南昌理工学院2020年专升本《高等数学》考试大纲
高等数学(专升本)教学大纲 .doc

教学
内容
及
学时
分配
(注5)
(章节编排,各章节主要教学内容)
(一)微分方程(15学时)
(1)了解微分方程及其解、通解、初始条件和特解等概念。
(2)掌握变量可分离的方程及一阶线性方程的解法。会解齐次方程。
参考书目:中国人民大学赵树嫄编《微积分》
6.考核形式:(注3)闭卷笔试、半开卷笔试、开卷笔试。
教学目的及
教学
要求(注4)
目的:
高等数学是成人高等教育经济类重要的基础理论课之一。通过本课程的学习,使学生系统地获得微积分、级数及常微分方程的基础理论知识和常用的运算方法。通过各教学环节逐渐培养学生的分析问题和解决问题的能力。为学习后继课程奠定必要的教学基础。
要求:
1要正确了解和理解以下概念:不定积分、定积分、偏导数、全微分、函数的极值、二重积分、三重积分、曲线积分、曲面积分、幂级数的和、常微分方程的基本概念。
2要了解和掌握下列基本理论、基本定理和公式:不定积分基本公式,变上限积分及其求导定理、牛顿-莱伯尼兹公式,偏导数的几何意义,极值存在的必要条件,格林公式,二阶线性常微分方程解的结构。
教学
内容
及
学时
分配
(注5)
(章节编排,各章节主要教学内容)
(一)不定积分与定积分(16学时)
(1)理解原函数概念,了解不定积分的概念及性质。
(2)掌握不定积分的基本公式、换元法、分部积分法(对有理函数的待定系数法分解,不作过高要求)。
(3)理解定积分的基本慨念,定积分中值定理。
(4)理解变限函数及其求导定理,掌握牛顿—莱布尼兹公式。
2020年普通高等学校招生全国统一考试大纲——数学(文)

2020年普通高等学校招生全国统一考试大纲——数学(文)(必修+选修Ⅰ)Ⅰ.考试性质普通高等学校招生全国统一考试是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试,高等学校根据考生的成绩,按已确定的招生计划,德、智、体、全面衡量,择优录取,因此,高考应有较高的信度、效度,必要的区分度和适当的难度.Ⅱ.考试要求《普通高等学校招生全国统一考试大纲(文科·2020年版)》中的数学科部分,根据普通高等学校对新生文化素质的要求,依据国家教育部2002年颁布的《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的必修课与选修I的教学内容,作为文史类高考数学科试题的命题范围.数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力与素质考查融为一体,全面检测考生的数学素养.数学科考试要发挥数学作为基础学科的作用,既考查中学数学知识和方法,又考查考生进入高校继续学习的潜能.一、考试内容的知识要求、能力要求和个性品质要求1.知识要求知识是指《全日制普通高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法.对知识的要求,依此为了解、理解和掌握、灵活和综合运用三个层次.(1)了解:要求对所列知识的含义及其相关背景有初步的、感性的认识,知道这一知识内容是什么,并能(或会)在有关的问题中识别它.(2)理解和掌握:要求对所列知识内容有较深刻的理论认识,能够解释、举例或变形、推断,并能利用知识解决有关问题.(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题.2.能力要求能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识.(1)思维能力:会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述.数学是一门思维的科学,思维能力是数学学科能力的核心.数学思维能力是以数学知识为素材,通过空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明和模式构建等诸方面,对客观事物中的空间形式、数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体.(2)运算能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.运算能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力以及实施运算和计算的技能。
全国各类成人高等学校招生复习考试大纲专升本高等数学

全国各类成人高等学校招生复习考试大纲专升本高等数学The latest revision on November 22, 2020附录三全国各类成人高等学校专升本招生复习考试大纲高等数学(一)本大纲适用于工学、理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。
