2013年全国高考试题分类汇编: 古典概型与几何概型
2013年高考试题分类汇编(计数、概率、二项式定理)

2013年高考试题分类汇编(计数、概率、二项式定理)考点1 计数问题1.(2013·北京卷·理科)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是 . 962.(2013·全国大纲卷·文科)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种. 603.(2013·山东卷·理科)用0,1,2,,9十个数字,可以组成有重复数字的三位数的个数为A.243B.252C.261D.2794.(2013·四川卷·理科)从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 CA.9B.10C.18D.205.(2013·重庆卷·理科)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是 . 5906.(2013·全国大纲卷·理科)6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答) 4807.(2013·浙江卷·理科)将,,,,,A B C D E F 六个字母排成一排,且,A B 均在C 的同侧,则不同的排法共有 种. 4808.(2013·福建卷·理科)满足,{1,0,1,2}a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对的个数为 BA.14B.13C.12D.10 考点2 概率1.(2013·安徽卷·文科)若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 D A.23 B.25 C.35 D.9102.(2013·全国卷Ⅰ·文科)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 B A.12 B.13 C.14 D.163.(2013·全国卷Ⅱ·文科)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是 . 15 4.(2013·全国卷Ⅱ·理科)从n 个正整数1,2,,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n = . 8n = 5.(2013·重庆卷·文科)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为 . 23 6.(2013·浙江卷·文科)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于 .15 7.(2013·江西卷·文科)集合{}2,3A =,{}1,2,3B =,从A ,B 中各取任意一个数,则这两数之和等于4的概率是 C A.23 B.12 C.13 D.168.(2013·福建卷·理科)利用计算机产生01之间的均匀随机数a ,则事件“310a ->”发生的概率 . 23 9.(2013·陕西卷·理科)如图,在矩形区域ABCD 的,A C 两点处各有一个 通信基站,假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF (该矩形区域内无其他信号来源,基 站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是 A.14π- B.12π- C.22π- D.4π 10.(2013·湖南卷·理科)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使APB ∆的最大边是AB ”发生的概率为12,则AD AB= A.12 B.1411.(2013·湖北卷·文科)在区间[2,4]-上随机地取一个数x ,若x 满足x m≤的概率为56,则m = . 314.(2013·山东卷·理科)在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为 . 13 考点3 二项式定理1.(2013·全国大纲卷·文科)8(2)x +的展开式中6x 的系数是 CA.28B.56C.112D.224 2. 2532()x x-展开式中的常数项为 A.80 B.80- C.40 D.40-3.(2013·天津卷·理科)6(x的二项展开式中的常数项为 . 15 4.(2013·全国大纲卷·理科)()()8411+x y +的展开式中的22x y 系数是 DA.56B.84C.112D.1685.(2013·四川卷·理科)二项式5()x y +的展开式中,含23x y 的项的系数是 .106.(2013·安徽卷·理科)若8(x 的展开式中4x 的系数为7,则实数a = 12. 7.(2013·辽宁卷·理科)使得(3n x+(n N +∈)的展开式中含有常数项的最小值n 为A .4B .5C .6D .78.(2013·全国卷Ⅰ·理科)设m 为正整数,2()n x y +展开式的二项式系数的最大值为a ,21()n x y ++展开式的二项式系数的最大值为b ,若137a b =,则n = BA.5B.6C.7D.89. 已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =A.-4B.-3C.-2D.-110.(2013·浙江卷·理科)设二项式5的展开式中的常数项为A ,则 A = .。
2013高考数学复习试题:古典概型与几何概型历届高考试题汇编

2013高考数学复习试题:古典概型与几何概型历届高考试题汇编各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢2013高考数学复习试题:古典概型与几何概型历届高考试题汇编1.(2011•浙江文,8)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是()[答案] D[解析]3个红球记为a,b,c,2个白球记为1,2.则从袋中取3个球的所有方法是abc,ab1,ab2,ac1,ac2,a12,bc1,bc2,b12,c12.共10个基本事件,则至少有一个白球的基本事件是ab1,ab2,ac1,ac2,a12,bc1,bc2,b12,c12共9个.[来源:Z|xx|]∴至少有一个白球的概率为910.故选D.[点评](1)A=“至少有一个白球”的对立事件是B=“全是红球”,故所求概率为P(A)=1-P(B)=1-110=910.(2)解决这类问题的基本方法就是给小球编号,用列举法写出基本事件空间(或用计数原理计算基本事件空间中基本事件的个数),然后数(或求)出所求事件中含的基本事件的个数,再求概率,请再练习下题:(2011•德州模拟)一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是()[答案] C[解析]从5个球中任取两个,有C25=10种不同取法,其中两球同色的取法有C23+1=4种,∴P=410=25.2.(文)(2011•福建文,7)如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于()[答案] C[解析] 本题属于几何概型求概率问题,设矩形长为a,宽为b,则点Q 取自△ABE内部的概率为P=S△ABES矩形ABCD=12abab =12.(理)(2010•胶州三中)已知函数f(x)=x2+bx+c,其中0≤b≤4,0≤c≤4,记函数f(x)满足条件-的事件为A,则事件A发生的概率为()[答案] C[解析]由-得,2b+c≤8-2b+c≤0,画出0≤b≤4,0≤c≤4表示的平面区域和事件A 所表示的平面区域,由几何概型易知,所求概率P=12.3.(文)有5条长度分别为1、3、5、7、9的线段,从中任意取出3条,则所取3条线段可构成三角形的概率是()[答案] B[解析]构不成三角形的为(1,3,5),(1,3,7),(1,3,9),(3,5,9),(1,5,7),(1,5,9),(1,7,9),能构成三角形的有(3,5,7),(3,7,9),(5,7,9),∴所求概率为310.(理)在圆周上有10个等分点,以这些点为顶点,每3个点可以构成一个三角形,如果随机选择3个点,刚好构成直角三角形的概率是()[答案] C[解析]从10个点中任取三个有C310种方法,能构成直角三角形时,必须有两点连线为直径,这样的直径有5条,∴能构成直角三角形5×8=40个,∴概率P=40C310=13.4.(文)(2011•北京学普教育中心联考版)在棱长为2的正方体ABCD-A1B1C1D1中,点O为底面ABCD的中心,在正方体ABCD-A1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为()A.π12B.1-π12C.π6D.1-π6[答案] B[解析]以点O为圆心,半径为1的半球的体积为V=12×43πR3=2π3,正方体的体积为23=8,由几何概型知:点P到点O的距离大于1的概率为P(A)=1-23π8=1-π12,故选B.(理)已知正三棱锥S-ABC的底面边长为4,高为3,在正三棱锥内任取一点P,使得VP-ABCn的概率与mn的概率为12×1-16=512,∴满足m≥n的概率为P=16+512=712.7.(2011•浙江宁波八校联考)已知k ∈Z,AB→=(k,1),AC→=(2,4),若|AB→|≤4,则△ABC是直角三角形的概率是________.[答案]37[解析]∵|AB→|=k2+1≤4,∴-15≤k≤15,∵k∈Z,∴k=-3,-2,-1,0,1,2,3,当△ABC为直角三角形时,应有AB ⊥AC,或AB⊥BC,或AC⊥BC,由AB→•AC→=0得2k+4=0,∴k=-2,∵BC→=AC→-AB→=(2-k,3),由AB→•BC→=0得k(2-k)+3=0,∴k=-1或3,由AC→•BC→=0得2(2-k)+12=0,∴k=8(舍去),故使△ABC为直角三角形的k值为-2,-1或3,∴所求概率p=37.8.(文)(2011•如皋模拟)连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),记“两次向上的数字之和等于m”为事件A,则P(A)最大时,m=________.[答案]7[解析]连续抛掷一枚骰子2次,共有36个基本事件,两次向上的点数之和及次数如表:和2 3 4 5 6 7 8 9 10 11 12次数 1 2 3 4 5 6 5 4 3 2 1显然当两次向上的点数之和为7时概率P(A)最大.(理)(2010•江苏金陵中学)先后两次抛掷同一枚骰子,将得到的点数分别记为a,b.将a,b,5分别作为三条线段的长,则这三条线段能构成等腰三角形的概率是________.[答案]718[分析]本题有两点要点:一是构成三角形,须满足较小的两个数的和大于第三个数;二是构成等腰三角形,须有两个数相等.[解析]基本事件的总数为6×6=36.∵三角形的一边长为5,∴当a=1时,b=5符合题意,有1种情况;当a=2时,b=5符合题意,有1种情况;当a=3时,b=3或5符合题意,即有2种情况;当a=4时,b=4或5符合题意,有2种情况;当a=5时,b∈{1,2,3,4,5,6}符合题意,即有6种情况;当a=6时,b=5或6符合题意,即有2种情况.故满足条件的不同情况共有14种,所求概率为P=1436=718.9.(文)从集合{(x,y)|x2+y2≤4,x ∈R,y∈R}内任选一个元素(x,y),则x、y满足x+y≥2的概率为________.[答案]π-24π[解析]即图中弓形面积占圆面积的比例,属面积型几何概型,概率为π-24π.(理)(2011•黑龙江五校联考)在体积为V的三棱锥S-ABC的棱AB上任取一点P,则三棱锥S-APC的体积大于V3的概率是_____ ___.