次方程,到归纳解一元一次方程的一般步骤,培养学生动手,动脑习惯,加深对所学知识的认识,熟练运用所学知识解决实际问题,体验应用知识的成就感,激发学生学习的兴趣.3 应用一元一次方程——水箱变高了【知识与技能】通过分析图形问题中的数量关系,建立方程解决问题.【过程与方法】经历由实际问题抽象为方程模型的过程,进一步体会用方程解实际问题的一般思路和步骤.【情感态度】结合本课教学特点,教育学生热爱学习,热爱生活,激发学生学习的兴趣. 【教学重点】分析图形问题中的数量关系,熟练地列方程解应用题.【教学难点】从实际问题中抽象出数学模型教学过程.一、情境导入,初步认识用同一根铁丝围成不同的图形,如三角形长方形、正方形、梯形、平行四边形等在这些图形中,什么发生了变化?什么不发生变化?【教学说明】学生很容易得出这些图形的变化,初步感受图形问题中的数量关系.二、思考探究,获取新知1.运用一元一次方程解决等体积变形问题问题1 教材第141页例题以上的内容.【教学说明】学生通过思考、分析,与同伴进行交流,完成表格,列出方程解决问题.体会列表法的重要作用.【归纳结论】列方程解应用题关键是找出问题中的等量关系.2.运用一元一次方程解决等周长变形问题问题2 教材第141页下方的例题.【教学说明】学生通过思考、分析与同伴进行交流,列出方程求解.【归纳结论】在问题2中,长方形的周长始终是不变的,即长与宽的和为:10×1/2=5(m).所以在解决问题的过程中,要紧紧抓住这个等量关系.3.运用一元一次方程解决等面积变形问题.问题3 已知一梯形的高为8cm,上底长为14cm,下底长比上底长的2倍少6cm,若把这个梯形改成与其面积相等的长方形,且长方形的长为24cm,求长方形的宽.【教学说明】学生思考、分析,与同伴交流,设未知数列出方程求解.【归纳结论】运用一元一次方程解决实际问题的一般步骤(1)设未知数,(2)找等量关系式,(3)列方程,(4)解方程,(5)检验,(6)写出答案.三、运用新知,深化理解1.已知内径为120mm的圆柱玻璃杯和内径为300mm,内高为32mm的圆柱形玻璃盆可以盛同样多的水,则玻璃杯的内高为().A.150mmB.200mmC.250mmD.300mm2.一根绳子刚好可以围成一个边长为6cm的正方形,如果用这根绳子围成一个长8cm的长方形,这个长方形的宽为_______cm,面积是_______cm2.3.如图所示,将一个底面直径为10cm,高为36cm的“瘦长”形圆柱锻压成底面直径为20cm的“矮胖”形圆柱.假设在锻压过程中圆柱的体积保持不变,那么高变成了多少?第3题图第4题图4.墙上钉着一根彩绳围成的梯形形状的饰物,如右图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如右图虚线所示,小颖所钉长方形的长、宽各为多少厘米?【教学说明】学生自主完成,加深对新学知识的理解,检测对运用一元一次方程解决等积变形问题的掌握情况?对学生的疑惑教师应及时加以指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.B2.4 323.设高度为xcm,由题意得:π×52×36=π×102x解得x=9所以高变成了9cm.4.设长方形的长为xcm,由题意得:2(x+10)=10×4+6×2解得x=16所以长方形的长为16cm,宽为10cm.四、师生互动,课堂小结1.师生共同回顾运用一元一次方程解决等体积、等周长、等面积问题.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材“习题5.6”中选取.2.完成练习册中本课时的相应作业.。
北京课改数学七上《一元一次方程》同课异构教案 (5)(vip专享)
本资源的初衷,是希望通过网络分享,能够为广大读者提供更好的服务,为您水平的提高提供坚强的动力和保证。
内容由一线名师原创,立意新,图片精,是非常强的一手资料。
第7课 4.3一元一次方程和它的解法(3)教学目的1、使学生掌握形如ax+b=cx+d(a ≠c)的方程的解法.2、利用等式的对称性解方程.3、通过一题多解的比较,寻求较简捷的解法.教学分析重点: 形如ax +b =cx+d(a ≠c)的方程的解法.难点: 形如ax+b=cx+d(a ≠c)的方程的解法.突破: 紧扣所作变形的根据.教学过程一、复习1、解方程: (1)-21x=3 (2)5x-34=232、纠正作业中常犯的错误: (1)方程连等,或在左边写等号. (2)移项时没有改变符号. (3)系数化为1时,分子分母位置弄错.二、新授1、对于两边都有未知数的方程,只要把方程变形为形如ax=b(a ≠0)的形式,再把x 的系数化成1,就能得到方程的解.2、例1(课本P196例3)解方程 5x+2=7x -8分析: 为了使方程化为ax=b 的形式,未知项可以移到方程的左边,已知项可以移到方程的右边,或者把未知项可以移到方程的右边,而把已知项可以移到方程的左边,于是有两种不同的解法.解: 按课本的两种方法讲解.讲解后让学生比较一下,未知项移动的方向不同,但都能把方程化为最简形式ax=b,进而求出方程的解. 说明: (1)方程10=2x变形为2x=10是根据等式的对称性,而不是移项. (2)以后的方程不要求书面检验,可用口算验证,要养成进行检验的习惯.3、例2(补充题)已知x=2是方程x+4a=14-2ax的解,求a的值.解: 由方程的解的意义得2+4a=14-2a×4移项,得4a+8a=14-2合并同类项,得12a=12系数化为1,得a=1三、练习P198练习: 2,4.四、小结1、形如ax+b=cx+d(a≠c)的方程的解法.2、等式的对称性.3、移项原则.五、作业1、P206A: 6,7. B: 3,4.2、基础训练同步练习3. 回页顶。
七年级数学上册《第五章-一元一次方程》教案-北师大版
