2012数学建模大赛C题论文

合集下载

数学建模C题论文

数学建模C题论文

191])()([),(20200y y x x r z y x z -+--=c y b x a y x y x z +⋅+⋅++=22),(4753⨯41i D i D 20.000160.001162021421339915152112032534791410.1 6660.1 2.5 2.666.11212.12525.16060.1/mcm05/probX 53⨯47Y 53⨯47k n m Z ⨯53⨯47 k n m Z ⨯~53⨯47i n m k H ⨯m m n k n 21n +120i n m k S ⨯i D126 18319719141164512X Y⎪⎪⎪⎭⎫ ⎝⎛=⨯⨯⨯⨯⨯⨯47532531534712111..................x x x x x x X ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................y y y y y y),(y x Z =mnk ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯),(...),,(),,(............),(...),,(),,(4753475325325315315347147121211111y x f y x f y x f y x f y x f y x f ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................Z Z Z Z Z Z 1=imnk Z ~⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111~...~~............~...~~Z Z Z Z Z Z i imnkH ∆mnk Z i mnk Z ~⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯ii i i i i h h h h h h 47532531534712111............... (2)i mnkS∆∑∑=⨯=⨯4712531)(47531j i ji i hi D ∆∑=16411641i mnk S 4i i imnk H 5347imnk S mnk H i D 41 2),(y x Z = ),(y x Z =i D nk m ⨯ i mnk H mnk Z i mnk Z ~1~mnk Z 2~mnk Z 1mnk H 2mnk H imnkS∆∑∑=⨯=⨯4712531)(47531j ij i i h1mnk S 2mnk S⑤ 用i D ∆∑=16411641i mnk S 计算出1D 与2D ,则1D 和2D 的值较小者为最优方案.3 主要程序及结论通过数据处理与分析我们认为预测方法一比预测方法二好.所得计算结果值分别为:(1)不同时段的两种方法的实测与预测值的均方差:1mnkS =[0.9247218269e-1, .165797962696, 0.9247218269e-1,0.9247218269e-1, .2586806182, .2586806182, .2586806182, 2.791713932, .2474029514, .2539943168, .2715902174, .2715902174182, .2586806182, 2.791713932, .2474029514, .2539943168, .2715902174]2mnkS := [0.921412432e-1, .1098068392, 0.2234955063e-1,0.1592933205e-1, .2851304286, .2851304286, .2851304286, 2.792910527, .2612701098, .2381007694, .2613774987, 0.5183032655e-1,.2851304286,2.792810527, .2612701098, .2381007694, .2613774987] (2) 方法一的均方差为:1D := .8311398371方案二的均方差: 2D = .8417760978得1D <2D .主要程序与运行结果为: (1) 局域曲面拟合程序> solve({0.3=0.6-r*(0.045^2+0.042^2)},{r});> z1:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z2:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z3:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z4:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> solve({0.15=0.3-r*(0.045^2+0.042^2)},{r});> z4:=0.3-39.58828187*[(x-118.1833)^2+(y-31.0833)^2];> solve({5.1=10.2-r*(0.045^2+0.042^2)},{r});> z1:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z2:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z3:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z4:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> solve({0.1=0.2-r*(0.045^2+0.042^2)},{r});> z4:=0.2-26.39218791*[(x-118.4000)^2+(y-30.6833)^2];>z4:=solve({118.9833^2+30.6167^2+a*118.9833+b*30.6167+c=0.7000,118.5833^ 2+30.0833^2+a*118.5833+b*30.0833+c=1.8000,119.4167^2+30.8833^2+a*119.41 67+b*30.8833+c=0.5});> solve({0.05=0.1-r*(0.045^2+0.042^2)},{r});> z1:=0.1-13.19609396*[(x-119.4167)^2+(y-30.8833)^2];>> solve({2.9=5.8-r*(0.045^2+0.042^2)},{r});> z4:=0.1-765.3734495*[(x-118.2833)^2+(y-29.7167)^2];(2)均方差求值程序:>sq1:=[0.09247218269,0.165797962696,0.09247218269,0.09247218269,0.258680 6182,0.2586806182,0.2586806182,2.791713932,0.2474029514,0.2539943168,0. 2715902174,0.2715902174182,0.2586806182,2.791713932,0.2474029514,0.2539 943168,0.2715902174];> sum1:=add(i,i=sq1);> ave1:=sum1/17;>ve1:=[.