[答案]23[解析]由题意可知VS-APCVS-ABC>13,三棱锥S-ABC的高与三棱锥S-APC的高相同.作PM⊥AC于M,BN⊥AC于N,则PM、BN分别为△APC 与△ABC的高,所以VS-APCSS-ABC =S△APCS△ABC=PMBN>13,又PMBN=APAB,所以APAB>13,故所求的概率为23(即为长度之比).10.已知函数f(x)=-x2+ax-b.(1)若a,b都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;(2)若a,b都是从区间[0,4]上任取的一个数,求f(1)>0成立的概率.[解析](1)a,b都是从0,1,2,3,4五个数中任取的一个数,则基本事件总数为N=5×5=25个.函数有零点的条件为Δ=a2-4b≥0,即a2≥4b.因为事件“a2≥4b”包含(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4),所以事件“a2≥4b”的概率为P=1225,即函数f(x)有零点的概率为1225.(2)a,b都是从区间[0,4]上任取的一个数,f(1)=-1+a-b>0,即a-b>1,此为几何概型.如图可知,事件“f(1)>0”的概率为P=12×3×34×4=932.11.(文)(2011•金华十校联考)在一个袋子中装有分别标注1,2,3,4,5的5个小球,这些小球除标注的数字外完全相同,现从中随机取出2个小球,则取出小球标注的数字之差的绝对值为2或4的概率是()[答案] C[解析]从5个小球中随机取出两个小球,基本事件共10个:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5 ),(3,4),(3,5),(4,5).其中数字之差的绝对值为2的有:(1,3),(2,4),(3,5),数字之差的绝对值为4的有:(1,5),故所求概率P=3+110=25.(理)(2011•威海模拟)某同学同时掷两颗骰子,得到点数分别为a、b,则椭圆x2a2+y2b2=1的离心率e>32的概率是()[答案] D[解析]当a>b时,e=1-b2a2>32⇒ba2b,符合a>2b的情况有:当b=1时,有a=3,4,5,6四种情况;当b=2时,有a=5,6两种情况,总共有6种情况,则概率是636=16.同理当a32的概率也为16,综上可知e>32的概率为13.12.(文)m∈{-2,-1,0,1,2,3},n ∈{-3,-2,-1,0,1,2},且方程x2m +y2n=1有意义,则方程x2m+y2n=1可表示不同的双曲线的概率为() B.1[答案] D[解析]由题设知m>0n0,1°m>0n0时有不同取法2×2=4种,∴所求概率P=9+45×5=1325.(理)从-1、0、1、2这四个数中选出三个不同的数作为二次函数f(x)=ax2+bx+c的系数组成不同的二次函数,其中使二次函数有变号零点的概率为()[答案] A[解析]首先取a,∵a≠0,∴a的取法有3种,再取b,b的取法有3种,最后取c,c的取法有2种,∴共组成不同的二次函数3×3×2=18个.f(x)若有变号零点,不论a>0还是a0,即b2-4ac>0,∴b2>4ac.①首先b取0时,a、c须异号,a =-1,则c有2种,a取1或2,则c 只能取-1,∴共有4种.②b=1时,若c=0,则a有2种,若c=-1,a只能取2.若c=2,则a=-1,共有4种.③若b=-1,则c 只能取0,有2种.④若b=2,取a有2种,取c有2种,共有2×2=4种.综上所述,满足b2>4ac的取法有4+4+2+4=14种,∴所求概率P=1418=79.13.(文)在区间[1,5]和[2,4]分别各取一个数,记为m和n,则方程x2m2+y2n2=1表示焦点在x轴上的椭圆的概率是________.[答案]12[解析]∵方程x2m2+y2n2=1表示焦点在x轴上的椭圆,∴m>n.由题意知,在矩形ABCD内任取一点P(m,n),求P点落在阴影部分的概率,易知直线m=n恰好将矩形平分,∴p=12.(理)设集合A={x|x2-3x-100,b0,y>0上的概率.[解析]满足条件的M点共有36个.(1)正好在第二象限的点有(-4,1),(-4,3),(-4,5),(-2,1),(-2,3),(-2,5),故点M正好在第二象限的概率P1=636=16.(2)在x轴上的点有(-4,0),(-2,0),(0,0),(1,0),(3,0),(5,0),故点M不在x轴上的概率P2=1-636=56.(3)在所给区域内的点有(1,1),(1,3),(1,5),(3,1),(3,3),(5,1),故点M在所给区域上的概率P3=636=16.4.(2011•龙岩质检)小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y.(1)在直角坐标系xOy中,以(x,y)为坐标的点共有几个?试求点(x,y)落在直线x+y=7上的概率;(2)规定:若x+y≥10,则小王赢,若x+y≤4,则小李赢,其他情况不分输赢.试问这个规定公平吗?请说明理由.[解析](1)因为x、y可取1、2、3、4、5、6,故以(x,y)为坐标的点共有36个.记“点(x,y)落在直线x+y=7上”为事件A,则事件A包含的点有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共6个,所以事件A的概率P(A)=636=16.(2)记“x+y≥10”为事件A1,“x+y≤4”为事件A2.用数对(x,y)表示x、y的取值,则事件A1包含(4,6)、(5,5)、(5,6)、(6,4)、(6,5)、(6,6),共6个数对;事件A2包含(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1),共6个数对.由(1)知基本事件总数为36,所以事件A1的概率P(A1)=636=16,事件A2的概率P(A2)=636=16.即小王和小李两位同学赢的可能性是均等的.所以这个规定是公平的.各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
2013年高考数学试题分类解析考点49 随机事件的概率、古典概型、几何概型

温馨提示:此题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word文档返回原板块。
考点49 随机事件的概率、古典概型、几何概型一、选择题1.(2013·四川高考理科·T9)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯在4秒内为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是()A. 14B. 12C. 34D. 78【解题指南】本题考查的是几何概型问题,首先明确两串彩灯开始亮是通电后4秒内任一时刻等可能发生,第一次闪亮相互独立,而满足要求的是两串彩灯第一次闪亮的时刻相差不超过2秒.【解析】选C.由于两串彩灯第一次闪亮相互独立且在通电后4秒内任一时刻等可能发生,所以总的基本事件为如图所示的正方形的面积,而要求的是第一次闪亮的时刻相差不超过2秒的基本事件为如图所示的阴影部分的面积,根据几何概型的计算公式可知它们第一次闪亮的时刻相差不超过2秒的概率是123164,故选C.2.(2013·安徽高考文科·T5)若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 ( ) A.23 B.25 C.35D.910【解题指南】 以甲、乙为选择对象分情况考虑,先组合再求概率。
【解析】选D.当甲、乙两人中仅有一人被录用时的概率2313536=22=1010C P C ??;当甲、乙两人都被录用时的概率132353=10C P C =,所以所求概率为12369+P =101010P P =+=。
3.(2013·新课标Ⅰ高考文科·T3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.12B.13C.14D.16【解析】选B.从1,2,3,4中任取2个不同的数有6种,取出的2个数之差的绝对值为2有2种,则概率3162==P . 4. (2013·陕西高考理科·T5)如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是 ( )A . 14π-B. 12π-C .22π-D.4π【解题指南】几何概型面积型的概率为随机事件所占有的面积和基本事件所占有的面积的比值求出该几何概型的概率.【解析】选A.由题设可知,矩形ABCD 的面积为2,曲边形DEBF 的面积为22π-,故所求概率为.41222ππ-=-5.(2013·江西高考文科·T4)集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的概率是( )A.23 B. 12 C. 13 D.16【解题指南】属于古典概型,列举出所有的结果是关键.【解析】选C.所有的结果为(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种,满足所求事件的有2种,所以所求概率为13.6. (2013·湖南高考文科·T9).已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为21,则ADAB=( )A.12B.14C.32 D.4【解题指南】本题的关键是找出使△APB 的最大边是AB 的临界条件,首先是确定AD<AB,然后作出矩形ABCD ,最后分别以A 、B 为圆心以AB 为半径作圆弧交CD 于F 、E ,当EF=21CD 时满足题意。
2013年全国各地高考数学试题及解答分类汇编大全(13 立体几何 )

图 2俯视图侧视图正视图2013年全国各地高考数学试题及解答分类汇编大全(13立体几何 )一、选择题:1.(2013安徽理)在下列命题中,不是公理..的是( ) (A )平行于同一个平面的两个平面相互平行(B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 (D )如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线【答案】A【解析】B,C,D 说法均不需证明,也无法证明,是公理;A 选项可以推导证明,故是定理。
所以选A2. (2013北京文)如图,在正方体ABCDA 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( ). A .3个 B .4个 C .5个 D .6个答案 B解析 设正方体边长为1,不同取值为P A =PC =PB 1=63,P A 1=PD =PC 1=1,PB =33,PD 1=233共有4个.3.(2013广东理) 某四棱台的三视图如图所示,则该四棱台的体积是 ( ) A . 4 B .143 C .163D .6 【解析】B ;由三视图可知,该四棱台的上下底面边长分别为1和2的正方形,高为2,故()2211412233V =+⨯=,故选B .4.(2013广东文) 某三棱锥的三视图如图2所示,则该三棱锥的体积是A .16B .13C .23D .1【解析】由三视图判断底面为等腰直角三角形, 三棱锥的高为2,则111=112=323V ⋅⋅⋅⋅,选B.5.(2013广东文) 设l 为直线,,αβ是两个不同的平面,下列命题中正确的是 A .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 【解析】基础题,在脑海里把线面可能性一想,就知道选B 了.6.(2013广东理) 设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥ 【解析】D ;ABC 是典型错误命题,选D .A1A正视图侧视图7、(2013湖北理) 一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( ) A. 1243V V V V <<< B. 1324V V V V <<<C. 2134V V V V <<<D. 2314V V V V <<<【解析与答案】C 由柱体和台体的体积公式可知选C 【相关知识点】三视图,简单几何体体积8. (2013湖南文) 已知正方体的棱长为1,其俯视图是一个面积为1的矩形,则该正方体的正视图的面积等于____ D ____ A .B.1【答案】 D【解析】 正方体的侧视图面积为.2..2212同,所以面积也为正视图和侧视图完全相为,所以侧视图的底边长⋅=9.(2013湖南理) 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 A .1 BCD 【答案】 C【解析】 由题知,正方体的棱长为1,121-2.]2,1[]2,1[1<而上也在区间上,所以正视图的面积,宽在区间正视图的高为。
