二元一次方程组知识点
二元一次方程组知识点归纳

二元一次方程组知识点归纳二元一次方程组是指含有两个未知数,且未知数项的次数都是1的方程。
将具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
注意,二元一次方程组不一定都是由两个二元一次方程合在一起组成的,也可以由一个或多个二元一次方程单独组成。
解二元一次方程组的一般思路是将未知数个数由多化少,逐一解决。
消元法是解二元一次方程组的基本方法。
代入消元法是其中一种方法,即将二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
基本思路是未知数又多变少。
代入法解二元一次方程组的一般步骤是先从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示出来,再代入到另一个方程中,消去未知数,得到一个关于另一个未知数的一元一次方程,解出这个一元一次方程,求出未知数的值,再回代,最后联立起来即可。
加减消元法是另一种消元法,即将两个方程相加或相减,使其中一个未知数的系数相消,从而实现消元。
解二元一次方程组的关键是找到未知数的值,有一组解、无数组解和无解是常见的情况。
例如,对于方程组x+y=5和6x+13y=89,可以用代入法求解,得到x=-24/7,y=59/7,这是方程组的一组解。
而对于方程组x+y=4和2x+2y=10,可以发现方程②化简后为x+y=5,这与方程①相矛盾,因此此类方程组无解。
1.列方程(组)解应用题的关键是______________。
答:列方程2.下列方程中是二元一次方程的是______________。
答:3x-2y=4z3.二元一次方程5a-11b=21的解个数是______________。
答:有且只有一解4.方程y=1-x与3x+2y=5的公共解是(____,____)。
答:(3.2)5.若│x-2│+(3y+2)2=0,则y的值是______________。
答:-26.方程组4x3y k,2x3y5的解与x与y的值相等,则k等于______________。
第8章 《二元一次方程组》知识点及考点典例

第八章《二元一次方程组》知识点及考点典例一、重点知识回顾:1、二元一次方程含有______未知数,并且未知项的最高次数是___的_______方程叫做二元一次方程,它的一般形式是ax+by+c=0.2、二元一次方程的解使二元一次方程左右两边的值_____的两个未知数的值,叫做二元一次方程的一个解。
3、二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。
4二元一次方程组的解使二元一次方程组的两个方程左右两边的值________的两个未知数的值,叫做二元一次方程组的解。
5、二元一次方程组的解法(1)代入法(2)加减法※6、三元一次方程含有_______未知数,并且含有未知数的项的次数都是_____的_______方程。
※7、三元一次方程组由三个(或三个以上)一次方程组成,并且含有____________的方程组,叫做三元一次方程组。
8、解方程组体现的数学思想:消元二、典例剖析考点一、二元一次方程(组)的概念【例1】在下列方程中,不是二元一次方程的有()A.x+y=3 B.xy=3 C.x-y=3 D.x=3-y【举一反三】下列方程组中,属于二元一次方程组的是()A.+=⎨⎩=⎧3x2y7xy5B.275x yx z+=+=⎧⎨⎩C.342134x yx y+==⎧-⎪⎨⎪⎩D.513222yxx⎧+=⎪⎨⎪+=⎩考点典二、二元一次方程组的解【例2】已知x2y1==⎧⎨⎩是方程组ax by5bx ay1+=+=⎧⎨⎩的解,则a﹣b的值是【】A. 1-B. 2C.3D.4【举一反三】已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为( )A .4B .2C . 2D . ±2 考点三、解二元一次方程组【例3】解方程组:⎩⎨⎧-=-=+12352y x y x .【举一反三】解方程组⎩⎨⎧=+=-1032223y x y x考点四、已知方程(组)解的特征,求待定系数【例3】若关于x 、y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x +3y =6的解,则k 的值是( )A 、34-B 、34C 、43D 、43- 【举一反三】已知方程组23352x y n x y n +=⎧⎨+=+⎩的解x ,y 的和为12,求n 的值.※ 考点五、解三元一次方程组【例5】解方程组:⎪⎩⎪⎨⎧=++=-+=+-6123243z y x z y x z y x【举一反三】已知三元一次方程组5231x y y z x z +=+=-+=-⎧⎪⎨⎪⎩.(1)求该方程组的解;(2)若该方程组的解使ax +2y +z <0成立,求整数a 的最大值.考点六、二元一次方程(组)的应用【例6】小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y 千克,则可列方程组为( )A .46282x y x y +=⎧⎨=+⎩B .⎩⎨⎧+==+22864x y y xC .46282x y x y +=⎧⎨=-⎩D .⎩⎨⎧-==+22864x y y x 【举一反三】某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为96万元;本周已售出2辆A 型车和1辆B 型车,销售额为62万元.求每辆A 型车和B 型车的售价各为多少元?《二元一次方程组》检测题一、选择题1.若单项式22a b x y +与413a b x y --是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =﹣3,b =1C .a =3,b =﹣1D .a =﹣3,b =﹣12.