总要求考生应按本大纲的要求,了解或理解“高等数学”中极限和连续、一元函数微分学、一元函数积分学、空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法.应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想像能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。
复习考试内容一、极限和连续(一)极限1.知识范围(1)数列极限的概念与性质数列极限的定义唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理(2)函数极限的概念与性质函数在一点处极限的定义左、右极限及其与极限的关系 x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限唯一性四则运算法则夹逼定理(3)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的比较(4)两个重要极限,2.要求(1) 理解极限的概念(对极限定义中“”、“”、“”等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件.(2)了解极限的有关性质,掌握极限的四则运算法则.(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与尤穷大量的关系.会进行无穷小量阶的比较(高阶、低阶、同阶和等价).会运用等价无穷小量代换求极限.(4)熟练掌握用两个重要极限求极限的方法.(二)连续1.知识范围(1)函数连续的概念函数在一点处连续的定义左连续和右连续函数在一点连续的充分必要条件函数的间断点(2)函数在一点处连续的性质连续函数的四则运算复合函数的连续性反函数的连续性(3)闭区间上连续函数的性质有界性定理最大值与最小值定理介值定理(包括零点定理)(4)初等函数的连续性2.要求(1)理解函数在一点处连续与间断的概念,理解函数在——点处连续与极限存在的关系,掌握函数(含分段函数)在一点处的连续性的方法.(2)会求函数的间断点.(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题.(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限.二、一元函数微分学(一)导数与微分1.知识范围(1)导数慨念导数的定义左导数与右导数函数在一点处可导的充分必要条件导数的几何意义与物理意义可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算反函数的导数导数的基本公式(3)求导方法复合函数的求导法隐函数的求导法对数求导法由参数方程确定的函数的求导法求分段函数的导数(4)高阶导数高阶导数的定义高阶导数的计算(5)微分微分的定义微分与导数的关系微分法则一阶微分形式不变性2.要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法(2)会求曲线上一点处的切线方程与法线方程.(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数.(5)理解高阶导数的概念,会求简单函数的n阶导数.(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分.(二)微分中值定理及导数的应用1.知识范围(1)微分中值定理罗尔(Rolle)定理拉格朗日(Lagrange)中值定理(2)洛必达(L'Hospital)法则(3)函数增减性的判定法(4)函数的极值与极值点最大值与最小值(5)曲线的凹凸性、拐点(6)曲线的水平渐近线与铅直渐近线2.要求(1)理解罗尔定理、拉格朗日中值定理及它们的几何意义.会用拉格朗日中值定理证明简单的不等式.(2)熟练掌握用洛必达法则求,型未定式的极限的方法.(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式.(4)理解函数极值的概念.掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用问题.(5)会判断曲线的凹凸性,会求曲线的拐点.(6)会求曲线的水平渐近线与铅直渐近线.三、一元函数积分学(一)不定积分1.知识范围(1)不定积分原函数与不定积分的定义原函数存在定理不定积分的性质(2)基本积分公式(3)换元积分法第一换元法(凑微分法) 第二换元法(4)分部积分法(5)一些简单有理函数的积分2.要求(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理(2)熟练掌握不定积分的基本公式.(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换).(4)熟练掌握不定积分的分部积分法.(5)会求简单有理函数的不定积分.(二)定积分1.知识范围(1)定积分的概念定积分的定义及其几何意义可积条件(2)定积分的性质(3)定积分的计算变上限积分牛顿—莱布尼茨(Newton-Leibniz)公式换元积分法分部积分法(4)无穷区间的广义积分(5)定积分的应用平面图形的面积旋转体的体积2.