2013年全国各地高考数学试题及解答分类汇编大全(15 概率、统计、统计案例、推理与证明)

2013年全国各地高考数学试题及解答分类汇编大全 (15概率、统计、统计案例、推理与证明)一、选择题:1.(2013安徽理)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( ) (A )这种抽样方法是一种分层抽样 (B )这种抽样方法是一种系统抽样(C )这五名男生成绩的方差大于这五名女生成绩的方差 (D )该班级男生成绩的平均数小于该班女生成绩的平均数 【答案】C【解析】 对A 选项,分层抽样要求男女生总人数之比=男女生抽样人数之比,所以A 选项错。
对B 选项,系统抽样要求先对个体进行编号再抽样,所以B 选项错。
对C 选项,男生方差为40,女生方差为30。
所以C 选项正确。
对D 选项,男生平均成绩为90,女生平均成绩为91。
所以D 选项错。
所以选C2.(2013安徽文)若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 (A )23 (B) 25 (C) 35 (D )910【答案】D【解析】总的可能性有10种,甲被录用乙没被录用的可能性3种,乙被录用甲没被录用的可能性3种,甲乙都被录用的可能性3种,所以最后的概率333110p ++== 【考点定位】考查古典概型的概念,以及对一些常见问题的分析,简单题.3.(2013福建文) 已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为a x b y ˆˆˆ+=.若某同学根据上表中前两组数据)0,1(和)2,2(求得的直线方程为a x b y '+'=,则以下结论正确的是( )A .a a b b'>'>ˆ,ˆ B .a a b b '<'>ˆ,ˆ C .a a b b '>'<ˆ,ˆ D .a a b b'<'<ˆ,ˆ 【答案】C【解析】本题考查的是线性回归方程.画出散点图,可大致的画出两条直线(如下图),由两条直线的相对位置关系可判断a a b b'>'<ˆ,ˆ.故选C4.(2013福建理) 某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120 【答案】B【解析】由图知道60分以上人员的频率为后4项频率的和,由图知道(0.030.0250.0150.01)*100.8P =+++= 故分数在60以上的人数为600*0.8=480人.5.(2013广东理) 设整数4n ≥,集合{}1,2,3,,X n = .令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( ) A . (),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈ 【解析】B ;特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.6.(2013湖北文) 四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且 3.476 5.648y x =-+;③ y 与x 正相关且 5.4378.493y x =+; ④ y 与x 正相关且 4.326 4.578y x =--. 其中一定不正确...的结论的序号是 A .①② B .②③ C .③④ D . ①④ 答案 D 解析 ①中,回归方程中x 的系数为正,不是负相关;④方程中的x 的系数为负,不是正相关,∴①④一定不正确.7. (2013湖南文) 某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件。
古典概型与几何概型

1.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机地并排摆放到书架的同一层上,则同一科目的书都相邻的概率为________. 【考点】古典概型及其概率计算公式. 【答案】15【分析】由题意知本题是一个等可能事件的概率,试验发生包含的事件是把5本书随机的摆到一个书架上,共有55P =120种结果,同一科目的书都相邻,把2本语文书捆绑在一起,再把2本数学书捆绑在一起,故有223223P P P =24种,故同一科目的书都相邻的概率P =2411205=. 故答案为15. 2.从一副扑克牌中,任抽一张得到黑桃的概率是_____.(王牌除外)【测量目标】 数学基本知识和基本技能/理解或掌握初等数学中有关数据整理与概率统计的基本知识.【考点】 古典概型及其概率计算公式. 【答案】14【分析】 从一副王牌除外的扑克牌中,任取一张,基本事件总数n =52, 任抽一张得到黑桃包含的基本事件的个数m =13, ∴任抽一张得到黑桃的概率p =14.故答案为14. 3.已知口袋里装有同样大小、同样质量的16个小球,其中8个白球、8个黑球,则从口袋中任意摸出8个球恰好是4白4黑的概率为 .(结果精确到0.001) 【测量目标】 数学基本知识与基本技能/理解或掌握初等数学中有关概率与统计的基本知识. 【考点】 排列、组合及简单计算问题;古典概型及其概率计算公式. 【答案】 0.381【分析】 根据所有的摸法共有816C 种,从口袋中任意摸出8个球恰好是4白4黑的摸法共有4488C C 种,由此求得从口袋中任意摸出8个球恰好是4白4黑的概率.所有的摸法共有816C =12870种,从口袋中任意摸出8个球恰好是4白4黑的摸法共有4488C C =4900种, 故从口袋中任意摸出8个球恰好是4白4黑的概率为490012870=4901287≈0.381,故答案为0.381.4.在三行三列的方阵112131a a a ⎛⎝ 122232a a a 132333a a a ⎫⎪⎪⎪⎭中有9个数ij a (i =1,2,3;j =1,2,3),从中任取三个数,则三个数中任两个不同行不同列的概率是 .(结果用分数表示) 【考点】古典概型及其概率计算公式. 【答案】114【分析】从9个数中任选3个,共39C =84种选法,其中三个数中任两个不同行不同列的为: (11a ,22a ,33a ),(11a ,23a ,32a ), (12a ,21a ,33a ),(12a ,23a ,31a ), (13a ,22a ,31a ),(11a ,21a ,32a )共6个, ∴所求概率P =684=114. 5.将3本数学书4本英语书和2本语文书排成一排,则三本数学书排在一起的概率为 . 【考点】古典概型及其概率计算公式. 【答案】112【分析】所有的排法共有99A 种,其中三本数学书排在一起的方法有7373A A 种, 故三本数学书排在一起的概率为737399A A 1A 12=,故答案为112.【点评】本题考查古典概型及其概率计算公式的应用,相邻问题的排列,属于基础题.6.从7名运动员中选出4名运动员组成接力队,参加4×100米接力赛,那么甲乙两人都不跑中间两棒的概率为________.(结果用最简分数作答) 【考点】古典概型. 【答案】1021【分析】从7名运动员中选出4名运动员,不同的选法是47C ,参加4×100米接力赛的不同方式有44P ,∴共有47C ⋅44P =840种;选出的4人中甲、乙两人都不跑中间两棒的不同选法是: 第一步,安排中间2个位置有25P =20种, 第二步,安排首尾2个位置有25P =20种, 共有20×20=400种,∴甲乙两人都不跑中间两棒的概率为 P =2540010P 84021==. 7.在平面直角坐标系中,从6个点:(0,0),(20),(11),A B C ,,(02),(22)D E ,,,(33)F ,中任取3个,这3点能够成三角形的概率是 .(结果用分数表示) 【答案】34【分析】由已知可得,从六个点中任取3个点可有36C 种,而,,,A C E F 共线,,,B C D 共线,故可构成三角形的个数为:333643C C C =15--,所以所求概率为33364336C C C 3=C 4--. 8.某人有5把钥匙,但忘记了开房门的是哪一把,于是,他逐把不重复地试开,问恰好第三次打开房门的概率是多少?【解】我们知道最多开5次门,且其中有且仅有一次可以打开房门,故每一次打开门的概率是相同的,都是15.开三次门的所有可能性有35P 种,第三次打开房门,则房门钥匙放在第3号位置上,前两次没能打开房门,则前两个位置使用另4把钥匙安排的,故有24P 种可能.从而恰好第三次打开房门锁的概率是2435P 1()P 5P A ==.9.投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数(i)(i)m n n m +-为实数的概率为( ) A.13 B.14 C.16 D.112【答案】C【分析】因为22(i)(i)2()i m n n m mn n m +-=+-为实数,所以22n m =,故m n =,则可以取m n ==126 、、、,共6种可能,所以116661C C 6P ==⋅.故选C. 10.ABCD 为长方形,2,1AB BC ==,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ) A.4π B.14π- C.8π D.18π- 【答案】B【分析】长方形面积为2,以O 为圆心、1为半径作圆,在矩形内部的部分(半圆)面积为2π,因此取到的点到O 的距离小于1的概率为224ππ÷=,取到的点到O 的距离大于1的概率为14π-.故选B. 11.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率为___________. 【答案】16π【分析】如图,区域D 表示边长为4的正方形的内部(含边界),区域E 表示单位圆及其内部,因此,214416P π⨯π==⨯.shw0612.在区间[1,1]-上随机取一个数x ,cos 2x π的值介于0到12之间的概率为( ) A.13 B.2π C.12 D.23【答案】A【分析】[1,1]x ∈-时,要使cos2x π的值介于0到12之间,需使223x πππ--剟或322x πππ剟,∴213x --剟或213x 剟,区间长度为23,所以21323P ==.故选A. 13.一口袋装有m 个黑球,n 个白球,其大小相同,编号不同.现把球随机的一只一只取出来,求第k 次取出黑球的概率(1k m n +≤≤).【解】设A ={第k 次取出黑球},将口袋内的球一个个取出,相当于将m +n 个球排在m +n个位置上,其基本事件的总数是+P m n m n +,而第k 个位置上是黑球的排列数是111C P m n m m n +-+-⋅,由等可能事件的概率公式可知:111C P ()=P m n m m n m nm nm P A m n +-+-++⋅=+. 14.设有a 个球,每个球都能以同样的概率1n落到n 个格子(n a ≥)的每一个格子中,试求: (1)某指定的a 个格子中各有一个球的概率; (2)任何a 个格子中各有一个球的概率.