利用加减消元法解方程组2510536x y x y +=⎧⎨-=⎩,①②,下列做法正确的是( ) A.要消去x ,可以将①×5+②×2 B.要消去x ,可以将①×3+②×(-5)C.要消去x ,可以将①×5+②×3D.要消去x ,可以将①×(-5)+②×23.若x 、y 满足方程组3735x y x y +=⎧⎨+=⎩,则x ﹣y 的值等于( )A . ﹣1B . 1C . 2D . 34.植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y 人,根据题意,下列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩ 二、填空题5.二元一次方程组7413563x y x y -=⎧⎨-=⎩的解为6.关于x ,y 的方程组2x y m x my n -=⎧⎨+=⎩的解是13x y =⎧⎨=⎩,则|m +n |的值是7.已知关于x ,y 的二元一次方程组⎩⎨⎧-=+=+12,32y x k y x 的解互为相反数,则k 的值是 . 8.设实数x ,y 满足方程组1x y 431x y 23⎧-=⎪⎪⎨⎪+=⎪⎩,则x y += .9.某地准备对一段长120m 的河道进行清淤疏通,若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天,设甲工程队平均每天疏通河道xm ,乙工程队平均每天疏通河道ym ,则(x +y )的值为 .三.解答题10. 解方程组⎩⎨⎧=-=+33651643y x y x .11.根据要求,解答下列问题.(1)解下列方程组(直接写出方程组的解即可):1)2x+y=3⎧⎨⎩x+2y=3,的解为 . 2)2x+3y=10⎧⎨⎩3x+2y=10,的解为 . 3)⎧⎨⎩2x-y=4,-x+2y=4的解为 . (2)以上每个方程组的解中,x 值与y 值的大小关系为 .(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.12.已知,两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130 元,问,两件服装的成本各是多少元?13.为落实国家“三农”政策,某地政府组织40辆汽车装运A 、B 、C 三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题:如果装运C 种农产品需13辆汽车,那么装运A 、B 两种农产品各需多少辆汽车?14.某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品.若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.(1)购买一支钢笔和一本笔记本各需多少元?(2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1100元,则工会最多可以购买多少支钢笔?。
八年级数学二元一次方程组知识点

八年级数学二元一次方程组知识点
以下是八年级数学二元一次方程组的主要知识点:
1. 二元一次方程组的定义:由两个未知数的一次方程组成的方程组。
2. 解二元一次方程组的方法:
a. 消元法:通过变换方程组中的某一方程使得两个方程的系数相同,从而使得方程组中某个未知数的系数为零,然后解得另一个未知数,再回代求解另一个未知数。
b. 代入法:将一个方程的一个未知数用另一个未知数表示,然后代入另一个方程,得到包含一个未知数的一次方程,从而解出这个未知数,再代入另一个方程解出另一个未知数。
3. 方程组的解的情况:
a. 有唯一解:方程组有一个解,即两个方程表示的直线在某一点相交。
b. 无解:方程组的两个方程表示的直线平行,不相交。
c. 无穷多解:方程组的两个方程表示的直线重合,有无穷多个解。
4. 方程组解的判断:
a. 可以通过将解代入方程组中验证方程组是否成立,以确定解是否正确。
b. 可以通过画出方程组所表示的直线来观察直线的相交情况,以判断方程组是否有解及解的情况。
5. 方程组应用题:将实际问题转化为方程组,通过解方程组求解实际问题,如两个人同时出发,相遇时互相报告行进的时间等问题。
这些是八年级数学二元一次方程组的主要知识点,希望对你有帮助。
七年级数学下册第八章二元一次方程组全部重要知识点(带答案)

七年级数学下册第八章二元一次方程组全部重要知识点单选题1、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有( )A .5个B .6个C .7个D .8个答案:D分析:设原来的两位数为10a +b ,则新两位数为10b +a ,根据新两位数比原两位数大9,列出方程,找出符合题意的解即可.解:设原来的两位数为10a +b ,根据题意得:10a +b +9=10b +a ,解得:b =a +1,因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,都是个位数字比十位数字大1的两位数.故选:D .小提示:本题考查了二元一次方程的应用,解题的关键是弄清题意,找合适的等量关系,列出方程,再求解,弄清两位数的表示是:10×十位上的数+个位上的数,注意不要漏数.2、古代《折绳测井》“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?”译文大致是:“用绳子测水井深度,如果将绳子折成三等分,井外余绳4尺;如果将绳子折成四等分,井外余绳1尺,问绳子、井深各是多少尺?”如果设绳子x 尺,井深y 尺,根据题意列方程组正确的是( )A .{13x =y +414x =y +1B .{13x =y −414x =y −1C .