要求(1)理解定积分的概念及其几何意义,了解函数可积的条件.(2)掌握定积分的基本性质.(3)理解变上限的积分是变上限的函数,掌握对变上限积分求导数的方法.(4)熟练掌握牛顿一莱布尼茨公式.(5)掌握定积分的换元积分法与分部积分法.(6)理解无穷区间的广义积分的概念,掌握其计算方法.(7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积四、空间解析几何(一)平面与直线1.知识范围(1)常见的平面方程点法式方程一般式方程(2)两平面的位置关系(平行、垂直)(3)空间直线方程标准式方程(又称对称式方程或点向式方程) 一般式方程(4)两直线的位置关系(平行、垂直)(5)直线与平面的位置关系(平行、垂直和直线在平面上)2.要求(1)会求平面的点法式方程、一般式方程.会判定两平面的垂直、平行(2)了解直线的一般式方程,会求直线的标准式方程.会判定两直线平行、垂直.(3)会判定直线与平面间的关系(垂直、平行、直线在平面上).(二)简单的二次曲面1.知识范围球面母线平行于坐标轴的柱面旋转抛物面圆锥面椭球面2.要求了解球面、母线平行于坐标轴的柱面、旋转抛物面、圆锥面和椭球面的方程及其图形.五、多元函数微积分学(一)多元函数微分学1.知识范围(1)多元函数多元函数的定义二元函数的几何意义二元函数极限与连续的概念(2)偏导数与全微分偏导数全微分二阶偏导数(3)复合函数的偏导数(4)隐函数的偏导数(5)二元函数的五条件极值与条件极值2.要求(1)了解多元函数的概念、二元函数的几何意义.会求二元函数的表达式及定义域.了解二元函数的极限与连续概念(对计算不作要求).(2)理解偏导数概念,了解偏导数的几何意义,了解全微分概念,了解全微分存在的必要条件与充分条件.(3)掌握二元函数的一、二阶偏导数计算方法.(4)掌握复合函数一阶偏导数的求法.(5)会求二元函数的全微分.(6)掌握由方程F(x,y,z)=0所确定的隐函数z=z(x,y)的一阶偏导数的计算方法.(7)会求二元函数的五条件极值.会用拉格朗日乘数法求二元函数的条件极值.(二)二重积分1.知识范围(1)二重积分的概念二重积分的定义二重积分的几何意义(2)二重积分的性质(3)二重积分的计算(4)二重积分的应用2.要求(1)理解二重积分的概念及其性质.(2)掌握二重积分在直角坐标系及极坐标系下的计算方法.(3)会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积、平面薄板的质量).六、无穷级数(一)数项级数1.知识范围(1)数项级数数项级数的概念级数的收敛与发散级数的基本性质级数收敛的必要条件(2)正项级数收敛性的判别法比较判别法比值判别法(3)任意项级数交错级数绝对收敛条件收敛莱布尼茨判别法2.要求(1)理解级数收敛、发散的概念.掌握级数收敛的必要条件,了解级数的基本性质.(2)会用正项级数的比值判别法与比较判别法.(3)掌握几何级数、调和级数与P级数的收敛性.(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法.(二)幂级数1.知识范围(1)幂级数的概念收敛半径收敛区间(2)幂级数的基本性质(3)将简单的初等函数展开为幂级数2.要求(1)了解幂级数的概念.(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分).(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法.(4)会运用头的麦克劳林(Maclaurin)公式,将一些简单的初等函数展开为或-的幂级数.七、常微分方程(一)一阶微分方程1.知识范围(1)微分方程的概念微分方程的定义阶解通解初始条件特解(2)可分离变量的方程(3)一阶线性方程2.要求(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解.(2)掌握可分离变量方程的解法.(3)掌握一阶线性方程的解法.(二)二阶线性微分方程1.知识范围(1)二阶线性微分方程解的结构(2)二阶常系数齐次线性微分方程(3)二阶常系数非齐次线性微分方程2.要求(1)了解二阶线性微分方程解的结构.(2)掌握二阶常系数齐次线性微分方程的解法.(3)掌握二阶常系数非齐次线性微分方程的解法[自由项限定为,其中为的次多项式,为实常数].考试形式及试卷结构试卷总分:150分考试时间:150分钟考试方式:闭卷,笔试试卷内容比例:极限和连续约13%一元函数微分学约25%一元函数积分学约25%多元函数微积分(含空间解析几何) 约20%无穷级数约7%常微分方程约10%试卷题型比例:选择题约27%填空题约27%解答题约46%试题难易比例:容易题约30%中等难度题约50%。
2020普通高等学校招生全国统一考试大纲:理科数学

知心慧学提分宝 让老师轻松精准的教 让学生高效快乐的学
知心慧学提分宝 让老师轻松精准的教 让学生高效快乐的学