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222 900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.522 2900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.52 22900020];>sq2:=[0.0921412432,0.1098068392,0.022********,0.01592933205,0.285130428 6,0.2851304286,0.2851304286,2.792910527,0.2612701098,0.2381007694,0.261 3774987,0.0518*******,0.2851304286,2.792810527,0.2612701098,0.238100769 4,0.2613774987];(2)数据模拟图程序:> with(linalg):> l:=matrix(91,7,[58138,32.9833,118.5167, 0.0000, 5.0000, 0.2000, 0.0000, 58139, 33.3000,118.8500, 0.0000, 3.9000, 0.0000, 0.0000,58141, 33.6667,119.2667, 0.0000, 0.0000, 0.0000, 0.0000,58143, 33.8000,119.8000, 0.0000, 0.0000, 0.0000, 0.0000,58146, 33.4833,119.8167, 0.0000, 0.0000, 0.0000, 0.0000,58147, 33.0333,119.0333, 0.0000, 6.0000, 1.4000, 0.0000,58148, 33.2333,119.3000, 0.0000, 1.1000, 0.3000, 0.0000,58150, 33.7667,120.2500, 0.0000, 0.0000, 0.0000, 0.1000,58154, 33.3833,120.1500, 0.0000, 0.0000, 0.0000, 0.0000,58158, 33.2000,120.4833, 0.0000, 0.0000, 0.0000, 0.0000,58230, 32.1000,118.2667, 3.3000,20.7000, 6.6000, 0.0000,58236, 32.3000,118.3000, 0.0000, 8.2000, 3.6000, 1.4000,58238, 32.0000,118.8000, 0.0000, 0.0000, 0.0000, 0.0000,58240, 32.6833,119.0167, 0.0000, 3.0000, 1.4000, 0.0000,58241, 32.8000,119.4500, 0.1000, 1.4000, 1.5000, 0.1000,58243, 32.9333,119.8333, 0.0000, 0.7000, 0.4000, 0.0000,58245, 32.4167,119.4167, 0.3000, 2.7000, 3.8000, 0.0000,58246, 32.3333,119.9333, 7.9000, 2.7000, 0.1000, 0.0000,58249, 32.2000,120.0000,12.3000, 2.4000, 5.6000, 0.0000,58251, 32.8667,120.3167, 5.2000, 0.1000, 0.0000, 0.0000, 58252, 32.1833,119.4667, 0.4000, 3.2000, 4.8000, 0.0000, 58254, 32.5333,120.4500, 0.0000, 0.0000, 0.0000, 0.0000, 58255, 32.3833,120.5667, 1.1000,18.5000, 0.5000, 0.0000, 58264, 32.3333,121.1833,35.4000, 0.1000, 0.2000, 0.0000, 58265, 32.0667,121.6000, 0.0000, 0.0000, 0.0000, 0.0000, 58269, 31.8000,121.6667,31.3000, 0.7000, 2.8000, 0.1000, 58333, 31.9500,118.8500, 8.2000, 8.5000,16.9000, 0.1000, 58334, 31.3333,118.3833, 4.9000,58.1000, 9.0000, 0.1000, 58335, 31.5667,118.5000, 5.4000,26.0000,11.0000, 0.8000, 58336, 31.7000,118.5167, 3.6000,27.8000,15.3000, 0.6000, 58337, 31.0833,118.1833, 7.0000, 6.4000,15.3000, 0.2000, 58341, 31.9833,119.5833,11.5000, 5.4000,16.1000, 0.0000, 58342, 31.7500,119.5500,32.6000,37.9000, 5.8000, 0.0000, 58343, 31.7667,119.9333,20.7000,24.3000, 5.3000, 0.0000, 58344, 31.9500,119.1667,12.4000, 5.9000,16.3000, 0.0000, 58345, 31.4333,119.4833,21.8000,18.1000, 9.8000, 0.1000, 58346, 31.3667,119.8167, 0.1000,12.7000, 5.1000, 0.2000, 58349, 31.2667,120.6333, 1.1000, 5.1000, 0.0000, 0.0000, 58351, 31.8833,120.2667,22.9000,15.5000, 6.2000, 0.0000, 58352, 31.6500,120.7333,15.1000, 5.4000, 2.4000, 0.0000, 58354, 31.5833,120.3167, 0.1000,12.5000, 2.4000, 0.0000, 58356, 31.4167,120.9500, 5.1000, 4.9000, 0.4000, 0.0000, 58358, 31.0667,120.4333, 2.4000, 3.4000, 0.0000, 0.8000, 58359, 31.1500,120.6333, 1.5000, 3.8000, 0.5000, 0.1000, 58360, 31.9000,121.2000, 5.6000, 3.2000, 2.9000, 0.1000, 58361, 31.1000,121.3667, 3.5000, 0.6000, 0.2000, 0.7000, 58362, 31.4000,121.4833,33.0000, 4.1000, 0.9000, 0.0000, 58365, 31.3667,121.2500,17.7000, 2.2000, 0.1000, 0.0000, 58366, 31.6167,121.4500,75.2000, 0.4000, 1.5000, 0.0000, 58367, 31.2000,121.4333, 7.2000, 2.8000, 0.2000, 0.2000, 58369, 31.0500,121.7833, 3.2000, 0.3000, 0.0000, 0.3000, 58370, 31.2333,121.5333, 7.0000, 3.4000, 0.2000, 0.2000, 58377, 31.4667,121.1000, 7.8000, 7.2000, 0.3000, 0.0000, 58426, 30.3000,118.1333, 0.0000, 0.0000,17.6000, 6.2000, 58431, 30.8500,118.3167, 5.1000, 2.3000,16.5000, 0.1000, 58432, 30.6833,118.4000, 3.6000, 1.4000,20.5000, 0.2000, 58433, 30.9333,118.7500, 2.1000, 3.4000, 8.5000, 0.2000, 58435, 30.3000,118.5333, 0.0000, 0.0000,13.6000, 8.5000, 58436, 30.6167,118.9833, 0.0000, 0.0000, 5.3000, 0.5000, 58438, 30.0833,118.5833, 0.0000, 0.0000,27.6000,21.8000, 58441, 30.8833,119.4167, 0.1000, 1.6000, 1.6000, 1.0000, 58442, 31.1333,119.1833, 3.0000, 8.8000, 5.4000, 0.2000, 58443, 30.9833,119.8833, 0.1000, 2.7000, 0.1000, 0.9000,58446, 30.9667,119.6833, 0.0000, 0.1000, 5.1000, 2.5000, 58448, 30.2333,119.7000, 0.0000, 0.0000,15.1000, 6.9000, 58449, 30.0500,119.9500, 0.0000, 0.0000,23.5000, 8.2000, 58450, 30.8500,120.0833, 0.0000, 0.7000, 0.0000, 4.1000, 58451, 30.8500,120.9000, 0.5000, 0.1000, 0.0000, 3.8000, 58452, 30.7833,120.7333, 0.3000, 0.0000, 0.0000, 3.0000, 58453, 