{13x =y −414x =y +1D .{13x =y +414x =y −1 答案:A分析:用代数式表示井深即可得方程.本题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.解:设绳长x 尺,井深y 尺,根据题意可列方程组为{x 3=y +4x 4=y +1 ,故选:A .小提示:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.3、若方程组{2x +y =5ax −by =4与{ax +by =8x −y =1 有相同的解,则a ,b 的值为( ) A .a =2,b =−3B .a =3,b =2C .a =2,b =3D .a =3,b =−2答案:B分析:两个方程组有相同的解,即有一对x 和y 的值同时满足四个方程,所以可以先求出第一个方程组的解,再把求得的解代入第二个方程组中,得到一个新的关于a 、b 的方程,并解得,求出a 、b .解:先解{2x +y =5x −y =1, 得{x =2y =1, 把{x =2y =1 代入方程组{ax −by =4ax +by =8, 得{2a −b =42a +b =8, 解得{a =3b =2, 故选:B .小提示:本题考查了解二元一次方程组,解题的关键是先根据已知方程组求出未知数的值,再把未知数的值代入另一个方程组中得到新的方程组.4、一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是( )A .容易题和中档题共60道B .难题比容易题多20道C .难题比中档题多10道D .中档题比容易题多15道答案:B分析:设容易题有a 题,中档题有b 题,难题有c 题,根据“三种题型共100道,每道题至少有一人解对,且每人都解对了其中的60道”,即可得出关于a,b,c的三元一次方程组,用方程①×2-方程②,可求出c-a=20,即难题比容易题多20题,此题得解.解:设容易题有a题,中档题有b题,难题有c题,依题意,得:{a+b+c=100①3a+2b+c=3×60②①×2-②,得:c-a=20,∴难题比容易题多20题.故选:B.小提示:本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.5、如图,三个天平的托盘中形状相同的物体质量相等.图①、图②所示的两个天平处于平衡状态,要使第三个天平也保持平衡,可在它的右盘中放置( )A.3个球B.4个球C.5个球D.6个球答案:C分析:题目中的方程实际是说明了两个相等关系:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据第一个天平得到:5x+2y=x+3z;根据第二个天平得到:3x+3y=2y+2z,把这两个式子组成方程组,解这个关于y,z 的方程组即可.解:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据题意得到:{5x+2y=x+3z;3x+3y=2y+2z解得:{y=xz=2x;第三图中左边是:x+2y+z=x+2x+2x=5x,因而需在它的右盘中放置5个球. 答:需在它的右盘中放置5个球.所以C选项是正确的.小提示:解决本题的关键是借助方程关系进行等量代换,进而求出球的数量.6、若实数满足(x+y+2)(x+y ﹣1)=0,则x+y 的值为( )A .1B .﹣2C .2或﹣1D .﹣2或1答案:D解:因为(x +y +2)(x +y ﹣1)=0,所以(x +y +2)=0,或(x +y ﹣1)=0.即x +y =﹣2或x +y =1.故选D .7、某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( )A .|10x 19y |=320B .|10y 19x |=320C .|10x −19y |=320D .|19x −10y |=320答案:C分析:根据题中数量关系列出方程即可解题;解:由10张A 票的总价与19张B 票的总价相差320元可知,10x −19y =320或19y −10x =320,∴|10x −19y |=320,故选:C .小提示:本题主要考查二元一次方程的应用,解题的关键在于能根据实际情况对题目全面分析.8、小明解得方程组{3x +y =●3x −y =10解为{x =2y =★ ,由于不小心上了两滴墨水刚好遮住了两个数●和★,则这两个数分别为( )A .10和4B .2和-4C .-2和4D .-2和-4答案:B分析:把{x =2y =★,代入3x −y =10,得y =−4,把y =−4,x =2代入3x +y =●,得●=2. 解:把{x =2y =★,代入3x −y =10,得 6−★=10,∴★=−4,即y =−4,把y =−4,x =2代入3x +y =●,得6+(−4)=●,∴●=2,故选:B .小提示:本题主要考查了二元一次方程组的解、解二元一次方程组,掌握将解代入原方程组求出有关的数值是解题关键.9、已知方程组{a −2b =63a −b =m中,a ,b 互为相反数,则m 的值是( ) A .4B .−4C .0D .8答案:D分析:根据a 与b 互为相反数得到a +b =0,即b =−a ,代入方程组即可求出m 的值.解:因为a ,b 互为相反数,所以a +b =0,即b =−a ,代入方程组得:{3a =64a =m, 解得:{a =2m =8, 故选:D .小提示:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值,也考查了代入消元法解二元一次方程组以及相反数的意义.10、古代一歌谣:栖树一群鸦,鸦树不知数:三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.