知心慧学提分宝 让老师轻松精准的教 让学生高效快乐的学
知心慧学提分宝 让老师轻松精准的教 让学效快乐的学
知心慧学提分宝 让老师轻松精准的教 让学生高效快乐的学
知心慧学提分宝 让老师轻松精准的教 让学生高效快乐的学
知心慧学提分宝 让老师轻松精准的教 让学生高效快乐的学
知心慧学提分宝 让老师轻松精准的教 让学生高效快乐的学
知心慧学提分宝 让老师轻松精准的教 让学生高效快乐的学
知心慧学提分宝 让老师轻松精准的教 让学生高效快乐的学
知心慧学提分宝 让老师轻松精准的教 让学生高效快乐的学
2021年专升本《高等数学》课程考试大纲

湖南工程学院2021年专升本《高等数学》课程考试大纲一、考试对象参加专升本考试的工科专业专科学生。
二、考试目的《高等数学》课程考试旨在考核学生对本课程知识的掌握和运用能力,包括必要的高等数学基础知识和基本技能,一定的抽象概括问题的能力、逻辑推理能力、空间想象能力、自学能力,比较熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力等。
三、考试的内容要求第一章函数、极限与连续1. 函数(1)理解函数的概念,掌握函数的表示法,会建立简单应用问题中的函数关系。
(2)了解函数的有界性、单调性、周期性和奇偶性。
(3)理解复合函数及分段函数的概念,了解隐函数及反函数的概念。
(4)掌握基本初等函数的性质及其图形,理解初等函数的概念。
2.数列与函数的极限(1)理解数列极限和函数极限(包括左极限和右极限)的概念,了解极限的性质。
(2)掌握极限四则运算法则,会应用两个重要极限。
3.无穷小与无穷大(1)理解无穷小的概念,掌握无穷小的基本性质和比较方法。
(2)了解无穷大的概念及其与无穷小的关系。
4.函数的连续性(1)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
(2)了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理)及其简单应用。
第二章导数与微分1.导数概念理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义及物理意义。
2.函数的求导法则掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数、隐函数及由参数方程所确定的函数的求导法,了解对数求导法。
3.高阶导数理解高阶导数的概念,会求简单函数的高阶导数。
4.函数的微分理解微分的概念,掌握导数与微分之间的关系,会求函数的微分。
第三章导数的应用1.洛必达法则掌握用洛必达法则求未定式极限的方法。
2.函数的单调性、极值、最大值与最小值(1)掌握函数单调性的判别方法及其应用。
【2020年浙江普通高校专升本高等数学考试大纲】2020高等数学考试大纲

【2020年浙江普通高校专升本高等数学考试大纲】2020高等数学考试大纲浙江省普通高校“专升本”统考科目:《高等数学》考试大纲考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。
考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。
考试内容(一)函数2.掌握函数的单调性、奇偶性、有界性和周期性。
4.掌握函数的四则运算与复合运算;掌握复合函数的复合过程。
6.理解初等函数的概念。
(二)极限2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。
4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:并能用这两个重要极限求函数的极限。
1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。
会判断分段函数在分段点的连续性。
3.理解“一切初等函数在其定义区间上都是连续的”,并会利用初等函数的连续性求函数的极限。
(一)导数与微分2.会求曲线上一点处的切线方程与法线方程。
4.会求隐函数的导数。
掌握对数求导法与参数方程求导法。
6.理解函数微分的概念,掌握微分运算法则与一阶微分形式不变性,理解可微与可导的关系,会求函数的一阶微分。
1.理解罗尔(Rolle)中值定理、拉格朗日(Lagrange)中值定理及它们的几何意义,理解柯西(Cauchy)中值定理、泰勒(Taylor)中值定理。
会用罗尔中值定理证明方程根的存在性。
会用拉格朗日中值定理证明一些简单的不等式。
2.掌握洛必达(L’Hospital)法则,会用洛必达法则求“”,“”,“”,“”,“”,“”和“”型未定式的极限。
4.理解函数极值的概念,会求函数的极值和最值,会解决一些简单的应用问题。
《高等数学(理工类)》
吉利学院2020年“专升本”考试大纲《高等数学(理工类)》一、考试说明:《高等数学(理工类)》考试总分100分,包括函数、极限和连续、一元函数微分学、一元函数积分学四个部分。