30.0000,120.6333, 0.0000, 0.0000, 0.0000,18.2000, 58454, 30.5333,120.0667, 0.0000, 0.0000, 0.5000, 4.9000, 58455, 30.5167,120.6833, 0.0000, 0.0000, 0.0000, 4.6000, 58456, 30.6333,120.5333, 0.0000, 0.0000, 0.0000, 4.2000, 58457, 30.2333,120.1667, 0.0000, 0.0000, 2.0000,12.6000, 58459, 30.2000,120.3167, 0.0000, 0.0000, 0.0000,15.0000, 58460, 30.8833,121.1667, 1.2000, 0.1000, 0.0000, 2.3000, 58461, 31.1333,121.1167, 4.0000, 1.4000, 0.4000, 0.2000, 58462, 31.0000,121.2500, 2.7000, 0.3000, 0.4000, 1.7000, 58463, 30.9333,121.4833, 1.7000, 0.1000, 0.0000, 0.8000, 58464, 30.6167,121.0833, 0.0000, 0.0000, 0.0000, 3.6000, 58467, 30.2667,121.2167, 0.0000, 0.0000, 0.0000, 1.8000, 58468, 30.0667,121.1500, 0.0000, 0.1000, 5.1000, 2.5000, 58472, 30.7333,122.4500, 0.3000, 0.6000, 0.0000, 4.9000, 58477, 30.0333,122.1000, 0.0000, 0.0000, 0.0000, 0.0000, 58484, 30.2500,122.1833, 0.0000, 0.0000, 0.0000, 0.0000, 58530, 29.8667,118.4333, 0.0000, 0.0000,27.5000,23.6000, 58531, 29.7167,118.2833, 0.0000, 0.0000, 3.7000,11.5000, 58534, 29.7833,118.1833, 0.0000, 0.0000, 9.3000, 6.5000, 58542, 29.8167,119.6833, 0.0000, 0.0000, 0.0000,27.6000, 58550, 29.7000,120.2500, 0.0000, 0.0000, 0.0000, 4.9000, 58562, 29.9667,121.7500, 0.0000, 0.0000, 0.0000, 0.9000]);> lat:=col(l,2);> lon:=col(l,3); > sd1:=col(l,4);> sd2:=col(l,5); > sd3:=col(l,6); > sd4:=col(l,7);> abc1:=seq([lat[i],lon[i],sd1[i]],i=1..91);> abc2:=seq([lat[i],lon[i],sd2[i]],i=1..91);> abc3:=seq([lat[i],lon[i],sd3[i]],i=1..91);> abc4:=seq([lat[i],lon[i],sd4[i]],i=1..91);> with(plots):> pointplot3d([abc1],color=green,axes=boxed);> surfdata([abc1],labels=["x","y","z"],axes=boxed);> with(stats):> with(fit):> with(plots):fx1:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc1]);> plot3d(fx1,x=25..35,y=119..135);> pointplot3d([abc2],color=blue,axes=boxed);> surfdata([abc2],labels=["x","y","z"],axes=boxed);>fx2:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc2]);> plot3d(fx2,x=25..35,y=119..135);> pointplot3d([abc3],color=red,axes=boxed)> surfdata([abc3],labels=["x","y","z"],axes=boxed);>fx3:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc3]);> surfdata([abc4],labels=["x","y","z"],axes=boxed);>fx4:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc4]);五.如何在评价方法中考虑公众感受的数学模型建立.1660.1 2.5 2.666.11212.12525.16060.1z } 1.00 {0≤≤=z z R } 5.21.0 {1≤≤=z z R } 66.2 {2≤≤=z z R } 121.6 {3≤≤=z z R } 251.12 {4≤≤=z z R } 601.25 {5≤≤=z z R } 1.60 {6≥=z z R 0ˆR 1ˆR 2ˆR 3ˆR 4ˆR 5ˆR 6ˆR } 1)( {ˆ000R z z z R ∈≤=,μ} 1)( {ˆ111R z z z R ∈≤=,μ} 1)( {ˆ222R z z z R ∈≤=,μ } 1)( {ˆ333R z z z R ∈≤=,μ} 1)( {ˆ444R z z z R ∈≤=,μ} 1)( {ˆ555R z z z R ∈≤=,μ } 1)( {ˆ666R z z z R ∈≤=,μ)(z i μ i 1z ∈i R i R )(z i μ i 16i R ˆ i 1 2)(z i μ i 1⎩⎨⎧≤<+-≤≤=1.006.0 , 5.22506.00, 1)(0z z z z μ)(1z μ] 2369277587.0e [2369277587.0112)3.1(----z 5.21.0≤≤z )(2z μ] 20555762126.0e [20555762126.0112)3.4(----z 66.2≤≤z)(3z μ] 2287787270.0e [2287787270.0119.5)05.9(2----z 121.6≤≤z )(4z μ] 70397557815.0e[70397557815.0119.12)55.18(2----z 251.12≤≤z)(5z μ] 00475951221.0e[00475951221.011100)55.42(2----z 601.25≤≤z)(6z μ2)]5.60(5 [11--+z 1.60≥z 74)(z i μ及iR ˆ i =0,1,…,6合并可得} 0 {≥=z z R 上的模糊集合} , 1)( {ˆR z z z R∈≤=μ.其中R 是论域,)(z μ是模糊集合R ˆ的隶属函数,由)(z i μ分段合)(z μ小雨的隶属函数图特大暴雨隶属函数图大暴雨隶属函数图暴雨隶属函数图⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>≤<≤<≤<≤<≤<≤≤=60)(6025)(2512)(126)(65.2)(5.21.0)(1.00)()(6543210z z z z z z z z z z z z z z t μμμμμμμμ 5 353⨯47imnkZ ~)(z μ53⨯47=M mnk⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................μμμμμμ=M imnk~⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111~...~~............~...~~μμμμμμi ),(y x Z =i mnk ∏∆mnk M =M i mnk~⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯i i i i i i 47532531534712111..................λλλλλλ 6imnkΓ∆∑∑=⨯=⨯4712531)(47531j i j i i λ i Ω∆∑=16411641i imnkΓ 8 i 2i i i mnk ∏5347imnk Γi mnk ∏i Ω411Ω2Ω 1Ω2Ω1D 2D19811999。