意思就是说,有一群乌鸦要到树林休息,如果每棵树上落坐有三只乌鸦,则有五个落在地上;如果每棵树上落坐有五只乌鸦,则有一棵树没有乌鸦落坐,请你动脑筋,鸦树各几何?若设乌鸦有x 只,树有y 棵,由题意可列方程组( )A .{3y =x −55y −1=xB .{3y +5=x 5(y −1)=xC .{3y =x +55y +1=xD .{3y −5=x 5(y +1)=x答案:B分析:设诗句中谈到的鸦为x 只,树为y 棵,利用“三个坐一棵,五个地上落;五个坐一棵,闲了一棵树”分别得出方程3y +5=x ,5(y −1)=x 进而求出即可.解:设乌鸦有x 只,树有y 棵,由题意可列方程组,{3y +5=x 5(y −1)=x, 故选B .小提示:本题考查了列二元一次方程组,根据题意找到等量关系是解题的关键.填空题11、若关于x ,y 的二元一次方程组{3x +2y =22x +y =m −18的解x 、y 互为相反数,则点P(m ,y)在第_______象限. 答案:四分析:根据x 、y 互为相反数得:x +y =0,与方程组的第一个方程组成新的方程组,解出可得x 、y 的值,代入第二个方程可得m 的值.即得出P 点坐标,最后根据坐标系内点的坐标特征即可得出答案.解:由已知得:x +y =0,则{x +y =03x +2y =2, 解得:{x =2y =−2, 将{x =2y =−2代入2x +y =m −18,得:2×2−2=m −18, ∴m =20.∴P (20,-2),∴点P 在第四象限.所以答案是:四.小提示:本题考查了二元一次方程组的解、互为相反数的性质以及坐标系内点的坐标特征.根据题意建立新的方程组是解决问题的关键.12、已知关于x 、y 的二元一次方程组{ax +by =7bx +ay =9的解为{x =2y =3 ,那么关于m 、n 的二元一次方程组{a(m +n)+b(m −n)=7b(m +n)+a(m −n)=9的解为 _____. 答案:{m =52n =−12 分析:首先利用整体代值的数学思想可以得到m +n 与m ﹣n 的值,然后解关于m 、n 的方程组即可求解.解:∵关于x 、y 的二元一次方程组{ax +by =7bx +ay =9的解为{x =2y =3 , ∴关于m 、n 的二元一次方程组{a(m +n)+b(m −n)=7b(m +n)+a(m −n)=9 中{m +n =2m −n =3, ∴解这个关于m 、n 的方程组得:{m =52n =−12 . 故答案为{m =52n =−12 . 小提示:本题主要考查了二元一次方程组的解,解题的关键是掌握整体代值的数学思想,对于学生的能力要求比较高.13、我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何?”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛,则6个大桶加6个小桶可以盛酒_________斛. 答案:5分析:设每个大桶可以盛酒x 斛,每个小桶可以盛酒y 斛,根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”,即可得出关于x ,y 的二元一次方程组,将方程①+②相加,即可得出结论.解:设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛,则{5x +y =3①x +5y =2②, 由①+②可得6x +6y =5,∴则6个大桶加6个小桶可以盛酒5斛,所以答案是:5.小提示:本题考查了二元一次方程组的应用以及数学常识,解题的关键是找准等量关系,正确列出二元一次方程组.14、甲对乙说:“当我的岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在的岁数时,你将61岁.”则甲、乙现在的年龄分别是______.答案:42岁,23岁分析:设甲现在x 岁,乙现在y 岁,根据甲、乙年龄之间的关系,可得出关于x ,y 的二元一次方程组,解之即可得出结论.解:设甲现在x 岁,乙现在y 岁,依题意,得:{y −(x −y )=4x +(x −y )=61, 解得:{x =42y =23. 答:甲现在42岁,乙现在23岁.所以答案是:42岁,23岁.小提示:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.15、有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.答案:5分析:要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.解:设驴子原来驮x 袋,根据题意,得:2(x ﹣1)﹣1﹣1=x +1解得:x =5.故驴子原来所托货物的袋数是5.故答案为5.小提示:解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.解答题16、数学乐园:解二元一次方程组{a1x+b1y=c1①a2x+b2y=c2②,①×b2−②×b1得:(a1b2−a2b1)x=c1b2−c2b1,当a1b2−a2b1≠0时,x=c1b2−c2b1a1b2−a2b1,同理:y=a1c2−a2c1a1b2−a2b1;符号|a bc d|称之为二阶行列式,规定:|a bc d|=ad−bc,设D=|a1b1a2b2|,D x=|c1b1c2b2|,D y=|a1c1a2c2|,那么方程组的解就是{x=D xDy=D yD(1)求二阶行列式|3456|的值;(2)解不等式:|x x−22−4|≥−2;(3)用二阶行列式解方程组{3x−2y=62x+3y=17;(4)若关于x、y的二元一次方程组{3x−my=62x+3y=17无解,求m的值.