大纲内容要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。
考试采用闭卷、笔试形式,考试时间总计120分钟,试卷满分100分。
二、考试内容及要求:(一)函数、极限和连续1.函数(1)理解函数的概念,会求函数的定义域、表达式及函数值。
会求分段函数的定义域、函数值,并会做出简单的分段函数图像。
会建立简单实际问题的函数关系式。
(2)理解和掌握函数的单调性、奇偶性、有界性和周期性,会判断函数的单调性,奇偶性,有界性。
(3)了解函数与其反函数之间的关系(定义域、值域、图象),会求单调函数的反函数。
(4)理解和掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。
(5)掌握基本初等函数及其简单性质与图象。
(6)了解初等函数的概念及其性质。
2.极限(1)理解极限的概念,会求数列极限及函数在一点处的左极限、右极限和极限,了解数列极限存在性定理以及函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,熟练掌握极限的四则运算法则。
(3)熟练掌握用两个重要极限求极限的方法。
(4)了解无穷小量、无穷大量的概念,掌握无穷小量与无穷大量的关系,会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会熟练运用等价无穷小量代换求极限。
3.连续(1)理解函数在一点连续与间断的概念,会判断函数(含分段函数)的连续性,理解函数在一点连续与极限存在的关系。
(2)会求函数的间断点及确定其类型。
(3)掌握闭区间上连续函数的性质,会运用零点定理证明方程根的存在性。
(4)了解初等函数在其定义区间上连续,并会利用连续性求极限。
(二)一元函数微分学1.导数与微分(1)理解导数的概念,了解导数的几何意义以及函数可导性与连续性之间的关系,会用定义判断函数的可导性。
专升本考试:2020专升本《高等数学二》真题及答案(2)
专升本考试:2020专升本《高等数学二》真题及答案(2)共44道题1、曲线y=x 3-3x 2-1的凸区间是()(单选题)A. (-∞,1)B. (-∞,2)C. (1,+∞)D. (2,+∞)试题答案:A2、()(单选题)A. ln| 2-x|+CB. -ln| 2-x|+CC.D.试题答案:B3、()(单选题)A. y 2sin(xy)B. y 2cos(xy)C. -y 2sin(xy)D. -y 2cos(xy)试题答案:D4、( ) (单选题)A. 1B. 3C. 5D. 7试题答案:B5、设区域D={(x,y)(0≤y≤x 2,0≤x≤1),则D绕X轴旋转一周所得旋转体的体积为()(单选题)A.B.C.D. π试题答案:A6、()(单选题)A. 0B.C.D.试题答案:B7、()(单选题)A. 0B.C.D.试题答案:B8、( ) (单选题)A. -lB. 0C. 1D. 2试题答案:C9、()(单选题)A.B.C.D.试题答案:D10、()(单选题)A.B. ƒ(2x)+CC. 2ƒ(2x)+CD.试题答案:A11、(单选题)A. -lB. 0C. 1D. 2试题答案:C12、()(单选题)A. 有定义且有极限B. 有定义但无极限C. 无定义但有极限D. 无定义且无极限试题答案:B13、()(单选题)A. eB. 2C. 1D. 0试题答案:D14、若y=1+cosx,则dy=()(单选题)A. (1+sinx)dxB. (1-sinx)dxC. sinxdxD. -sinxdx试题答案:D15、( )(单选题)A.B.C.D.试题答案:A16、( )(单选题)A.B.C.D.试题答案:D17、当x→0时,下列各无穷小量中与x 2等价的是()(单选题)A. xsin 2xB. xcos 2xC. xsinxD. xcosx试题答案:C18、()(单选题)A. 0B. 2C. 2ƒ(-1)D. 2ƒ(1)试题答案:A19、( )(单选题)A.B.C.D.试题答案:D20、若y=1+cosx,则dy=()(单选题)A. (1+sinx)dxB. (1-sinx)dxC. sinxdxD. -sinxdx试题答案:D21、若函数ƒ(x)=5 x,则ƒ´(x)=()(单选题)A. 5 x-1B. x5 x-1C. 5 x ln5D. 5 x试题答案:C22、()(单选题)A.B.C.D.试题答案:C23、()(单选题)A.B.C.D.试题答案:D24、曲线y=x 3+2x在点(1,3)处的法线方程是()(单选题)A. 5x+y-8=0B. 5x-y-2=0C. x+5y-16=0D. x-5y+14=0试题答案:C25、()(单选题)A.B.C.D.试题答案:B26、()(单选题)A. 2xy+3+2yB. xy+3+2yC. 2xy+3D. xy+3试题答案:C27、曲线y=x 3-3x 2-1的凸区间是()(单选题)A. (-∞,1)B. (-∞,2)C. (1,+∞)D. (2,+∞)试题答案:AA. 0B. 1/2C. 1D. 2试题答案:A29、()(单选题)A. 