【解】(1)设A ={指定的a 个格子中各有一个球},每个球都有n 种落法,故aN n =,而a 个球落在指定的a 个格子中,有!K a =种落法,于是!()a a P A n=; (2)设B ={任何a 个格子中各有一个球},,aN n =先从n 个格子中任选a 个格子,有C a n 种选法,然后a 个球有a !种落法,则K =a !C an,于是P (B )=!C a n a a n =!()!an n a n -.15.将一枚均匀的正方体骰子(它们的6个面分别标有点数1,2,3,4,5,6)先后抛掷两次,骰子朝上的面的点数分别记为,x y ,则出现2log 1x y =的概率为_______.【答案】112【分析】满足2log 1x y =的x ,y 有(1,2),(2,4),(3,6)这三种情况,而总的可能数有36种,所以,313612P ==. 16.一个口袋里有2个红球和4个黄球,从中随机地抽取3个球,每次取1个,记事件A 为“恰有一个红球”,事件B 为“第3个是红球”.求:(1)当不放回抽取时,分别求出事件A,B 的概率; (2)每次抽取后放回时,分别求出事件A,B 的概率. 【解】(1)由不放回抽取可知,第一次从6个球中抽1个,第二次只能从余下的5个球中取1个,第三次再从余下的4个球中取1个,基本事件共6×5×4=120个.事件A 包含的基本事件有3×2×4×3=72个(分三种情况:红黄黄、黄红黄、黄黄红,每种2×4×3个).∴723()1205P A ==.事件B 包含的基本事件有4×3×2+4×2×1+2×4×1=40个(第三次取到红球,则前两次至多抽到一个红球). ∴401()1203P B ==; (2)由放回抽取可知,每一次从6个球中抽1个,共有36=216种取法.事件A 包含的基本事件有3×2×4×4=96个.∴P (A )=9642169=.事件B 包含的基本事件有2×4×2+4×4×2+4×2×2+2×2×2=72个.∴721()2163P B ==. 17.一批产品共有10件,其中8件为正品,2件为次品.(1)如果从中一次取出一件,取后放回,求连续3次取出的都是正品概率; (2)如果从中一次取出3件,求3件都是正品的概率.【解】(1)设事件A 为三件都是正品,由放回抽取可知,事件A 包含的基本事件有38种,随机抽取3次试验的所有结果为310种,所以338()0.51210P A ==;(2)由不放回抽取可知,事件A 包含的基本事件有8×7×6=336种,随机抽取3次试验的所有结果为10×9×8=720种,所以3367()72015P A ==. 18.将4个不同的球放入3个不同的盒中,对于每一个盒来说,所放的球数k 满足04k ≤≤,在各种可能性相等的情况下,求: (1)第一个盒没有球的概率; (2)第一个盒恰有1个球的概率;(3)第一个盒有一个球,第二个盒恰有2个球的概率.【解】4个不同的球放入3个不同的盒子中共有43种,(1)第1个盒子没有球的放法有42种,所以第一个盒子中没有球的概率为414216381P ==;(2)第一个盒子中恰好有一个球的放法有134C 2⋅种,所以第一个盒子中恰好有一个球的概率:13424C 232381P ⋅==; (3)第一个盒子有1个球,第二个盒子恰有2个球的放法有1243C C ⋅,所以所求的概率124334C C 4327P ⋅==.19.一盘录音带可录80分钟,前面20分钟已录音,现准备再录20分钟,如果随意地从录音带某处开始录,那么“能完整录音且与原先录音不重叠”的概率是多少?【解】可以把录音带看成一个长度为80的线段,由题意知,线段的首尾必须分别留出长度为20的线段,则符合题意的概率为8020201802P --==.20.在边长为1的正方形ABCD 内任意选取一点P ,分别联结P A ,PB ,构成△P AB .(1)求△P AB 面积小于14的概率; (2)求△P AB 面积在16至15之间的概率.【解】(1)过P 作AB 的垂线,垂足为E ;记“△P AB 面积小于14”为事件A .设PE =h , 当14PAB S <△,即11124h ⋅⋅<时,12h <.由几何概型的概率公式,得1112();12P A ⨯== (2)记“△P AB 面积在16至15之间”为事件B .则16<PAB S △<15.解得1235h <<.即点P 落在矩形PQNM 的内部.由几何概型的概率公式,得211()153()115P A ⨯-==. 21.如图所示,在矩形ABCD 中,AB =5,BC =7.现在向该矩形内随机投一点P ,求90APB ∠>时的概率.JXX1第21题图【解】由于是向该矩形内随机投一点P ,点P 落在矩形内的机会是均等的,故可以认为矩形ABCD 是区域Ω.要使得90APB ∠>︒,需满足点P 落在以线段AB 为直径的半圆内,以线段AB 为直径的半圆可看作区域A ,记“点P 落在以线段AB 为直径的半圆内”为事件A ,于是求90APB ∠>︒时的概率,转化为求以线段AB 为直径的半圆的面积与矩形ABCD 的面积的比,依题意得,21525228A u π⎛⎫=π⋅= ⎪⎝⎭,矩形ABCD 的面积为35u Ω=,故所求的概率为2558()3556P A ππ==.。
高考数学专练题 随机事件、古典概型与几何概型(试题部分)
专题十一概率与统计【真题探秘】11.1随机事件、古典概型与几何概型探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.随机事件的概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.(3)理解古典概型及其概率计算公式.2019课标Ⅰ,6,5分古典概型排列与组合★★★2018课标Ⅱ,8,5分古典概型组合2018课标Ⅰ,10,5分与面积有关的几何概型圆的面积和三角形的面积2.古典概型2017课标Ⅰ,2,5分与面积有关的几何概型圆的面积3.几何概型2016课标Ⅰ,4,5分与长度有关的几何概型(4)会计算一些随机事件所含的基本事件数及事件发生的概率.(5)了解随机数的意义,能运用模拟方法估计概率. (6)了解几何概型的意义2016课标Ⅱ,10,5分与面积有关的几何概型随机模拟分析解读本节是高考的热点,常以选择题或填空题的形式出现,主要考查利用频率估计随机事件的概率,常涉及对立事件、互斥事件,古典概型及与长度、面积有关的几何概型,有时也与其他知识进行交汇命题,以解答题的形式出现,如概率与统计和统计案例的综合,主要考查学生的逻辑思维能力和数学运算能力.破考点练考向【考点集训】考点一随机事件的概率1.(2019山东烟台一模,3)已知甲袋中有1个红球1个黄球,乙袋中有2个红球1个黄球,现从两袋中各随机取一个球,则取出的两球中至少有1个红球的概率为()A.13B.12C.23D.56答案D2.(2019山西太原模拟,2)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,则P(A)=()A.0.5B.0.1C.0.7D.0.8答案A考点二古典概型1.(2020届河南百校联盟9月联合检测,4)2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”“有害垃圾”“湿垃圾”“干垃圾”的分类标准进行分类,没有垃圾分类和未投放到指定垃圾桶内等会被罚款和行政处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投放到楼下的垃圾桶,若楼下分别放有“可回收物”“有害垃圾”“湿垃圾”“干垃圾”四个垃圾桶,则该居民会被罚款和行政处罚的概率为()A.13B.23C.14D.34答案D2.(2019江西南昌一模,6)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年上高一的小明与小芳都准备选历史与政治,假若他们都对后面三科没有偏好,则他们选课相同的概率为()A.12B.13C.16D.19答案B考点三几何概型1.(2020届贵州贵阳8月月考,7)某学校星期一至星期五每天上午共安排五节课,每节课的时间为40分钟,第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间随机到达教室,则他听第二节课的时间不少于20分钟的概率为()A.15B.14C.13D.12答案B2.(2018湖南三湘名校教育联盟第三次联考,3)已知以原点O为圆心,1为半径的圆以及函数y=x3的图象如图所示,则向圆内任意投掷一粒小米(视为质点),则该小米落入阴影部分的概率为()A.12B.14C.16D.18答案B炼技法提能力【方法集训】方法1古典概型概率的求法1.(2019安徽蚌埠二模,4)从1,2,3,4中选取两个不同数字组成两位数,则这个两位数能被4整除的概率为()A.13B.14C.16D.112答案B2.(2019江西九江一模,4)洛书,古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图案,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,若从四个阴数中随机抽取两个数,则能使这两数与居中阳数之和等于15的概率是()A.12B.23C.14D.13答案D方法2几何概型概率的求法1.(2020届河南安阳第一次调研月考,10)从[-2,3]中任取一个实数a,则a的值能使函数f(x)=x+asin x在R上单调递增的概率为()A.45B.35C.25D.15答案C2.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1-π4B.π12C.π4D.1-π12答案A【五年高考】A组统一命题·课标卷题组考点一古典概型(2018课标Ⅱ,8,5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118答案C考点二几何概型1.(2018课标Ⅰ,10,5分)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3答案A2.(2017课标Ⅰ,2,5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.π8C.12D.π4答案B3.(2016课标Ⅰ,4,5分)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.13B.12C.23D.34答案B4.(2016课标Ⅱ,10,5分)从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nm B.2nmC.4mnD.2mn答案CB组自主命题·省(区、市)卷题组考点一古典概型1.(2017山东,8,5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是()A.518B.49C.59D.79答案C2.(2019江苏,6,5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.答案7103.(2018江苏,6,5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.答案310考点二几何概型1.(2015陕西,11,5分)设复数z=(x-1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.34+12πB.14-12πC.12-1πD.12+1π答案 B2.(2017江苏,7,5分)记函数f(x)=√6+x -x 2的定义域为D.在区间[-4,5]上随机取一个数x,则x ∈D 的概率是 . 答案593.(2015福建,13,4分)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f(x)=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .答案512C 组 教师专用题组考点一 古典概型1.(2014课标Ⅰ,5,5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18B.38C.58D.78答案 D2.(2016江苏,7,5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 答案563.(2015江苏,5,5分)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为 . 答案564.(2013课标Ⅱ,14,5分)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n= . 答案 85.(2016天津,16,13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望. 解析 (1)由已知,有P(A)=C 31C 41+C 32C 102=13.所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P(X=0)=C 32+C 32+C 42C 102=415,P(X=1)=C 31C 31+C 31C 41C 102=715,P(X=2)=C 31C 41C 102=415.所以,随机变量X 的分布列为X 01 2 P415 715 415随机变量X 的数学期望E(X)=0×415+1×715+2×415=1.6.(2015陕西,19,12分)设某校新、老校区之间开车单程所需时间为T,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:T(分钟) 25 30 35 40 频数(次)20304010(1)求T 的分布列与数学期望ET;(2)刘教授驾车从老校区出发,前往新校区作一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解析 (1)由统计结果可得T 的频率分布为T(分钟)25 3035 40频率0.2 0.3 0.4 0.1以频率估计概率得T 的分布列为T 25 30 35 40 P0.2 0.3 0.4 0.1从而ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.解法一:P(A)=P(T 1+T 2≤70)=P(T 1=25,T 2≤45)+P(T 1=30,T 2≤40)+P(T 1=35,T 2≤35)+P(T 1=40,T 2≤30) =0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P(A )=P(T 1+T 2>70)=P(T 1=35,T 2=40)+P(T 1=40,T 2=35)+P(T 1=40,T 2=40) =0.4×0.1+0.1×0.4+0.1×0.1=0.09. 故P(A)=1-P(A )=0.91.考点二 几何概型1.(2015湖北,7,5分)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≥12”的概率,p 2为事件“|x-y|≤12”的概率,p 3为事件“xy ≤12”的概率,则( ) A.p 1<p 2<p 3 B.p 2<p 3<p 1 C.p 3<p 1<p 2 D.p 3<p 2<p 1答案 B2.(2016山东,14,5分)在[-1,1]上随机地取一个数k,则事件“直线y=kx 与圆(x-5)2+y 2=9相交”发生的概率为 . 答案34【三年模拟】一、选择题(每小题5分,共35分)1.(2020届陕西百校联盟九月联考,4)“沉鱼、落雁、闭月、羞花”是由精彩故事组成的历史典故.“沉鱼”讲的是西施浣纱的故事;“落雁”指的就是昭君出塞的故事;“闭月”是述说貂蝉拜月的故事;“羞花”谈的是杨贵妃醉酒观花的故事.她们分别是中国古代的四大美女,某艺术团要以四大美女为主题排演一部舞蹈剧,甲、乙、丙、丁抽签决定扮演的对象,则甲不扮演貂蝉且乙不扮演杨贵妃的概率为()A.13B.712C.512D.12答案B2.(2020届四川成都青羊石室中学10月月考,9)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则他们选课相同的概率为()A.136B.116C.18D.16答案D3.(2018重庆九校联盟第一次联考,4)已知随机事件A,B发生的概率满足条件P(A∪B)=34,某人猜测事件A∩B发生,则此人猜测正确的概率为()A.1B.12C.14D.0答案C4.(2019河北石家庄3月教学质量检测,9)袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都被摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:343432341342234142243331112342241244431233214344142134由此可以估计,恰好第三次就停止摸球的概率为()A.16B.29C.518D.19答案B5.(2020届安徽合肥一中、安庆一中第一次素质测试,8)2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行.长三角城市群包括上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”.现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为()A.2764B.916C.81256D.716答案B6.(2020届四川石室中学高三开学考试,7)一个平面封闭图形的周长与面积之比为“周积率”,如图是由三个半圆构成的图形,最大半圆的直径为6,若在最大的半圆内随机取一点,该点取自阴影部分的概率为49,则阴影部分图形的“周积率”为()A.2B.3C.4D.5答案B7.(2019山西阳泉二模,8)赵爽是我国古代数学家、天文学家,大约在公元222年赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图1).类比“赵爽弦图”,可构造如图2所示的图形,它是由3个全等的三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF=2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形内的概率是()图1 图2A.2√1313B.413C.2√77D.47 答案 B二、填空题(每小题5分,共10分)8.(2020届山西静乐第一中学高三月考,15)如图所示,阴影部分是由曲线y=x 2和圆x 2+y 2=2及x 轴围成的封闭图形.在圆内随机取一点,则此点取自阴影部分的概率为 .答案 18-112π9.(2018广东江门一模,16)两位教师对一篇初评为“优秀”的作文复评,若批改成绩都是两位正整数,且十位数字都是5,则两位教师批改成绩之差的绝对值不超过2的概率为 .答案 0.44。
2013年全国高考数学试题分类汇编 古典概型与几何概型
11.2古典概型与几何概型考点一古典概型1.(2013课标全国Ⅰ,3,5分)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A. B. C. D.答案 B2.(2013安徽,5,5分)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A. B. C. D.答案 D3.(2013课标全国Ⅱ,13,5分)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是.答案0.24.(2013浙江,12,4分)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于.答案5.(2013天津,15,13分)某产品的三个质量指标分别为x,y,z,用综合指标S=x +y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:产品编号A1A2A3A4A5质量指标(x,y,z) (1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1)产品编号A6A7A8A9A10质量指标(x,y,z) (1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2)(1)利用上表提供的样本数据估计该批产品的一等品率;(2)在该样本的一等品中,随机抽取2件产品,(i)用产品编号列出所有可能的结果;(ii)设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.解析(1)计算10件产品的综合指标S,如下表:产品编号A1A2A3A4A5A6A7A8A9A10S 4 4 6 3 4 5 4 5 3 5其中S≤4的有A1,A2,A4,A5,A7,A9,共6件,故该样本的一等品率为=0.6,从而可估计该批产品的一等品率为0.6.(2)(i)在该样本的一等品中,随机抽取2件产品的所有可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9},共15种.(ii)在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B发生的所有可能结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.所以P(B)==.6.(2013山东,17,12分)某小组共有A,B,C,D,E五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示:A B C D E身高 1.69 1.73 1.75 1.79 1.82体重指19.2 25.1 18.5 23.3 20.9标(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率;(2)从该小组同学中任选2个,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.解析(1)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),共6个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有(A,B),(A,C),(B,C),共3个.因此选到的2人身高都在1.78以下的概率为P==.(2)从该小组同学中任选2人,其一切可能的结果组成的基本事件有(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10个. 由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有(C,D),(C,E),(D,E),共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率为=.P1考点二几何概型7.(2013湖南,9,5分)已知事件“在矩形ABCD的边CD上随机取一点P,使△APB 的最大边是AB”发生的概率为,则=( )A. B. C. D.答案 D8.(2013福建,14,5分)利用计算机产生0~1之间的均匀随机数a,则事件“3a-1<0”发生的概率为.答案9.(2013湖北,15,5分)在区间[-2,4]上随机地取一个数x,若x满足|x|≤m的概率为,则m=.答案 3。
2013年高考数学总复习 10-5古典概型与几何概型 新人教B版