答案:(1)|3456|的值是−2(2)不等式的解集为x≤1(3){x=4y=3 (4)m=−4.5分析:(1)根据|a bc d|=ad−bc,即可求出|3456|;(2)根据|a bc d|=ad−bc,得|x x−22−4|≥−2=x×(−4)−2(x−2)≥−2,解出x,即可;(3)根据D=|a1b1a2b2|,D x=|c1b1c2b2|,D y=|a1c1a2c2|,那么方程组的解就是{x=D xDy=D yD,即可求出{3x−2y=62x+3y=17的解;(4)根据{3x−my=62x+3y=17无解,得D=0,即可求出m的值.(1)∵|a bc d|=ad−bc∴|3456|=3×6−4×5=−2∴|3456|的值是−2.(2)∵|a bc d|=ad−bc∴|x x−22−4|=−4x−2(x−2)∴|x x−22−4|≥−2=−4x−2(x−2)≥−2∴−4x−2x+4≥−2∴−6x≥−6∴x≤1∴|x x−22−4|≥−2的解集为x≤1.(3)∵方程组{a1x+b1y=c1①a2x+b2y=c2②∴方程组{3x−2y=62x+3y=17中,a1=3,a2=2,b1=−2,b2=3,c1=6,c2=17∴D=|a1b1a2b2|=|3−223|=9−(−4)=13D x=|c1b1c2b2|=|6−2173|=18+34=52D y=|a1c1a2c2|=|36217|=3×17−12=39x=D xD =5213=4,y=D yD=3913=3∴方程组的解为:{x=4y=3.(4)∵{a1x+b1y=c1①a2x+b2y=c2②∴方程组{3x−my=62x+3y=17中,a1=3,a2=2,b1=−m,b2=3,c1=6,c2=17∴D=|a1b1a2b2|=|3−m23|=9−2(−m)=9+2m∵{3x −my =62x +3y =17无解 ∴D =0∴9+2m =0解得m =−92. 小提示:本题考查二元一次方程组的解法,解题的关键是理解题意新定义算法,根据二阶行列式计算.17、已知关于x 、y 的方程组{mx −12ny =12mx +ny =5的解为{x =2y =3 ,求m 、n 的值. 答案:m =1,n =1.分析:把x 与y 的值代入方程组得出关于m 、n 的二元一次方程组,求得方程组的解即可.∵关于x 、y 的方程组{mx −12ny =12mx +ny =5的解为{x =2y =3 , ∴{2m −32n =122m +3n =5, 解得:{m =1n =1. 即m =1,n =1.18、小华从家里出发到学校去上学,前15路段小华步行,其余路段小华骑自行车. 已知小华步行的平均速度为60m/min ,骑自行车的平均速度为200m/min ,小华从家里到学校一共用了22min .(1)小红同学提出问题:小华家里离学校有多少m ? 前15路段小华步行所用时间是多少min ? 请你就小红同学提出的问题直接设出未知数列方程组进行解答.(2)请你再根据题目的信息,就小华走的“路程”或“时间”,提出一个能用二元一次方程组解答但与第(1)问不完全相同的问题,并设出未知数、列出方程组.答案:(1)3000m ,10min(2)见解析分析:(1)设小华家里离学校有x m ,前15路段小华步行所用时间是y min .根据“用两种方式表示出前15路段的路程“、“小华从家里到学校一共用了22min”列出方程组并解答即可;(2)小华从家里到学校去上学步行了多少m ?小华骑自行所用时间是多少min ?利用速度、时间以及路程的关系列出方程组.(1)解:设小华家里离学校有x m ,前15路段小华步行所用时间是y min . 根据题意得,{15x =60y y +x−60y 200=22 解得{x =3000y =10答:小华家里离学校有3000m ,前15路段小华步行所用时间是10min . (2)小华从家里到学校去上学步行了多少m ?小华骑自行所用时间是多少min ?设小华从家里到学校去上学步行了s m ,小华骑自行所用时间是多少t min ,根据题意得,{4s =200t s 60+t =22小提示:本题考查了二元一次方程组的应用,找准等量关系,正确列出方程组是解题的关键.。
二元一次方程组知识点归纳及解题技巧

二元一次方程组知识点归纳及解题技巧一、知识点归纳在代数学中,二元一次方程组是由两个含有两个未知数的方程组成的。
通常表示为:ax + by = cdx + ey = f其中,a、b、c、d、e、f为已知系数,x、y为未知数。
1. 方程组解的类型二元一次方程组的解可以分为以下三种类型:a) 有唯一解:方程组中的两个方程可以通过消元法或代入法得到唯一解。
b) 无解:方程组中的两个方程无法通过消元法或代入法得到一致的解,此时方程组为矛盾方程组。
c) 无穷解:方程组中的两个方程可以通过消元法或代入法得到多个解,此时方程组为同解方程组。
2. 消元法消元法是求解二元一次方程组的常用方法,它的基本思路是通过变换方程式,将两个方程中的一个未知数消去,从而得到只含有一个未知数的方程,再通过代入法求解。
以下是消元法的步骤:a) 将两个方程中的同一未知数系数相等,若系数不等,则可通过乘法变换,使其相等;b) 将两个方程式相减,将其中一个未知数消去,得到只含有另一个未知数的方程;c) 求解得到该未知数的值;d) 将求得的未知数的值带入其中一个方程,求解得到另一个未知数的值。
3. 代入法代入法也是求解二元一次方程组的有效方法,它的基本思路是将一个方程中的一个未知数表示为另一个未知数的函数,再将其代入另一个方程进行求解。
以下是代入法的步骤:a) 选择一个方程中的一个未知数表示为另一个未知数的函数,比如设x = g(y);b) 将该式子代入另一个方程,得到只含有一个未知数的方程;c) 求解得到该未知数的值;d) 将求得的未知数的值带入其中一个方程,求解得到另一个未知数的值。
二、解题技巧1. 观察方程组特征:通过观察方程组的系数和常数项,判断方程组的解类型。
当系数和常数项满足某种特定条件时,可以直接判断方程组的解类型,避免不必要的计算。