一lB. 0C. 1D. 2试题答案:C30、()(单选题)A. 2xy+3+2yB. xy+3+2yC. 2xy+3D. xy+3试题答案:C31、( ) (单选题)A. cosxB. -cosXC. 2+cosXD. 2-cosx试题答案:AA. yx y-1B. yx y+1C. x y lnxD. x y试题答案:A33、()(单选题)A.B. ƒ(2x)+CC. 2ƒ(2x)+CD.试题答案:A34、()(单选题)A. in2B. 2ln2C.D.试题答案:C35、( ) (单选题)A. 0B. 1C. 2D. 3试题答案:C36、( ) (单选题)A. -lB. 0C. 1D. 2试题答案:C37、()(单选题)A. 低阶无穷小量B. 等价无穷小量C. 同阶但不等价无穷小量D. 高阶无穷小量试题答案:C38、( )(单选题)A.B.C.D.试题答案:B39、曲线y=e 2x-4x在点(0,1)处的切线方程是()(单选题)A. 2x-y-1=0B. 2x+y-1=0C. 2x-y+1=0D. 2x+y+1=0试题答案:BA. 0B. 2C. 2ƒ(-1)D. 2ƒ(1)试题答案:A41、()(单选题)A. eB. 2C. 1D. 0试题答案:D42、( ) (单选题)A. 1B. 3C. 5D. 7试题答案:B43、()(单选题)A.B.C.D.试题答案:DA. 0B. 1C. 2D. 3试题答案:C。
《高等数学B》考试大纲
南昌工程学院2021年专升本考试大纲《高等数学B 》I 复习考试说明本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次. II 复习考试内容 一、函数、极限和连续 (一)函数 1.知识范围 (1)函数的概念函数的定义,函数的表示法,分段函数,隐函数.(2)函数的性质 单调性,奇偶性,有界性,周期性. (3)反函数反函数的定义,反函数的图像.(4)基本初等函数幂函数,指数函数,对数函数,三角函数,反三角函数.(5)函数的四则运算与复合运算. (6)初等函数. (7)常用经济函数. 2.要求(1)理解函数的概念.(2)掌握函数的四个性质.单调性、奇偶性、有界性和周期性. (3)了解函数)(x f y = 与其反函数)(1x fy -=之间的关系(定义域、值域、图像),会求单调函数的反函数. (4)熟练掌握函数的四则运算与复合运算. (5)熟练掌握基本初等函数的性质及其图像. (6)了解初等函数的概念.(7)会建立简单实际问题的函数关系式(需求函数、供给函数、成本函数、收益函数和利润函数). (二)极限 1.知识范围(1)数列极限的概念 数列,数列极限的定义.(2)数列极限的性质 唯一性,有界性,四则运算法则,夹逼定理,单调有界数列极限存在定理.(3)函数极限的概念 函数在一点处极限的定义,左、右极限及其与极限的关系,趋于无穷时函数的极限.(4)函数极限的性质 唯一性,四则运算法则,夹逼定理.(5)无穷小量与无穷大量 无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量的性质,无穷小量的阶. (6)两个重要极限. 2.要求(1)理解极限的概念.会求函数在一点处的左极限与右极限,理解函数在一点处极限存在的充分必要条件.(2)了解极限的有关性质,掌握极限的四则运算法则.(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系.会进行无穷小量阶的比较(高阶、低阶、同阶和等价).会运用常见的等价无穷小量代换求极限.(4)熟练掌握用两个重要极限求极限的方法. (三)连续 1.知识范围(1)函数连续的概念函数在一点处连续的定义,左连续与右连续,函数在一点处连续的充分必要条件,函数的间断点及其分类.(2)函数在一点处连续的性质连续函数的四则运算,复合函数的连续性,反函数的连续性.(3)闭区间上连续函数的性质有界性定理,最值定理,介值定理、零点定理. (4)初等函数的连续性.2.要求(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法.(2)会求函数的间断点及确定其类型(第一类间断点、第二类间断点).(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题.(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限.二、一元函数微分学(一)导数与微分1.知识范围(1)导数的概念导数的定义,左导数与右导数,函数在一点处可导的充分必要条件.导数的几何意义,可导与连续的关系.(2)求导法则与导数的基本公式导数的四则运算,反函数的导数,导数的基本公式.(3)求导方法复合函数的求导法,隐函数的求导法,对数求导法,由参数方程确定的函数的求导法,求分段函数的导数.(4)高阶导数高阶导数的定义,高阶导数的简单计算.(5)微分微分的定义,微分与导数的关系,微分法则,一阶微分形式不变性. 2.要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法.