10-5古典概型与几何概型基础巩固强化1.4张卡片上分别写有数字1、2、3、4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A.13B.12C.23D.34[答案] C[解析] 取出两张卡片的基本事件构成集合Ω={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}共6个基本事件.其中数字之和为奇数包含(1,2),(1,4),(2,3),(3,4)共4个基本事件, ∴所求概率为P =46=23.2.(2011·潍坊二检)若在区间[-π2,π2]上随机取一个数x ,则cos x 的值介于0到12之间的概率为( )A.13 B.2π C.12 D.23[答案] A[解析] 当-π2≤x ≤π2时,由0≤cos x ≤12,得-π2≤x ≤-π3或π3≤x ≤π2,根据几何概型的概率计算公式得所求概率P =π6+π6π=13.3.已知函数f (x )=sina π3x ,a 等于抛掷一颗骰子得到的点数,则y =f (x )在[0,4]上至少有5个零点的概率是( )A.13B.12C.23D.56[答案] C[解析] 抛掷一颗骰子共有6种情况.当a =1,2时,y =f (x )在[0,4]上的零点少于5个;当a =3,4,5,6时,y =f (x )在[0,4]上的零点至少有5个,故P =46=23,选C.4.(2011·天津六校联考)某学校共有学生2000名,各年级男、女生人数如下表:已知在全校学生中随机抽取1名,抽到高二女生的概率为0.19.现用分层抽样的方法在全校抽取64名学生,则三年级应抽取的学生人数为( )C .16D .12[答案] C [解析] 由题意得,x2000=0.19.解得x =380.∴y +z =2000-(373+380+377+370)=500. 设三年级应抽取n 人,则642000=n500.∴n =16.故选C.5.投掷两颗骰子,其向上的点数分别为m 和n ,则复数(m +ni )(n -mi )为实数的概率为( )A.13B.14C.16D.112[答案] C[解析] 投掷两颗骰子,共向上的点数m 、n ,用(m ,n )记录基本事件,则基本事件构成集合Ω={(m ,n )|1≤m ≤6,1≤n ≤6,m ,n ∈N },∵(m +n i)(n -m i)=2mn +(n 2-m 2)i ,它为实数的等价条件是m 2=n 2,又m 、n 均为正整数,∴m =n .故所求事件所含基本事件有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)共6个,Ω中共有36个基本事件,∴P =636=16.故选C. 6.(文)已知正方体ABCD -A 1B 1C 1D 1内有一个内切球O ,则在正方体ABCD -A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是( )A.π4B.π8C.π6D.π12[答案] C[解析] 设正方体棱长为a ,则正方体的体积为a 3,内切球的体积为43π⎝ ⎛⎭⎪⎫a 23=16πa 3,故点M 在球O 内的概率为16πa 3a 3=π6.(理)(2011·北京学普教育中心联考版)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12 B .1-π12C.π6D .1-π6[答案] B[解析] 以点O 为圆心,半径为1的半球的体积为V =12×43πR 3=2π3,正方体的体积为23=8,由几何概型知:点P 到点O 的距离大于1的概率为P (A )=1-23π8=1-π12,故选B.7.(2011·皖南八校联考)连掷两次骰子得到的点数分别为m 和n ,设向量a =(m ,n )与向量b =(1,-1)的夹角为θ,则θ∈⎝⎛⎦⎥⎤0,π2的概率是________.[答案]712[解析] ∵cos θ=m -n 2·m 2+n2,θ∈⎝ ⎛⎦⎥⎤0,π2,∴m ≥n ,满足条件m =n 的概率为636=16,m >n 的概率与m <n 的概率相等,∴m >n 的概率为12×⎝ ⎛⎭⎪⎫1-16=512,∴满足m ≥n 的概率为P =16+512=712.8.(文)(2012·浙江文,12)从边长为1的正方形的中心和顶点这五个点中,随机(等可能)取两点,则该两点间的距离为22的概率是________. [答案] 25[解析]由五个点中随机取两点共有10种取法.由图可知两点间的距离为22的是中心和四个顶点组成的4条线段,故概率为P =410=25,概率问题一定要弄明白概率模型.(理)在区间[1,5]和[2,4]分别各取一个数,记为m 和n ,则方程x 2m 2+y 2n2=1表示焦点在x轴上的椭圆的概率是________.[答案] 12[解析] ∵方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆,∴m >n .由题意知,在矩形ABCD 内任取一点P (m ,n ),求P 点落在阴影部分的概率,易知直线m =n 恰好将矩形平分,∴p =12.9.(文)(2012·河北保定市模拟)在区间[-1,1]上随机取一个数k ,则直线y =k (x +2)与圆x 2+y 2=1有公共点的概率为________.[答案]33[解析] ∵直线与圆有公共点,∴|2k |k 2+1≤1,∴-33≤k ≤33.故所求概率为P =33--331--1=33. (理)若利用计算机在区间(0,1)上产生两个不等的随机数a 和b ,则方程x =22a -2bx有不等实数根的概率为________.[答案] 12[解析]方程x =22a -2b x化为x 2-22ax +2b =0,∵方程有两个不等实根, ∴Δ=8a -8b >0,∴a >b , 如图可知,所求概率p =12.10.(2012·天津文,15)某地区有小学21所,中学14所,大学7所.现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析, (ⅰ)列出所有可能的抽取结果; (ⅱ)求抽取的2所学校均为小学的概率. [分析] (1)根据抽样比例n N =621+14+7=17进行抽取.(2)由(1)知抽取的6所学校中有小学3所,用列举法求出基本事件总数n 和2所均为小学的抽法数m ,用古典概型公式P =m n求解.[解析] (1)从小学、中学、大学中分别抽取的学校数目分别为6×2121+14+7=3,6×1421+14+7=2,6-3-2=1.(2)(ⅰ)在抽取到的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,则抽取2所学校的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.(ⅱ)从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为{A 1,A 2},{A 1,A 3},{A 2,A 3},共3种.所以P (B )=315=15.[点评] 本小题主要考查分层抽样方法、用列举法求基本事件数、古典概型及其概率计算公式,同时考查学生数据处理能力,运用概率知识解决实际问题的能力.能力拓展提升11.(2012·安徽六校教育研究会联考)连续投掷两次骰子得到的点数分别为m 、n ,向量a =(m ,n )与向量b =(1,0)的夹角记为α,则α∈(0,π4)的概率为( )A.518B.512C.12D.712[答案] B[解析] 连续投掷两次骰子的点数m 、n ,构成的向量a =(m ,n ),共有36个,a 与b 的夹角α∈(0,π4),∴cos α=a ·b |a |·|b |=m m 2+n 2∈(22,1),即22<mm 2+n2<1, ∴n <m ,满足要求的向量a 有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(6,4),(6,5)共15个,∴所求概率P =1536=512.12.(文)(2012·辽宁文,11)在长为12cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC 、CB 的长,则该矩形面积大于20cm 2的概率为( )A.16B.13 C.23 D.45[答案] C[解析] 在长为12cm 的线段AB 上任取一点C ,设AC =x ,则BC =12-x ,∴x (12-x )>20,∴2<x <10,因此总的几何度量为12,满足矩形面积大于20cm2的点在C 1与C 2之间的部分,如图∴P =812=23.关键在于找出总长度及事件“矩形的面积大于20cm 2”所表示区域的长度.(理)(2012·湖北理,8)如图,在圆心角为直角的扇形OAB 中,分别以OA 、OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1-2πB.12-1πC.2πD.1π[答案] A[分析] 在扇形OAB 内随机取一点,此点落在阴影部分的概率属于几何概型问题,关键是求阴影部分的面积,如图设阴影部分两块的面积分别为S 1、S 2,OA =R ,则S 1=2(S 扇形DOC-S △DOC ),S 2=S 扇形OAB -S ⊙D +S 1.[解析] 设图中阴影面积分别为S 1,S 2,令OA =R ,由图形知,S 1=2(S 扇ODC -S △ODC ) =2[π·R224-12·(R 2)2]=πR 2-2R 28, S 2=S 扇形OAB -S ⊙D +S 1=14πR 2-π·(R 2)2+πR 2-2R 28=πR 2-2R28, ∴所求概率P =S 1+S 2S 扇形OAB =πR 2-2R2414πR 2=1-2π.[点评] 1.当试验的结果构成的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解;2.利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的计算,有时需要设出变量,在坐标系中表示所需要的区域.13.已知关于x 的二次函数f (x )=ax 2-4bx +1.设集合P ={-1,1,2,3,4,5}和Q ={-2,-1,1,2,3,4},分别从集合P 和Q 中任取一个数作为a 和b 的值,函数y =f (x )在区间[1,+∞)上是增函数的概率为________.[答案] 49[解析] 函数f (x )=ax 2-4bx +1图象的对称轴为x =2ba.要使y =f (x )在区间[1,+∞)上为增函数,应有a >0且2ba≤1,∴a ≥2b 且a >0.①若a =1,则b =-2,-1;②若a =2,则b =-2,-1,1;③若a =3,则b =-2,-1,1;④若a =4,则b =-2,-1,1,2;⑤若a =5,则b =-2,-1,1,2,∴该事件包含基本事件数为16, ∴所求概率P =166×6=49. 14.(文)若区域M ={(x ,y )||x |+|y |≤2},在区域M 内的点的坐标为(x ,y ),则x 2-y 2≥0的概率是________.[答案] 12[解析] 区域M 是以(-2,0),(2,0),(0,-2),(0,2)为顶点的正方形,如图所示,其中满足y 2≤x 2的是直线y =x 和y =-x 所夹的包含(-2,0),(2,0)的两块区域即阴影部分,这个区域的面积恰好是区域M 面积的一半,故所求的概率为12.(理)(2012·昆明第一中学测试)设曲线y =x ,直线x =1,x 轴所围成的平面区域为M ,Ω=⎩⎨⎧⎭⎬⎫x ,y⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤1.,向区域Ω内随机投一点A ,则点A 落在M 内的概率为________.[答案] 23[解析] 区域Ω的面积S =1,区域M 的面积S 1=⎠⎛01x d x =23x 32|10=23,故所求概率P =23. 15.