例如,当两个方程的系数比例相同,而常数项不同时,方程组无解;当两个方程的系数和常数项都相等,方程组有无穷解。
二元一次方程组知识点

二元一次方程组知识点1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。
4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
5、代入消元法解二元一次方程组:(1)基本思路:未知数又多变少。
(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。
(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
(4)代入法解二元一次方程组的一般步骤:1、从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”2、将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。
3、解出这个一元一次方程,求出x的值,即“解”。
4、把求得的x值代入y=ax+b中求出y的值,即“回代”5、把x、y的值用{联立起来即“联”6、加减消元法解二元一次方程组(1)两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
(2)用加减消元法解二元一次方程组的解1、方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即“乘”。
2、把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程,即“加减”。
3、解这个一元一次方程,求得一个未煮熟的值,即“解”。
七年级下册数学二元一次方程组知识点
七年级下册数学二元一次方程组知识点一元一次方程是指只有一个未知数的一次方程,例如:2x - 3 = 7。
而二元一次方程是指含有两个未知数的一次方程,例如:2x + 3y= 7。
在七年级下册的数学课程中,我们将学习关于二元一次方程组的知识。
方程组是一个由多个方程组成的集合,其中每个方程都有相同的未知数。
接下来,我们将学习以下知识点:1.二元一次方程组的概念:二元一次方程组是由两个二元一次方程组成的集合。
一般形式为:a1x + b1y = c1a2x + b2y = c22.解二元一次方程组的方法:a.消元法:通过某种操作使得方程组中的一个未知数的系数相等,然后将方程相加或相减,从而消去该未知数。
b.代入法:选取一个方程,将其中一个未知数表示成另一个未知数的式子,然后将其代入另一个方程,从而得到一个只含一个未知数的方程。
c.矩阵法:将方程组的系数分别放入矩阵中,计算矩阵的行列式,从而求得方程组的解。
3.解二元一次方程组的步骤:a.利用某种方法将方程组化简为易于求解的形式。
b.求解方程组中的一个未知数。
c.将求解得到的未知数代入另一个方程,求解另一个未知数。
d.检验所求解是否满足原方程组。
4.二元一次方程组的解的情况:a.唯一解:方程组有且仅有一个解。
b.无解:方程组没有解,即方程组的解不存在。
c.无穷多解:方程组有无数个解。
5.在解二元一次方程组时要注意的问题:a.方程组是否有解。
b.方程组是否有无穷多解。
c.是否可以进行消元操作。
d.是否正确地代入方程。
通过学习二元一次方程组的知识,我们可以解决一些实际问题,例如在解答题或应用题中,通过列方程组来求解问题。
希望以上简要介绍的二元一次方程组的知识点能对你的学习有所帮助!。
二元一次方程组知识点
第八章 二元一次方程组二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
二元一次方程组的解法(计算)重点 二、考点例题 考点1 1.如果是同类项,则、的值是( )A 、=-3,=2B 、=2,=-3C 、=-2,=3D 、=3,=-22.若3243y x b a +与ba y x -634是同类项,则=+b a ( )A 、-3B 、0C 、3D 、63.已知3a 4+y b13-x 与-3a22-x by21-是同类项,则x= ,y = 。
题型2 1.若3x953++n m +4y724--n m =2是关于x 、y 的二元一次方程,则n m的值等于 。
2.若方程 (a 2-4)x 2+(2-3a)x+(a+1)y+3a=0为二元一次方程,则a 的值为___ 3.如果1032162312=--+--b a b a y x是一个二元一次方程,那么数a .b=______。
4.关于X 的方程()()()512422+=++++-m y m x m x m ,当m __________时,是一元一次方程;当m ___________时,它是二元一次方程。
5.若方程 2x1-m + ymn +2 =21是二元一次方程,则mn= 。
完整版)二元一次方程组知识点整理
完整版)二元一次方程组知识点整理Chapter 5: Summary of Knowledge Points on Systems of Linear nsKnowledge Point 1: n of Systems of Linear ns1.Concept of Systems of Linear nsXXX variables and the degree of the variables is 1 is called a system of linear ns.Note: 1.The "XXX variables。
and there are only two unknown variables in a system of linear ns.2.The degree of the variables in the XXX 1.3.Both sides of the system of linear ns must be equal。