2012年美国数学建模题目中文版3篇

2012年美国数学建模题目中文版3篇

2012年美国数学建模题目中文版第一篇:2012年美国数学建模题目解析2012年美国数学建模竞赛题目分为3个部分:A、B、C 部分,其中A、B两部分每个题目都设计成了开放式问题,而C部分则是两道严谨的数学证明题目。

A部分共有四个问题,分别为:1、搜索引擎的自动补充功能对于使用者的输入进行了什么样的预测和补全?如果这种功能可以被改变,在搜索引擎中进行必要的优化,会对搜索引擎的使用产生什么影响?2、在一个公共交通的网络中,如何合理地分配车辆保证所有的车辆在一定时间内都能够按时到达各自的终点站?3、如何在餐馆排队时,给不同的桌子和不同的人分配最佳位置,以便让顾客在餐厅等待的时间最短?4、针对特定的树木,如何编写算法来找到该树生长的变化,在叶片的数量和大小、气孔的数量和大小等方面的特征?对于这四个问题,考生需要通过分析问题,理清思路,构思模型,进行数据分析,最后得出自己的结论。

需要注意的是,每个问题都是非常开放式的,没有标准答案,最终得分并不会仅仅取决于观点是否正确,具体的解题过程、数据展示和准确度也是非常关键的。

B部分共有三个问题,分别为:1、如何通过旅游者在社交网络上的信息,帮助旅游者更好地定制旅游计划?2、如何在残缺不全的传媒报道中,找到事实并从中解读该事件?3、针对滑雪者在滑雪过程中的各种情况,如何预测他们的滑雪技巧以及未来的滑雪表现?对于B部分的三个问题,其实也都是很自由的问题,可以根据自己所擅长领域进行分析,构思自己的模型和算法,注重细节和数据展示。

C部分共有两个题目:1、已知一个最小二乘问题,其正则化后的解为稀疏的,试设计一个迭代算法在有效的处理机制下对其进行数值求解。

2、已知一个对象向一条线段上匀速运动,在线段的中途,运动的对象突然重力下落,如果目标是在最短的时间内捕捉该运动的对象,该怎样运动才是最优策略?对于C部分两个题目,需要在数学基础扎实的基础上进行思考,深入分析,构建出严谨的证明过程,注重逻辑和方法。