设平面向量a m =(m,1),b n =(2,n ),其中m 、n ∈{1,2,3,4}. (1)请列出有序数组(m ,n )的所有可能结果;(2)记“使得a m ⊥(a m -b n )成立的(m ,n )”为事件A ,求事件A 发生的概率. [解析] (1)有序数组(m ,n )的所有可能结果为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个.(2)由a m ⊥(a m -b n )得m 2-2m +1-n =0,即n =(m -1)2由于m 、n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1),(3,4),共2个.又基本事件的总数为16,故所求的概率为P (A )=216=18.16.(文)(2011·江西文,16)某饮料公司对一名员工进行测试以便确定考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料.若该员工3杯都选对,测评为优秀;若3杯选对2杯测评为良好;否测评为合格.假设此人对A 和B 饮料没有鉴别能力.(1)求此人被评为优秀的概率; (2)求此人被评为良好及以上的概率.[解析] 将5杯饮料编号为:1,2,3,4,5,编号1、2、3表示A 饮料,编号4、5表示B 饮料,则从5杯饮料中选出3杯的所有可能情况为:(123),(124),(125),(134),(135),(145),(234)(235),(245),(345),共有10种令D 表示此人被评为优秀的事件,E 表示此人被评为良好的事件,F 表示此人被评为良好及以上的事件,则(1)P (D )=110,(2)P (E )=35,P (F )=P (D )+P (E )=710.(理)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是12.(1)求n 的值;(2)从袋子中不放回地随机抽取两个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .①设事件A 表示“a +b =2”,求事件A 的概率;②在区间[0,2]内任取两个实数x 、y ,求事件“x 2+y 2>(a -b )2恒成立”的概率.[解析] (1)由题意可知:n 1+1+n =12,解得n =2.(2)将标号为2的小球记作a 1,a 2①两次不放回抽取小球的所有基本事件为:(0,1),(0,a 1),(0,a 2),(1,0),(1,a 1),(1,a 2),(a 1,0),(a 1,1),(a 1,a 2),(a 2,0),(a 2,1),(a 2,a 1),共12个,事件A 包含的基本事件为:(0,a 1),(0,a 2),(a 1,0),(a 2,0),共4个. ∴P (A )=412=13.②记“x 2+y 2>(a -b )2恒成立”为事件B ,则事件B 等价于“x 2+y 2>4”,(x ,y )可以看成平面中的点,则全部结果所构成的区域Ω={(x ,y )|0≤x ≤2,0≤y ≤2,x ,y ∈R },而事件B 所构成的区域B ={(x ,y )|x 2+y 2>4,x ,y ∈Ω},∴P (B )=S B S Ω=2×2-π2×2=1-π4.1.(2011·新课标全国文,6)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13 B.12 C.23 D.34[答案] A[解析] 甲、乙各自参加其中一个小组所有选法为32=9种,甲、乙参加同一个小组的选法有3种,所以其概率为39=13.故选A.2.(2011·福建文,7)如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.23[答案] C[解析] 本题属于几何概型求概率问题,设矩形长为a ,宽为b ,则点取自△ABE 内部的概率P =S △ABE S 矩形ABCD =12abab =12.3.有5条长度分别为1、3、5、7、9的线段,从中任意取出3条,则所取3条线段可构成三角形的概率是( )A.35B.310C.25D.710[答案] B[解析] 构不成三角形的为(1,3,5),(1,3,7),(1,3,9),(3,5,9),(1,5,7),(1,5,9),(1,7,9),能构成三角形的有(3,5,7),(3,7,9),(5,7,9),∴所求概率为310.4.从-1、0、1、2这四个数中选出三个不同的数作为二次函数f (x )=ax 2+bx +c 的系数组成不同的二次函数,其中使二次函数有变号零点的概率为( )A.79B.712C.59D.512[答案] A[解析] 首先取a ,∵a ≠0,∴a 的取法有3种,再取b ,b 的取法有3种,最后取c ,c 的取法有2种,∴共组成不同的二次函数3×3×2=18个.f (x )若有变号零点,不论a >0还是a <0,均应有Δ>0,即b 2-4ac >0,∴b 2>4ac .①首先b 取0时,a 、c 须异号,a =-1,则c 有2种,a 取1或2,则c 只能取-1,∴共有4种.②b =1时,若c =0,则a 有2种,若c =-1,a 只能取2. 若c =2,则a =-1,共有4种. ③若b =-1,则c 只能取0,有2种.④若b =2,取a 有2种,取c 有2种,共有2×2=4种. 综上所述,满足b 2>4ac 的取法有4+4+2+4=14种, ∴所求概率P =1418=79.5.在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为( )A.17B.27C.37D.47[答案] C[解析] 寻找直角非等腰三角形构成的特征.方法1:相对棱AB 与C 1D 1的四个顶点所构成的四边形中,任取三个顶点构成的三角形,符合条件,故有C 34种情形,由于正方体有6对相对棱,故可得到的直角非等腰三角形有6C 34个,因此,所求的概率为:6C 34C 38=2456=37,∴选C.方法2:以A 为直角顶点的直角非等腰三角形仅有:Rt △D 1AB 、Rt △B 1AD 、Rt △A 1AC 三个,故共有直角非等腰三角形8×3=24个,因此,所求的概率为:24C 38=2456=37,∴选C.[点评] 探求规律特征,或从特殊点出发思考,是解这类问题的一般思路.把问题改为求“所得三角形恰为直角三角形”的概率,则答案为C 38-8C 38=67.6.已知直线l 1:x -2y -1=0,直线l 2:ax -by +1=0,其中a 、b ∈{1,2,3,4,5,6}. (文)直线l 1∥l 2的概率为________.(理)直线l 1与l 2的交点位于第一象限的概率为______.[分析] a ,b ∈{1,2,3,4,5,6}相当于放回取样,也就是说a 与b 的值可以重复. [答案] (文)112 (理)16[解析] (文)依题意知,直线l 1的斜率k 1=12,直线l 2的斜率k 2=ab .设事件A 为“直线l 1∥l 2”.a 、b ∈{1,2,3,4,5,6}的基本事件记作(a ,b ),有(1,1),(1,2),…,(1,6),(2,1),(2,2),…,(2,6),…,(6,5),(6,6),共36种.若l 1∥l 2,则b =2a .满足条件的实数对(a ,b )有(1,2)、(2,4)、(3,6),共3种. 所以P (A )=336=112.∴直线l 1∥l 2的概率为112.(理)由⎩⎪⎨⎪⎧x -2y -1=0,ax -by +1=0.得⎩⎪⎨⎪⎧ x =b +2b -2a,y =a +1b -2a .(b ≠2a )∵两直线的交点在第一象限,∴⎩⎪⎨⎪⎧b +2b -2a >0,a +1b -2a >0,∴b >2a .a ,b ∈{1,2,3,4,5,6}的基本事件共6×6=36个,其中满足b >2a 的基本事件(a ,b )有:(1,3),(1,4),(1,5),(1,6),(2,5),(2,6)共6个.∴其概率P =636=16.7.(2011·北京文,16)以下茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],其中x -为x 1,x 2,…,x n 的平均数)[解析] (1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10. 所以平均数为x =8+8+9+104=354; 方差为s 2=14[(8-354)2+(8-354)2+(9-354)2+(10-354)2]=1116.(2)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11:乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4), (A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4), (A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4), (A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4).用C 表示:“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2),故所求概率为P (C )=416=14.8.(2011·四川文,17)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次),设甲、乙不超过两小时还车的概率分别为14、12;两小时以上且不超过三小时还车的概率分别为12、14;两人租车时间都不会超过四小时.(1)分别求出甲、乙在三小时以上且不超过四小时还车的概率;(2)求甲、乙两人所付的租车费用之和小于6元的概率.[解析] (1)分别记甲、乙在三小时以上且不超过四小时还车为事件A ,B ,则P (A )=1-14-12=14, P (B )=1-12-14=14.∴甲、乙在三小时以上且不超过四小时还车的概率分别为14,14.(2)记两人所付的租车费用之和小于6元为事件C ,所付租车费之和为0元、2元、4元的概率分别为P 1、P 2、P 3,则P 1=14×12=18,P 2=14×14+12×12=516,P 3=12×14+14×14+12×14=516, ∴P (C )=P 1+P 2+P 3=34.∴甲、乙两人所付的租车费用之和小于6元的概率为34.9.一个袋中装有四个形状大小完全相同的球,球的编号分别为1、2、3、4. (1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.[解析] (1)从袋中取球编号之和不大于4的基本事件有1和2,1和3两个,而随机取两球其一切可能的基本事件有6个.∴所求概率为P =26=13.(2)由题意其一切结果设为(m ,n )有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n ≥m +2的事件为(1,3),(1,4),(2,4),共3个,P 1=316.故满足条件n <m +2的事件的概率为 1-P 1=1-316=1316.。
第34讲 古典概型与几何概型(2010-2019年高考分类汇编)