(A system of linear XXX is a system of linear ns.)2.The coefficients of the variables in the n are not equal to zero。
and the degree of the two unknown variables is 1.That is。
if ax+by=c is a system of linear ns。
then a≠0.b≠0.and m=1.n=1.Example 1: If (a-2)x-by|a|-1/mn=5 is a system of linear ns in x and y。
then a=______。
b=_____.Example 2: The following are systems of linear ns: ① 2x-5=y。
冀教版七年级数学下册《二元一次方程组》知识点总结
冀教版七年级数学下册《二元一次方程组》知识点总结一、二元一次方程组1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是ax+by=c(a≠0,b≠0)。
如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。
二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
二、二元一次方程组的解法代入消元法。
我们先把第一个方程看成只有一个未知数(另一个字母看成已知数),通过移项去括号等把它写成字母等于的形式。
然后我们把第二个方程里面的那个字母换成刚才我们得到的代数式,这样我们就得到了一个一元一次方程。
把这个一元一次方程解出来,得到其中一个未知数的值。
三、二元一次方程组的应用1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。
这类问题比较直观,画线段,用图便于理解与分析。
其等量关系式是:两者的行程差=开始时两者相距的路程;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。
这类问题也比较直观,因而也画线段图帮助理解与分析。
这类问题的等量关系是:双方所走的路程之和=总路程。
(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;四、简单的三元一次方程组1. 三元一次方程组解法:主要的解法就是加减消元法和代入消元法,通常采用加减消元法,若方程难解就用代入消元法,因题而异。
2. 简单的三元一次方程组的解法步骤:(1)思路:解三元一次方程组的基本思想仍是消元,其基本方法是代入法和加减法。
(2)步骤:①利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;②解这个二元一次方程组,求得两个未知数的值;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名师精编 优秀资料
二元一次方程组知识点
1、 二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二
元一次方程。
2、 二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元
一次方程组。
3、 二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一
次方程的解,二元一次方程有无数个解。
4、 二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的
解。
5、 代入消元法解二元一次方程组:
(1) 基本思路:未知数又多变少。
(2) 消元法的基本方法:将二元一次方程组转化为一元一次方程。
(3) 代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出
来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。这个方法叫
做代入消元法,简称代入法。
(4) 代入法解二元一次方程组的一般步骤:
1、 从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用
含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”
2、 将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。
3、 解出这个一元一次方程,求出x的值,即“解”。
4、 把求得的x值代入y=ax+b中求出y的值,即“回代”
5、 把x、y的值用{联立起来即“联”
6、 加减消元法解二元一次方程组
(1) 两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相
加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,
简称加减法。
(2) 用加减消元法解二元一次方程组的解
1、 方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用
适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即“乘”。
2、 把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程,即“加
减”。
3、 解这个一元一次方程,求得一个未煮熟的值,即“解”。
4、 将这个求得的未知数的值代入原方程组中任意一个方程中,求出另一个未知数的值即