2012高教社杯全国大学生数学建模竞赛一等奖论文D

2012高教社杯全国大学生数学建模竞赛一等奖论文D

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): D我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):机器人避障问题模型摘要本文主要研究了机器人行走避障最短(时间)路径问题,使机器人能够更好地接受人类指挥,从而更好地协助或取代人类的工作。

问题一:根据两点间直线段最短,最终我们建立了以直线路径为主,圆弧为辅的路径模型,以保证总距离最短。

其中,所经圆弧的半径都取最小转弯半径(10个单位)。

其模型为:∑∑==+=mj j n i i l s l 11min⎩⎨⎧≥≥1010..d r t s问题二:结合问题一,我们从路线相切与对称方面入手建立最短时间路径模型:0021/)2^*1.010(^1(***2/)(min v r e r v r r -+∠++=α利用LINGO 软件编程求解得最短时间路径,其总时间为94.22830秒,总距离为471.1293。

培训内容3-SPSS在专科组赛题中的应用及典型赛题解析

培训内容3-SPSS在专科组赛题中的应用及典型赛题解析

数据(见Appendix-C1)来源于中国某城市各家医院2 007年1月至2010年12月的脑卒中发病病例信息以及相应期 间当地的逐日气象资料(Appendix-C2)。请你们根据题 目提供的数据,回答以下问题:
1.根据病人基本信息,对发病人群进行统计描述。
2.建立数学模型研究脑卒中发病率与气温、气压、相对 湿度间的关系。
退休人员 6 635 0.15 4 119 0.62 2 516 0.38
工人 其他 总数
4 840 0.11 3 101 0ቤተ መጻሕፍቲ ባይዱ64 1 739 0.36
2 863 0.07 1 970 0.69 893 0.31
44 059
23 833 0.54 20 226 0.46
发病人群中男性为23833人,占54%,女性20226人,占 46%,男性略多于女性。其中29721人职业为农民,占67%, 相比其他职业,农民属于发病主要人群。这主要因为农民 的生活没有规律,丰收季节时过度劳累,生活条件相对较 差;医疗设施不完善,不能有效的检验出疾病早期的症状; 没有定期的医疗体检使病情不能及早的发现并治疗;经济 状况较差,在发病早期不愿花钱去较好的较贵的医院进行 治疗。另外有6635人职业为退休人员,占15%。退休人员是 脑卒中发病主要人群的原因为随着年龄的增长,其它诱发 脑卒中的危险因素包括:高血压、心脏病、糖尿病、高血 脂的增加所致。
在-2--2之间,但是有2个点的标准化残差超过了5,是明
显的异常值点,去掉这两个异常点进行回归,得到新的回
归方程:
Y 4 9 . 4 4 5 - 0 . 1 0 2 R H (3)
其系数与回归方程都通过了检验,其残差图见下图。
与前面的回归模型相比,此模型的残差图要好很多。残差的 标准误差也由原来的16.24降为15.88。用回归方程(3)对随机 选取的第714点进行预测,真实值:发病人数38人,平均相对湿 度63,从而预测值:43.019,其相对误差约为:

国赛数学建模c题

国赛数学建模c题

数学建模C题是一个具有挑战性的问题,需要我们运用数学知识和技能来解决。

下面我将尝试用600字回答该问题:问题:假设你是一个城市的规划者,你希望通过优化城市交通流量来提高城市的运行效率。

你得到了以下数据:每个交叉口的交通流量、交叉口的形状、周围建筑物的分布、道路的宽度和限制速度等。

请设计一个数学模型来预测未来的交通流量,并根据模型优化城市的交通规划。

首先,我们需要收集和分析数据,以便了解城市的交通状况和建筑物的分布情况。

在收集数据时,我们需要注意数据的准确性和可靠性,因为这些数据将直接影响我们的模型的准确性和可靠性。

接下来,我们需要使用统计方法对数据进行处理和分析,以便找出影响交通流量的关键因素。

我们可以考虑使用线性回归模型来预测未来的交通流量。

该模型通过使用过去的数据和当前的数据来预测未来的流量,并通过使用最小二乘法等统计方法来调整模型参数以最小化预测误差。

然而,线性回归模型可能无法捕捉到城市交通流量中存在的非线性关系和异常值,因此我们可以考虑使用支持向量机、神经网络等机器学习模型来进行预测。

除了预测交通流量外,我们还需要考虑如何优化城市的交通规划。

我们可以通过调整交叉口的形状、道路的宽度和限制速度等参数来优化交通流量。

我们可以使用优化算法(如遗传算法、粒子群算法等)来寻找最优解,以实现城市交通流量的最大化或最小化。

在优化城市交通规划时,我们需要考虑许多因素,如道路的安全性、居民的出行便利性、环境的保护等。

因此,我们可能需要使用多目标优化算法来同时考虑多个目标,以实现最优的交通规划方案。

此外,我们还可以通过与其他城市规划者和研究人员合作,不断优化我们的模型和算法,以适应城市交通流量的变化。

综上所述,要解决该问题,我们需要收集和分析数据、选择合适的预测模型和优化算法、综合考虑多种因素和不断优化我们的模型和算法。

只有通过不断地尝试和改进,我们才能更好地满足城市规划和发展的需求。

数学建模论文(精选4篇)