(2010-2019年高考分类汇编)第三十四讲 古典概型与几何概型2019年1.(2019全国I 理6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11162.(2019江苏6)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .3.(2019全国I 理15)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利 时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客 主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则 甲队以4∶1获胜的概率是____________.4.(2019全国II 理18)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.2010-2018年一、选择题1.(2018全国卷Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC . ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12=p pB .13=p pC .23=p pD .123=+p p p2.(2018全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112B .114C .115D .1183.(2017新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8πC .12D .4π 4.(2017山东)从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是A .518B .49C .59D .79 5.(2016年全国I)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A .13B .12C .23D .346.(2016年全国II)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为A .4n mB .2n mC .4m nD .2m n 7.(2015广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为A .521B .1021C .1121D .1 8.(2014新课标1)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A .18B .38C .58D .789.(2014江西)掷两颗均匀的骰子,则点数之和为5的概率等于( )A .118B .19C .16D .11210.(2014湖南)在区间[2,3]-上随机选取一个数X ,则1X ≤的概率为( )A .45B .35C .25D .1511.(2014辽宁)若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( )A .2πB .4πC .6πD .8π 12.(2014陕西)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A .15B .25C .35D .4513.(2014湖北)由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( )A .81B .41C . 43D .87 14.(2013陕西)如图,在矩形区域ABCD 的A , C 两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是A .14π- B .12π- C .22π- D .4π 15.(2013安徽)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为A .23B .25C .35D .91016.(2013新课标1)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A .12B .13C .14D .1617.(2013湖南)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则AD AB= A .12 B .14C.2 D.4 18.(2012辽宁)在长为12cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于322cm 的概率为AB C BA .16B .13C .23D .4519.(2012北京)设不等式组0202x y⎧⎨⎩剟剟表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A .4πB .22π-C .6πD .44π- 20.(2011新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A .13B .12C .23D .34二、填空题21.(2018江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .22.(2018上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)23.(2017江苏)记函数()f x =的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈ 的概率是 .24.(2016年山东)在[1,1]-上随机地取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相交”发生的概率为 .25.(2015江苏)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.26.(2014新课标)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.27.(2014重庆)某校早上8:00上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时间到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答)28.(2014新课标2)甲、已两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.29.(2014浙江)在3张奖券中有一、二等奖各1张,另1张无奖,甲、乙两人各抽取1张,两人都中奖的概率是__________;30.(2013山东)在区间[-3,3]上随机取一个数x ,使得121x x +--≥成立的概率为____.31.(2013福建)利用计算机产生1~0之间的均匀随机数a ,则事件“013<-a ”发生的概率为 .32.(2013新课标)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______.33.(2013湖北)在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m = . 34.(2012江苏)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .35.(2012浙江)从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则的概率是___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.2古典概型与几何概型
考点一古典概型
1.(2013课标全国Ⅰ,3,5分)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )
A. B. C. D.
答案 B
2.(2013安徽,5,5分)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )
A. B. C. D.
答案D
3.(2013课标全国Ⅱ,13,5分)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是.
答案0.2
4.(2013浙江,12,4分)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于.
答案
5.(2013天津,15,13分)某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下: 产品编号A1A2A3A4A5质量指标(x,y,z) (1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1)
产品编号A6A7A8A9A10质量指标(x,y,z) (1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2)
(1)利用上表提供的样本数据估计该批产品的一等品率;
(2)在该样本的一等品中,随机抽取2件产品,
(i)用产品编号列出所有可能的结果;
(ii)设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.
解析(1)计算10件产品的综合指标S,如下表:
产品编号A1A2A3A4A5A6A7A8A9A10
S 4 4 6 3 4 5 4 5 3 5
其中S≤4的有A1,A2,A4,A5,A7,A9,共6件,故该样本的一等品率为=0.6,从而可估计该批产品的一等品率为0.6.
(2)(i)在该样本的一等品中,随机抽取2件产品的所有可能结果为
{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{ A5,A9},{A7,A9},共15种.
(ii)在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B发生的所有可能结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.
所以P(B)==.
6.(2013山东,17,12分)某小组共有A,B,C,D,E五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示:
A B C D E
身高 1.69 1.73 1.75 1.79 1.82
体重指标19.2 25.1 18.5 23.3 20.9
(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率;
(2)从该小组同学中任选2个,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.
解析(1)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有
(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),共6个.
由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有(A,B),(A,C),(B,C),共3个.因此选到的2人身高都在1.78以下的概率为P==.
(2)从该小组同学中任选2人,其一切可能的结果组成的基本事件有
(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10个.
由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有(C,D),(C,E),(D,E),共3个.
因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率为P1=.
考点二几何概型
7.(2013湖南,9,5分)已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为,则=( )
A. B. C. D.
答案 D
8.(2013福建,14,5分)利用计算机产生0~1之间的均匀随机数a,则事件“3a-1<0”发生的概率
为.
答案
9.(2013湖北,15,5分)在区间[-2,4]上随机地取一个数x,若x满足|x|≤m的概率为,则m= .
答案 3。