“回代”。
5、 把求得的两个未知数的值用{联立起来,即“联”。
二元一次方程组
一、填空题
1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____ __。
2、在x+3y=3中,若用x表示y,则y=__ ___,用y表示x,则x=_ _____。
3、已知方程(k2-1)x2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______
时,方程为二元一次方程。
4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=___ ___;当y=0时,则x=__ ____。
5、方程2x+y=5的正整数解是___ ___。
6、若(4x-3)2+|2y+1|=0,则x+2=_____ _。
7、方程组bxyayx的一个解为32yx,那么这个方程组的另一个解是 。
8、若21x时,关于yx、的二元一次方程组212byxyax的解互为倒数,则
ba2
。
二、选择题
1、方程2x-3y=5,xy=3,33yx,3x-y+2z=0,62yx中是二元一次方
程的有( )个。
A、1 B、2 C、3 D、4
2、方程2x+y=9在正整数范围内的解有( )
A、1个 B、2个 C、3个 D、4个
3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )
A、10x+2y=4 B、4x-y=7 C、20x-4y=3 D、15x-3y=6
4、若是myx25与2214nmnyx同类项,则nm2的值为 ( )
A、1 B、-1 C、-3 D、以上答案都不对
5、在方程(k2-4)x2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为( )
名师精编 优秀资料
A、2 B、-2 C、2或-2 D、以上答案都不对.
6、若12yx是二元一次方程组的解,则这个方程组是( )
A、5253yxyx B、523xyxy C、152yxyx D、132yxyx
7、在方程3)(3)(2xyyx中,用含x的代数式表示y,则 ( )
A、35xy B、3xy C、35xy D、35xy
8、已知x=3-k,y=k+2,则y与x的关系是( ) A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-1 9、下列说法正确的是( ) A、二元一次方程只有一个解 B、二元一次方程组有无数个解 C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成 10、若方程组16156653yxyx 的解也是方程3x+ky=10的解,则k的值是( ) A、k=6 B、k=10 C、k=9 D、k=101 三、用代入法解下列方程组 (1)5253yxyx (2) 523xyxy (3)152yxyx (4)1302yxyx (5)14329mnnm (6)qpqp451332 四、用加减法解下列方程组 (1)924523nmnm (2)524753yxyx
(3)7441156yxyx (4)53412911yxyx
(5)2.03.05.0523151yxyx (6)ayxayx343525( 其中a为常数)
二元一次方程组应用题
1、 一、列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:
2、 审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个
名师精编 优秀资料
未知数; 3、 找:找出能够表示题意两个相等关系; 4、 列:根据这两个相等关系列出必需的代数式,从而列出方程组; 5、 解:解这个方程组,求出两个未知数的值; 6、 答:在对求出的方程的解做出是否合理判断的基础上,写出答案 二、典型例题讲解 题型一、列二元一次方程组解决生产中的配套问题 1、 某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只,贤计划用132米这样布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套 题型二、列二元一次方程组解决行程问题 2、 甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇。相遇后,拖拉机继续前进,汽车在相遇处停留1小时候后调转车头原速返回,在汽车再次出发后半小时后追上乐拖拉机,这时,汽车、拖拉机各行驶了多少千米? 3、 一轮船从甲地到乙地顺流航行需4小时,从乙地到甲地逆流航行需6小时,那么一木筏由甲地漂流到乙地需要多长时间? 题型三、列二元一次方程解决商品问题 4、 在“五一”期间,某超市打折促销,已知A商品7.5折销售,B商品8折销售,买20件A商品与10件B商品,打折前比打折后多花460元,打折后买10件A商品和10件B商品共用1090元。求A、B商品打折前的价格。
题型四、列二元一次方程组解决工程问题
5、 某城市为了缓解缺水状况,实施了一项饮水工程,就是把200千米以外的一条大河的水引到城
市中来,把这个工程交给甲、乙两个施工队,工期为50天,甲、乙两队合作了30天后,乙队 因
另外有任务需要离开10天,于是甲队加快速度,每天多修0.6千米,10天后乙队回来后,为了
保证工期,甲队保持现在的速度不变,乙队每天比原来多修0.4千米,结果如期完成,问:甲、
乙两队原计划每天各修多少千米?
题型五:列二元一次方程组解决增长问题
6、 某中学现有学生4200人,计划一年后初中在校学生增加8%,高中在校学生增加11%,这样全
校在校生将增加10%,则该校现在有初中生多少人?在校高中生有多少人?