贵州省贵阳市花溪二中七年级数学上册《第五章一元一次方程》教案北师大版教学目标:1、知识与技能:通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、过程与方法:通过观察,归纳一元一次方程的概念。
3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决。
教学重点:建立一元一次方程的概念。
教学难点:根据具体问题中的等量关系,列出一元一次方程,感受方程作为刻画现实世界有效模型的意义。
教学过程:一、情景导入:我能猜出你们的年龄,相信吗?只要任何一个同学回答我一个问题,我就能马上猜到他的年龄是多少岁,我们来试试吧.问:你的年龄乘以2加3等于多少?学生说出结果,教师猜测年龄,并问:你们知道我是怎么做的吗?学生讨论并回答二、知识探究:⒈方程的教学(投影演示)小彬和小明也在进行猜年龄游戏,我们来看一看。
找出这道题中的等量关系,列出方程.大家观察,这两个式子有什么特点。
讨论并回答:什么是方程?方程有哪些特点?⒉判断下列式子是不是方程?(1)X+2=3(是)(2)X+3Y=6(是)(3)3X-6(不是)(4)1+2=3(不是)(5)X+3>5(不是)(6)Y-12=5(是)三、合作交流⒈如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)情景一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约10厘米,大约几周后树苗长高到1米?你能找出题中的等量关系吗?怎样列方程?由此题你们想到了些什么?情景二:第五次全国人口普查统计数据(2001年3月28日新华社公布)截至2000年11月1日0时,全国每10万人中具有大学文化程度的人数为3611人,比1990年7月1日0时增长了153.94%,1990年6月底每10万人中约有多少人具有大学文化程度?情景三:西湖中学的体育场的足球场,其周长为200米,长和宽之差为12米,这个足球场的长和宽分别是多少米?下面是刚才根据几道情景题所列的方程,分析下列方程有何共同点?2X–5=2140+15X=100X(1+153.94﹪)=36112[X+(X+12)]=2002[Y+(Y–12)]=200在一个方程中,只含有一个未知数X(元),并且未知数的指数是1(次),这样的方程叫一元一次方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.5.5一元一次方程
一、教学目标
1、理解解一元一次方程的主要思路.
2、掌握解一元一次方程的主要步骤.
3、能熟练的解一元一次方程.
二、课时安排:1课时.
三、教学重点:解一元一次方程的主要步骤.
四、教学难点:能熟练的解一元一次方程.
五、教学过程
(一)导入新课 前面我们学习了一元一次方程的解法,那么解一元一次方程的主要思路和主要步骤是什么?
下面我们继续学习一元一次方程.
(二)讲授新课
解一元一次方程的主要思路是:利用等式的基本性质对方程进行变形,逐步把方程化归为最简方程,然后求解.
(三)重难点精讲
解一元一次方程的主要步骤:
(1)去分母,去括号;
(2)移项、合并同类项,化为最简方程;
(3)把未知数的系数化为1,得到方程的解.
典例:
.13
.04.05.03.024=+--x x 、解方程:例 .13
4105320=+--x x 解:原方程化为 方程两边都乘15,去分母,得
.
15)410(5)320(3.115)3
4105320(15=+--⨯=+--⨯x x x x 去括号,得 60x-9-50x-20=15.
移项,合并同类项,得 10x=44.
把未知数x 的系数化为1,得 x=4.4.
所以x=4.4是原方程的解.
跟踪训练:
.32
.06.034.05.0=+-+x x 解方程: .32
6304510=+-+x x 解:原方程化为 方程两边都乘4,去分母,得
.
12)630(2)510(.34)2
6304510(4=+-+⨯=+-+⨯x x x x 去括号,得 10x+5-60x-12=12.
移项,合并同类项,得 -50x=19.
把未知数x 的系数化为1,得 x=-0.38.
所以x=-0.38是原方程的解.
典例: 例5、在梯形面积公式h b a S )(2
1+=
中,已知S=221,a=15,h=17, 求b 的值.
解:把S=221,a=15,h=17代入公式中,得 .17)15(2
1221⨯+=b 解这个关于b 的方程,得
b=11.
∴b=11. 跟踪训练: 在三角形的面积公式ah S 2
1=
中,已知S=10,a=5, 求的h 值.
解:把S=10,a=5代入公式中,得 .52
110h ⨯⨯= 解这个关于h 的方程,得
h=4.
∴h=4.
在实际问题中,我们可能遇到数值比较复杂的方程,可以借助计算器进行计算. 典例:
例6、利用计算器解方程:27.5(35.6-3.14x)=201.85.
解:两边同除以27.5,得
35.6-3.14x=7.34.
移项,得
-31.4x=7.34-35.6.
化简,得
-31.4x=-28.26.
把未知数x 的系数化为1,得
x=0.9
所以x=0.9是原方程的解. (四)归纳小结
通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.
(五)随堂检测
1、解方程)3(2
12)3(21--=-x x 时,变形第一步较好的是( ) A .去分母 B .去括号
C .移项合并(x -3)项
D .无法确定
2、如果方程67312+=+-x x 的解也是方程03
2=--x a 的解,那么a 的值是( ) A .7 B .5 C .3 D .以上都不对
.05
.001.002.03.02.01.03+=+x x 、解方程: 六、板书设计
§
要思路
七、作业布置:课本P98 练习 1、2、3
八、教学反思。