数学建模论文(精选4篇)

数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。

成都信息工程学院2012数学建模论文

成都信息工程学院2012年校数学建模竞赛试题(A)(请先阅读“成都信息工程学院数学建模竞赛规则”)机动车尾号问题尾号限行方案图四川在线(微博)消息:成都市政府今(29)日下午17点召开新闻发布会,会上宣布,自今年4月26日期至2013年7月30日止,在中心城区部分施工路段按机动车号牌最后一位阿拉伯数字实行尾号限行的临时交通管理措施。

(解放路、蜀都大道东段、蜀都大道西段、红星路北段、红星路南段、川藏路、老成灌路)交管局呼吁大家理解支持,交通阵痛期是为了未来更畅通的生活。

为保障二环路改造工程顺利施工,今年4月26日至明年7月30日期间,成都市将在二环路全线及7条放射性主干道,对所有川A和外地籍号牌汽车实施工作日按车牌尾号限行措施,每天限行2个尾号,每车每周限行1天,即:周一限尾号1、6,周二限尾号2、7,周三限尾号3、8,周四限尾号4、9,周五限尾号5、0,以确保交通出行总量与路网承载能力的平衡。

“二环路”具体尾号限行方案如下:按照工作日(星期一至星期五),“二环路”尾号限行时间:早7:30至晚22:00。

七条限行路段——解放路、蜀都大道东段、蜀都大道西段、红星路北段、红星路南段、川藏路、老成灌路。

限行时间为早7:30至9:30,晚17:00之19:30。

成都市交管局局长说,经过前期调研,对两快两射、地铁施工等施工做交通影响评价,二环路施工后成都交通陷入阵痛期,绕行已不能解决问题,且每日上户新车1600余辆,全成都绕城内拥有102万汽车。

为保障二环施工和市民出行,成都市交管局决定,2012年4月26日至2013年7月30日,成都市二环路及7条放射状道路,工作日实施尾号限行。

每天限行2个号,每车每周限行一天。

理论上,可削减车流量,减小道路通行压力,保障施工和市民出行。

不限行车辆包括,公交车、出租车,经备案交通车,校车,旅游车,长途车,部分特种车辆如军车、制式警车,消防车,救护车等特种车不受限制。

交管部门将依法对违反本通告的当事人予以处罚。

数学建模竞赛优秀大学生论文

数学建模竞赛优秀大学生论文随着科学技术的高速发展,数学的应用价值越来越得到众人的重视,因此数学建模也被逐渐的引起重视了。

下面是店铺为大家整理的数学建模优秀论文,供大家参考。

数学建模优秀论文篇一:《数学建模用于生物医学论文》1数学建模的过程1.1模型准备首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。

1.2模型假设在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。

1.3模型建立在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。

原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。

1.4模型求解建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。

1.5模型分析、检验、应用模型的结果应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。

把求得的数学结果返回到实际问题中去,检验其合理性。

如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。

总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。

2数学建模在生物医学中的应用2.1DNA序列分类模型DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。

因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。

DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。

聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。

在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。

数学建模C题优秀论文

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): C 我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):日期: 2010 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):输油管的布置摘要“输油管的布置”数学建模的目的是设计最优化的路线,建立一条费用最省的输油管线路,但是不同于普遍的最短路径问题,该题需要考虑多种情况,例如,城区和郊区费用的不同,采用共用管线和非公用管线价格的不同等等。

我们基于最短路径模型,对于题目实际情况进行研究和分析,对三个问题都设计了合适的数学模型做出了相应的解答和处理。

问题一:此问只需考虑两个加油站和铁路之间位置的关系,根据位置的不同设计相应的模型,我们基于光的传播原理,设计了一种改进的最短路径模型,在不考虑共用管线价格差异的情况下,只考虑如何设计最短的路线,因此只需一个未知变量便可以列出最短路径函数;在考虑到共用管线价格差异的情况下,则需要建立2个未知变量,如果带入已知常量,可以解出变量的值。

问题二:此问给出了两个加油站的具体位置,并且增加了城区和郊区的特殊情况,我们进一步改进数学模型,将输油管路线横跨两个不同的区域考虑为光在两种不同介质中传播的情况,输油管在城区和郊区的铺设将不会是直线方式,我们将其考虑为光在不同介质中传播发生了折射。

[理学]数学建模c题-精品文档

企业退休职工养老金制度的改革摘要近30年来我国经济发展迅速,工资增长率也较高;而发达国家的经济和工资增长率都较低。

未来中国经济的发展和社会平均工资快速增长后也将趋于平稳。

我们通过建立Logistic 模型得到未来社会平均工资的预测值⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=-t t e C 11924.015667000001700000,参考附件1,从而得到2011年至2035年山东省的职工的年平均工资。