(2)会求曲线上一点处的切线方程与法线方程. (3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数.(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数.(5)理解高阶导数的概念,会求简单函数的二阶导数.(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分.(二)微分中值定理及导数的应用1.知识范围(1)微分中值定理罗尔(Rolle)定理,拉格朗日(Lagrange)中值定理.(2)洛必达(L’Hospital)法则.(3)函数单调性的判定法.(4)函数的极值与极值点,最大值与最小值.(5)曲线的凹凸性及拐点.(6)曲线的水平渐近线与铅直渐近线.(7)导数在经济上的应用.2.要求(1)理解罗尔定理、拉格朗日中值定理及它们的几何意义.会用罗尔定理证明方程根的存在性.会用拉格朗日中值定理证明简单的不等式.(2)熟练掌握用洛必达法则求未定式的极限的方法.(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式.(4)理解函数极值的概念.掌握求函数的极值、最大值与最小值的方法,会解简单的应用问题.(5)会判断曲线的凹凸性,会求曲线的拐点.(6)会求曲线的水平渐近线与铅直渐近线.(7)会作出简单函数的图形.(8)会边际分析和弹性分析.三、一元函数积分学(一)不定积分1.知识范围(1)不定积分原函数与不定积分的定义,原函数存在定理,不定积分的性质. (2)基本积分公式.(3)换元积分法第一换元法(凑微分法),第二换元法.(4)分部积分法.(5)一些简单有理函数的积分.2.要求(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理.(2)熟练掌握不定积分的基本公式.(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换).(4)熟练掌握不定积分的分部积分法.(5)会求简单有理函数的不定积分.(二)定积分1.知识范围(1)定积分的概念定积分的定义及其几何意义.(2)定积分的性质.(3)定积分的计算变上限积分牛顿—莱布尼茨(Newton-Leibniz)公式换元积分法分部积分法.(4)定积分的应用平面图形的面积,旋转体体积,物体沿直线运动时变力所作的功. 2.要求(1)理解定积分的概念及其几何意义.(2)掌握定积分的基本性质.(3)理解积分变限函数,掌握积分变限函数的求导方法.(4)熟练掌握牛顿—莱布尼茨公式.(5)掌握定积分的换元积分法与分部积分法.(6)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积.会用定积分解决一些简单的经济问题.四、常微分方程1.知识范围(1)微分方程的基本概念.(2)一阶微分方程.(3)可降阶的高阶微分方程.(4)二阶线性微分方程.2.要求(1)理解微分方程的基本概念.(2)掌握可分离变量方程、齐次微分方程和一阶线性微分方程解法.(3)会解可降阶的高阶微分方程.(4)掌握二阶常系数线性齐次微分方程及自由项较简单的二阶常系数线性齐次微分方程的解法.五、空间解析几何与向量代数1、知识范围:(1)平面的方程点法式方程、一般式方程、截距式方程.(2)直线的方程一般式方程、点向式方程、参数式方程.(3)判定两平面的垂直、平行,判定两直线平行、垂直的位置关系.(4)曲面及方程柱面方程旋转曲面方程.2.要求(1)熟练掌握平面方程及直线方程.(2)掌握面与面、线与线的位置关系.(3)掌握母线平行与坐标轴的柱面方程的特征.(4)熟练掌握将坐标平面内曲线绕坐标轴旋转的曲面方程.六、多元函数微分学(1)多元函数的概念、二元函数的极限.(2)多元函数偏导数及全微分.(3)多元函数极值和条件极值的概念,求函数的极值,二元函数极值存在的必要条件及二元函数极值存在的充分条件,拉格朗日乘数法.2、要求:(1)会求简单二元函数的极限.(2)掌握多元函数的一阶偏导数及二元函数的二阶偏导数计算.(4)掌握用拉格朗日乘数法求解函数的极值及最值.七、二重积分1、知识范围:(1)二重积分的概念与性质.(2)二重积分的计算法.(3)二重积分的应用.2、要求:(1)了解二重积分的概念,二重积分的性质、二重积分的中值定理.(2)掌握二重积分计算(直角坐标法和极坐标法).(3)会利用二重积分求解两个曲面所围立体的体积.III 考试形式及试卷结构试卷总分:100分考试时间:120分考试方式:闭卷,笔试试卷内容比例:函数、极限和连续约15% 一元函数微分学约15% 一元函数积分学约20% 微分方程约10% 空间解析几何与向量代数约5%多元函数微分学约20% 二重积分约15%试卷题型比例:选择题约18%填空题约24%解答题约50%证明题约8%试题难易比例:容易题约30%中等难度题约50%;较难题约20%。
专升本数学考试内容(一)
专升本数学考试内容(一)专升本数学考试内容背景介绍•专升本数学考试是许多在职人员提升学历的重要一环。