取附件2中企业各年龄段职工工资与该企业平均工资之比作为缴费指数,根据养老金以及替代率的计算方法得到该企业职工自2000年起分别从30岁、40岁开始缴养老保险,一直缴费到退休(55岁,60岁,65岁)时的各种情况下的职工自 2000年起从30岁开始缴养老保险,一直缴费到退休(55岁,60岁,65岁),收支平衡时的年龄分别为:59,63,68。

我们可以尝试通过延迟退休年龄,或增大基础养老金计算公式中的系数(即适当增大政府预算)来达到国家所要求的目标替代率,且比较容易维持收支平衡点。

并且随着时间的推移,在不出现大的经济波动的情况下,养老金保险率会逐渐增大,但收支平衡点不易维持。

关键词:Logistic 模型 预测 养老金替代率 收支平衡问题重述养老金也称退休金,是一种根据劳动者对社会所作贡献及其所具备享受养老保险的资格,以货币形式支付的保险待遇,用于保障职工退休后的基本生活需要。

我国企业职工基本养老保险实行“社会统筹”与“个人账户”相结合的模式,即企业把职工工资总额按一定比例(20%)缴纳到社会统筹基金账户,再把职工个人工资按一定比例(8%)缴纳到个人账户。

这两个账户我们合称为养老保险基金。

退休后,按职工在职期间每月(或年)的缴费工资与社会平均工资之比(缴费指数),再考虑到退休前一年的社会平均工资等因素,从社会统筹账户中拨出资金(基础养老金),加上个人工资账户中一定比例的资金(个人账户养老金),作为退休后每个月的养老金。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 封一 答卷编号(参赛学校填写):

答卷编号(竞赛组委会填写): 论文题目: C 组 别: 本科生

参赛队员信息(必填): 姓 名 参赛队员1 沈倩 参赛队员2 王青原 参赛队员3 付新新

参赛学校: 黑龙江工程学院 2

封二 答卷编号(参赛学校填写):

答卷编号(竞赛组委会填写): 评阅情况(学校评阅专家填写): 学校评阅1.

学校评阅2. 学校评阅3.

评阅情况(联赛评阅专家填写): 联赛评阅1. 联赛评阅2. 联赛评阅3. 3

2012年“深圳杯”全国大学生数学建模 夏令营C题:3D仿真机房建模问题分析 摘要 随着经济的发展、计算机的普及,人们对数据的处理越来越多。机房的设计问题也越来越受到人们的关注,如何在满足工作的前提条件下,做到最低的消耗,成了很多公司发现商机的、创造价值的有利方向。通过对机房设计,得到相应的实验数据,建立确定的数学模型,找到最佳的设计方案成了人们关注的焦点。 建立模型的出发点,影响因素有距空调的位置,高度,机柜摆放方式,任务量,空调送风速度。 对于第一问,根据分析附件1的数据,用MATLAB软件进行插值,绘出冷、热通道的热分布及流场分布图(共四幅),并且确定出室内最高温度位置。 对于第二问,利用附表2提供的数据,经过分析发现当固定其中某一个物理量时,其他的未知量之间会成现出特定的曲线关系。通过MATLAB软件拟合出各个影响因素与温度之间的图像发现特定关系,通过多元非线性回归解得函数关系。建立热分布的数学模型及算法,同时与测试案例进行比较。 对于第三问,结合前两问的结论,通过分析在不同任务量时绘制出的热分布图确定最优任务的分配方案,并且找到室内最高温度。分析附表2中改变任务量对通道3的温度影响,从而假设实际任务量为0.8和0.5的分配方案,再通过问题二中得到论证。 对于第四问,按照《电子信息系统机房设计规范》C级要求,在任务量一定的情况下,热点温度超过规范要求时,通过调节出风槽风速或出风槽温度从而降低温度,保证服务器的健康工作。通过多元线性回归找到热点温度与出风槽温度之间的间接关系,从而进行调节,实现任务量的合理使用和降低机房内热点温度的节能目的。 关键词: 相关分析 线性插值 逐步回归 多元非线性回归 线性回归 MATLAB 4

一.问题重述 1. 问题背景 大规模的数据中心每年都会花费大量资金用于计算设备及系统冷。因此有必要提高数据中心设备的能效,极大化数据中心的能源利用率及计算能力,建立绿色数据中心。绿色数据中心主要是区域化和模块化设计——根据高热区和低热区,采用不同的散热方式,实现对不同负载的有效支持。 作为绿色数据中心设计的一个重要环节是利用源自服务器及环境温度的数据,刻画数据中心的热循环过程。机房内热气流经循环进入HVAC顶部,在经过水冷系统冷却后从地下冷风槽通过中孔板送入机柜进风口,空调制冷系统将冷气送到冷通道,各机柜的服务器从冷通道吸入冷气之后,将热量排入热通道,再通过排风系统排出,循环进入空调顶部。为了保证机房内设备健康运行,数据中心制冷系统必须根据机房内热点的温度(室内最高温度)向机房送配冷气。而合理地给服务器分配工作任务,能够降低机房内热点的温度,达到节能目的。对于此类机房,往往由于机柜布置的不合理,以及各机柜服务器任务分配的不合理,造成机房内局部温度过高(形成热点)。为了保证服务器的健康工作,通常需要HVAC降低送风温度或加大送风量,造成耗能增加。 2. 问题的提出 图1是较典型的一类数据中心机房虚拟示意图。 该类机房采用独立的空调通风制冷系统(HVAC),机房机柜的布置通常按一定的行业设计规范要求布置。相邻机柜的出风口面对同一个通道。形成热通道。机房内热气流经循环进入HVAC顶部,在经过水冷系统冷却后从地下冷风槽通过中孔板送入机柜进风口,形成冷通道。绿色数据中心的主要任务之一就是根据机房的基础设施状态,按照行业规范要求合理地布置机柜,分布任务,尽量避免局部地区过热。图2是一个测试案例,部分测试数据见附件1及附件2。 现在通过数学建模来完成以下任务: (1)根据附件1的数据,绘出冷、热通道的热分布及流场分布及室内最高温度位置。 (2)建立描述该问题热分布的数学模型及算法,并与测试案例进行比较。 (3)如果定义该机房的总体任务量为1,根据你的模型及附件1的流场数据,确定服务器实际任务量为0.8及0.5的最优任务分配方案,并给出室内最高温度。 (4)如果按照《电子信息系统机房设计规范》(附件3)C级要求控制机房温度,讨论服务器设计任务量一定条件下,如何控制空调的送风速度或送风温度(可以通过送风槽的出口风速与温度来描述)。

二.问题分析 1.问题重要性分析 随着计算机的普及,大量的数据处理都交给了计算机处理,越来越多的高性能数据中心和互联网中心正逐渐建成。在现代的数据中心内,刀片服务器因其成本与性价比高,体积小而被广泛使用。但自身能源与冷却条件限制,这类大规模的数据中心或许每年需要花费数百万美元,主要用于计算设备及系统冷却所需的能源费用。所以建立绿色数据中心是很必要的。即可满足大量的数据处理,也可通过合理的设计使得经费相应节省下来,赚到更多利益,同时也呼应当今社会“绿色、节能”的主题。 5

2.问题思路的分析 题目介绍了绿色数据处理中心及如何实现,给出一种机房机柜的布置,同时也给出了这种布置下的实验数据。通过分析数据找出各影响因素之间的函数关系,有效合理的分配服务器的任务量,尽量避免机房内局部温度过高,也可确定最高点温度,有效的控制送风温度从而降低室内热点,保证服务器健康工作。

三.模型假设 1. 各个机柜的任务量平均分配 2. 实验所得的数据都是真实可靠的 3. 假设所选取的采样点都是有代表性的 4. 建设空间温度连续变化 5. 各机柜工作互不影响

四.符号说明 X 通道位置(单位:m)

Y 距空调的位置(单位:m)

Z 距地板的高度(单位:m)

R 机房的总体任务量

V 风速(单位:m/s)

T 温度(单位:℃)

0V 出风槽的风速(单位:m/s)

0T 出风槽的温度(单位:℃) 五.模型建立与求解 1.问题一 1.1 冷、热通道的热分布及流场分布图 通过问题、附表1数据分析可知,在冷、热不同通道内,温度、风速随距空调位置和距地板的高度的不同而改变。通过样条函数差值的方法,运用matlab软件编程(程序见附录1)作出冷、热通道的热分布及流场分布图,如下: (1)冷通道 6

1234567800.511.522.533.51214161820222426283032距空调位置(单位:m)

冷通道热分布图

距地板的高度(单位:m)温度(单位:℃)

冷通道热分布图 图一 7 024680123400.5

11.5

距空调的距离(单位:m)

冷通道流场分布图

据地板的高度(单位:m)风速(单位:m/s)

冷通道流场分布图 图二 (2)热通道 8 024680123425303540455055距空调的距离(单位:m)

热通道热分布图

高度(单位:m)温度(单位:m)

热通道热分布图 图三

02468012340.20.40.60.81

距空调距离(单位:m)

热通道流场分布图

高度(单位:m)风速(单位:m/s) 9

热通道流场分布图 图四 1.2室内最高温度位置 通过所绘制出的冷、热通道热分布图,可以看到最高温度发生在热通道。利用插值可以得到最高温度的位置,即: 室内最高温度位置在热通道距空调位置8m,距地板高度为2.1m,最高温度为55℃ 利用CAD绘图软件画出三维的热分布图,图中星星处即为温度最高点。

图五 2.问题二 2.1热分布的数学模型及算法 假设各机柜的任务量是平均分配的,以附件二所给数据的X、Y、Z,以温度T作为纵坐标,以机房示意图右下角为坐标原点建立空间直角坐标系。X的取值

范围[0,8],Y的取值范围[0,9.6],Z的取值范围[0,3.2]。 研究温度T与通道位置X、据空调位置Y、距地板高度Z之间的关系,首先固定任务量R、通道位置X与距地板高度Z,根据数据,利用MATLAB软件中的plot语句绘制出温度T与据空调位置Y的关系曲线(如下图):

相关文档
最新文档