•该考试涵盖了许多数学领域的知识和技能。
•掌握相关内容是顺利通过考试的关键。
考试科目•高等数学–包括微积分、数列、极限、导数、积分等内容。
–基础知识的掌握是解题的基础。
•线性代数–矩阵运算、向量空间、线性方程组等内容。
–程序求解和理论分析相结合。
•概率论与数理统计–随机事件、条件概率、正态分布、抽样与估计等内容。
–实际问题的概率分析和统计方法的应用。
•离散数学–集合与命题、图论、布尔代数等内容。
–逻辑思维和离散结构的应用。
复习建议1.制定合理的学习计划,将考试内容分解成小模块。
2.多做题,进行针对性的练习,巩固知识点。
3.注意理解概念,掌握基本公式和定理的证明方法。
4.积极与同学、老师讨论,交流解题思路和经验。
5.借助参考书籍和在线资源扩充知识广度。
6.定期进行模拟考试,提高应试能力。
注意事项•考前准备材料,如身份证、准考证等。
•熟悉考场规则,注意考试时间和答题要求。
•保持积极的心态,相信自己能够应对挑战。
•考试期间注意时间分配,避免陷入单题的过度耗时。
•检查答题卡和试卷,确保填涂无误、题号对应。
•每题考虑仔细,尽量不遗漏和回避难题。
结语专升本数学考试是晋升职场和实现个人发展的重要一环。
通过合理的复习安排和不断的练习,相信每个人都可以在考试中取得好成绩。
加油!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南昌理工学院2020年专升本《高等数学》
考试大纲(修订版)
一、参考教材
《高等数学》刘晓春,南开大学出版社。
二、考试题型
1.选择题;2.填空题;3.计算题;4.综合题。
三、考试方式、时间及总分
考试方式:闭卷考试;考试时间:120分钟;总分:100分。
四、主要内容
1.函数与极限
函数;数列的极限;函数的极限;无穷小与无穷大;极限运算法则;极限存在准则;两
个重要极限;无穷小的比较;函数的连续性与间断点;闭区间上连续函数的性质。
2.导数与微分
导数的概念及其性质;函数的和、差、积、商的求导法则;复合函数的求导法则;基本
求导法则与导数公式;高阶导数;隐函数及由参数方程所确定的函数的导数;函数的微分。
3.微分中值定理与导数的应用
微分中值定理;洛必达法则;函数的单调性与曲线的凹凸性;函数的极值与最大值、最
小值;函数图形的描绘。
4.不定积分
不定积分的概念与性质;换元积分法;分部积分法。
5.定积分
定积分的概念与性质;微积分基本公式;定积分的换元法及分部积分法。
6.定积分的应用
定积分在几何上的应用。
7.微分方程
微分方程的基本概念;可分离变量的微分方程;齐次方程;一阶线性微分方程;可降解
的高阶线性微分方程;二阶常系数齐次线性微分方程。
8.多元函数微分法及其应用
多元函数的基本概念;偏导数;全微分;多元复合函数的求导法则;隐函数的求导公式。
9.重积分
二重积分的概念与性质;二重积分的计算法。
五、基本要求
1.函数与极限
(1)理解函数的概念;熟练掌握函数的四种特性;会求单调函数的反函数;会建立简单
问题的函数关系式。
(2)了解数列极限的定义;熟练掌握数列极限的计算。
(3)了解函数极限的定义;熟练掌握极限的四则运算法则;理解无穷小与无穷大的概念;
掌握无穷小的性质与无穷小的比较;熟练掌握极限的收敛准则;熟练掌握两个重要极限。
(4)了解函数的连续性;了解连续与极限的关系;了解闭区间上连续函数的性质;会求
一般函数的间断点。
2.导数与微分
(1)理解导数的定义与几何意义;了解可导与连续的关系;会求曲线的切线方程和法线
方程。
(2)熟练掌握函数四则运算的求导法则和复合函数的求导法则;熟练掌握求导基本公式;
会求反函数的导数;掌握隐函数的导数、由参数方程所确定的函数的导数。了解高阶导数,
熟练掌握二阶导数。
(3)理解微分的概念,了解微分与可导的关系掌握微分的基本公式和运算法则。
3.微分中值定理与导数的应用
(1)理解罗尔定理、拉格朗日中值定理,会验证罗尔定理和拉格朗日中值定理。
(2)熟练掌握罗必达法则。熟练掌握函数的单调性、曲线的凹凸性和拐点,会求函数的
极值和最值。
4.不定积分
(1)理解原函数与不定积分的定义与性质,熟练掌握不定积分的基本公式。
(2)熟练掌握不定积分的换元积分法和分部积分法。
5.定积分及其应用
(1)理解定积分的定义及其性质,掌握定积分的几何意义。
(2)熟练掌握积分变上限函数、牛顿—莱布尼兹公式。
(3)熟练掌握定积分的换元积分法和分部积分法。
6.定积分的应用
(1)了解定积分的元素法,熟练掌握平面图形的面积的计算。
7.微分方程
(1)了解微分方程的概念,熟练掌握可分离变量的微分方程和一阶线性微分方程的解。
(2)熟练掌握二阶常系数线性微分方程解的结构;会求二阶常系数齐次线性微分方程;
8.多元函数微分法及其应用
(1)了解多元函数、多元函数的极限和连续性的概念。
(2)了解多元函数偏导数的概念,熟练掌握多元函数的偏导数和二阶偏导数。
(3)熟练掌握多元函数的全微分,会求多元复合函数和隐函数的偏导数。
9.重积分
(1)理解二重积分的定义及其性质。
(2)熟练掌握二重积分在直角坐标系的计算。